def test_run(self): op = Operator( 'beam_search', pre_ids='pre_ids', pre_scores='pre_scores', ids='ids', scores='scores', selected_ids='selected_ids', selected_scores='selected_scores', parent_idx='parent_idx', level=0, beam_size=2, end_id=0, ) op.run(self.scope, core.CPUPlace()) selected_ids = self.scope.find_var("selected_ids").get_tensor() selected_scores = self.scope.find_var("selected_scores").get_tensor() parent_idx = self.scope.find_var("parent_idx").get_tensor() self.assertTrue( np.allclose(np.array(selected_ids), np.array([4, 2, 3, 8])[:, np.newaxis])) self.assertTrue( np.allclose(np.array(selected_scores), np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis])) self.assertEqual(selected_ids.lod(), [[0, 2, 4], [0, 1, 2, 3, 4]]) self.assertTrue( np.allclose(np.array(parent_idx), np.array([0, 1, 2, 3])))
def check_with_place(self, place): scope = core.Scope() self.setup(scope, place) op_args = dict() for key, np_array in self.dense_inputs.items(): var = scope.var(key).get_tensor() var.set(np_array, place) op_args[key] = key for s in self.sparse_inputs: op_args[s] = s for s in self.outputs: var = scope.var(s).get_tensor() var.set(self.outputs[s], place) op_args[s] = s for k in self.attrs: op_args[k] = self.attrs[k] # create and run sgd operator adam_op = Operator("adam", **op_args) adam_op.run(scope, place) for key, np_array in self.outputs.items(): out_var = scope.var(key).get_tensor() actual = np.array(out_var) actual = actual.reshape([actual.size]) np_array = np_array.reshape([np_array.size]) for idx, row_id in enumerate(self.rows): j = 0 while j < self.row_numel: pos = row_id * self.row_numel + j self.assertLess( (actual[pos] - np_array[pos]) / actual[pos], 0.00001) j += 1
def check_with_place(self, place): scope = core.Scope() # create and initialize Variable feature_len = 12 rows = [0, 4, 4, 7] np_array = np.ones((len(rows), feature_len)).astype("float32") in_x = scope.var('X').get_selected_rows() in_x.set_height(len(rows)) in_x.set_rows(rows) in_x_tensor = in_x.get_tensor() in_x_tensor.set(np_array, place) # create Out Variable out_tensor = scope.var('Out').get_tensor() # create and run lookup_table operator extract_rows_op = Operator("extract_rows", X='X', Out='Out') extract_rows_op.run(scope, place) # get result from Out result_array = np.array(out_tensor) result_array = [ele[0] for ele in result_array] assert result_array == rows
def check_with_place(self, place): scope = core.Scope() x_rows = [0, 5, 5, 4, 19] height = 20 row_numel = 2 np_array = np.ones((len(x_rows), row_numel)).astype("float32") np_array[1, :] = 2.0 np_array[2, :] = 3.0 np_array[3, :] = 4.0 # initialize input variable X x = scope.var('X').get_selected_rows() x.set_rows(x_rows) x.set_height(height) x_tensor = x.get_tensor() x_tensor.set(np_array, place) # initialize input variable Out out = scope.var("Out").get_tensor() op = Operator("get_tensor_from_selected_rows", X="X", Out="Out") op.run(scope, place) out_array = np.array(out) self.assertEqual((5, 2), out_array.shape) assert (out_array == np_array).all()
def check_with_place(self, place, inplace): scope = core.Scope() if inplace: self.create_lod_tensor(scope, place, "x1") self.create_selected_rows(scope, place, "x2", True) out = scope.var("x1").get_tensor() out_name = "x1" else: self.create_selected_rows(scope, place, "x1", True) self.create_lod_tensor(scope, place, "x2") out = scope.var("out").get_tensor() out_name = "out" # create and run sum operator sum_op = Operator("sum", X=["x1", "x2"], Out=out_name) sum_op.run(scope, place) result = np.ones((1, self.height)).astype(np.int32).tolist()[0] for ele in self.rows: result[ele] += 1 out_t = np.array(out) self.assertEqual(out_t.shape[0], self.height) self.assertTrue( np.array_equal( out_t, self._get_array([i for i in range(self.height)], self.row_numel) * np.tile( np.array(result).reshape(self.height, 1), self.row_numel)))
def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7] self.row_numel = 12 x_selected_rows = scope.var('X1').get_selected_rows() x_selected_rows.set_height(height) x_selected_rows.set_rows(rows) np_array = np.ones((len(rows), self.row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 x_tensor = x_selected_rows.get_tensor() x_tensor.set(np_array, place) out_selected_rows = scope.var('Out1').get_selected_rows() # create and run sqrt operator sqrt_op = Operator("sqrt", X='X1', Out='Out1') sqrt_op.run(scope, place) # get and compare result result_array = np.array(out_selected_rows.get_tensor()) self.assertTrue(np.allclose(result_array, np.sqrt(np_array)))
def check_with_place(self, place): scope = core.Scope() self.setup(scope, place) op_args = dict() for key, np_array in self.dense_inputs.iteritems(): var = scope.var(key).get_tensor() var.set(np_array, place) op_args[key] = key for s in self.sparse_inputs: op_args[s] = s for s in self.outputs: var = scope.var(s).get_tensor() var.set(self.outputs[s], place) op_args[s] = s for k in self.attrs: op_args[k] = self.attrs[k] # create and run sgd operator adam_op = Operator("adam", **op_args) adam_op.run(scope, place) for key, np_array in self.outputs.iteritems(): out_var = scope.var(key).get_tensor() actual = np.array(out_var) actual = actual.reshape([actual.size]) np_array = np_array.reshape([np_array.size]) for idx, row_id in enumerate(self.rows): j = 0 while j < self.row_numel: pos = row_id * self.row_numel + j self.assertLess((actual[pos] - np_array[pos]) / actual[pos], 0.00001) j += 1
def check_with_selected_rows(self, place): scope = core.Scope() x_rows = [0, 1, 5, 4, 19] x_height = 20 row_numel = 2 np_array = np.ones((len(x_rows), row_numel)).astype("float32") # initialize input variable x = scope.var('X').get_selected_rows() x.set_rows(x_rows) x.set_height(x_height) x_tensor = x.get_tensor() x_tensor.set(np_array, place) # initialize the Out variable out = scope.var("Out").get_selected_rows() out_tensor = out.get_tensor() op = Operator("share_data", X="X", Out="Out") op.run(scope, place) out_height = out.height() out_rows = out.rows() self.assertTrue(np.allclose(np_array, out_tensor)) self.assertEqual(x_height, out_height) self.assertEqual(x_rows, out_rows)
def check_with_place(self, place, in_name, out_name): scope = core.Scope() # create and initialize Grad Variable in_height = 10 in_rows = [0, 4, 7] in_row_numel = 12 scale = 2.0 in_selected_rows = scope.var(in_name).get_selected_rows() in_selected_rows.set_height(in_height) in_selected_rows.set_rows(in_rows) in_array = np.random.random( (len(in_rows), in_row_numel)).astype("float32") in_tensor = in_selected_rows.get_tensor() in_tensor.set(in_array, place) # create and initialize Param Variable out_selected_rows = scope.var(out_name).get_selected_rows() out_tensor = out_selected_rows.get_tensor() out_tensor._set_dims(in_tensor._get_dims()) # create and run sgd operator scale_op = Operator("scale", X=in_name, Out=out_name, scale=scale) scale_op.run(scope, place) # get and compare result out_height = out_selected_rows.height() out_rows = out_selected_rows.rows() result_array = np.array(out_tensor) assert (in_array * scale == result_array).all() assert in_height == out_height assert in_rows == out_rows
def check_with_place(self, place, lazy_mode): scope = core.Scope() self.setup(scope, place, lazy_mode) op_args = dict() op_args['lazy_mode'] = lazy_mode for key, np_array in self.dense_inputs.items(): var = scope.var(key).get_tensor() var.set(np_array, place) op_args[key] = key for s in self.sparse_inputs: op_args[s] = s for s in self.outputs: var = scope.var(s).get_tensor() var.set(self.init_output, place) op_args[s] = s for k in self.attrs: op_args[k] = self.attrs[k] # create and run sgd operator adam_op = Operator("adam", **op_args) adam_op.run(scope, place) for key, np_array in self.outputs.items(): out_var = scope.var(key).get_tensor() actual = np.array(out_var) actual = actual.reshape([actual.size]) np_array = np_array.reshape([np_array.size]) for i in range(np_array.size): self.assertLess((actual[i] - np_array[i]), 0.00001)
def check_with_place(self, place): scope = core.Scope() rows = [0, 1, 2, 3, 4, 5, 6] row_numel = 7 w_selected_rows = scope.var('W').get_selected_rows() w_selected_rows.set_height(len(rows)) w_selected_rows.set_rows(rows) w_array = np.ones((len(rows), row_numel)).astype("float32") for i in range(len(rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) # create and initialize Id Variable ids = scope.var("Ids").get_tensor() # create and run lookup_table operator lookup_table = Operator("lookup_sparse_table_grad_split", Grad='W', Row={'Ids'}, Value={'W'}, is_entry=False, tablename="sparse") lookup_table.run(scope, place) # get result from Out result_array1 = np.array(ids) print(result_array1) print("== = = == == = == ==== ==== === ") value = scope.var("W").get_tensor() result_array1 = np.array(value) print(result_array1.shape) print(result_array1)
def check_with_place(self, place): scope = core.Scope() # create and initialize Id Variable ids_tensor = scope.var('Ids').get_tensor() ids_array = np.array([[0], [4], [3], [5]]).astype("int64") ids_tensor.set(ids_array, place) # create and initialize W Variable rows = [0, 1, 2, 3, 4, 5, 6] row_numel = 12 w_selected_rows = scope.var('W').get_selected_rows() w_selected_rows.set_height(len(rows)) w_selected_rows.set_rows(rows) w_array = np.ones((len(rows), row_numel)).astype("float32") for i in range(len(rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) # create Out Variable out_tensor = scope.var('Out').get_tensor() # create and run lookup_table operator lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out') lookup_table.run(scope, place) # get result from Out result_array = np.array(out_tensor) # all(): return True if all elements of the iterable are true (or if the iterable is empty) for idx, row in enumerate(ids_array): assert (row[0] == result_array[idx]).all()
def check_with_place(self, place): scope = core.Scope() row_width = 12 # create and initialize Grad Variable grad_height = 10 grad_rows = [0, 4, 7] grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(grad_height) grad_selected_rows.set_rows(grad_rows) grad_array = np.ones((len(grad_rows), row_width)).astype("float32") grad_array[0, 0] = 2.0 grad_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(grad_array, place) # create and initialize Param Variable # create and initialize W Variable param_rows = [0, 1, 2, 3, 4, 5, 6, 7] # init Param w_selected_rows = scope.var('Param').get_selected_rows() w_selected_rows.set_height(len(param_rows)) w_selected_rows.set_rows(param_rows) w_selected_rows.sync_index() w_array = np.ones((len(param_rows), row_width)).astype("float32") for i in range(len(param_rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) w_before_optimize = np.array(w_tensor) # create and initialize LeraningRate Variable lr_value = 0.1 lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), lr_value).astype("float32") lr.set(lr_array, place) # optimize with Python w_after_optimize = np.copy(w_before_optimize) for index, id in enumerate(grad_rows): w_after_optimize[id] = w_before_optimize[ id] - lr_value * grad_array[index] # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate') sgd_op.run(scope, place) # get and compare result result_array = np.array(w_tensor) assert (result_array == w_after_optimize).all()
def check_sgd_step(self, place): self.setup(place=place, step=15.0) dgc_momentum_op = Operator(self.op_type, **self.kwargs) dgc_momentum_op.run(self.scope, self.place) self.check(np.array(self.param_tensor), self.outputs['SGDOut'], self.place, self.param_name)
def test_get_set(self): ids = self.scope.var("ids").get_lod_tensor_array() scores = self.scope.var("scores").get_lod_tensor_array() # Construct sample data with 5 steps and 2 source sentences # beam_size = 2, end_id = 1 # start with start_id [ self.append_lod_tensor(array, [[0, 1, 2], [0, 1, 2]], np.array([0, 0], dtype=dtype)) for array, dtype in ((ids, "int64"), (scores, "float32")) ] [ self.append_lod_tensor(array, [[0, 1, 2], [0, 2, 4]], np.array([2, 3, 4, 5], dtype=dtype)) for array, dtype in ((ids, "int64"), (scores, "float32")) ] [ self.append_lod_tensor(array, [[0, 2, 4], [0, 2, 2, 4, 4]], np.array([3, 1, 5, 4], dtype=dtype)) for array, dtype in ((ids, "int64"), (scores, "float32")) ] [ self.append_lod_tensor(array, [[0, 2, 4], [0, 1, 2, 3, 4]], np.array([1, 1, 3, 5], dtype=dtype)) for array, dtype in ((ids, "int64"), (scores, "float32")) ] [ self.append_lod_tensor(array, [[0, 2, 4], [0, 0, 0, 2, 2]], np.array([5, 1], dtype=dtype)) for array, dtype in ((ids, "int64"), (scores, "float32")) ] sentence_ids = self.scope.var("sentence_ids").get_tensor() sentence_scores = self.scope.var("sentence_scores").get_tensor() beam_search_decode_op = Operator( "beam_search_decode", # inputs Ids="ids", Scores="scores", # outputs SentenceIds="sentence_ids", SentenceScores="sentence_scores", beam_size=2, end_id=1, ) beam_search_decode_op.run(self.scope, self.place) expected_lod = [[0, 2, 4], [0, 4, 7, 12, 17]] self.assertEqual(sentence_ids.lod(), expected_lod) self.assertEqual(sentence_scores.lod(), expected_lod) expected_data = np.array( [0, 2, 3, 1, 0, 2, 1, 0, 4, 5, 3, 5, 0, 4, 5, 3, 1], "int64") self.assertTrue(np.array_equal(np.array(sentence_ids), expected_data)) self.assertTrue( np.array_equal(np.array(sentence_scores), expected_data))
def test_run_and_check(self): self.setup(place=core.CUDAPlace(0)) kwargs = { # inputs 'U': self.u_name, 'V': self.v_name, 'Grad': self.grad_name, 'Param': self.param_name, 'current_step': self.current_step_name, 'nranks': self.nranks_name, # outputs 'U_out': self.u_name, 'V_out': self.v_name, 'EncodeGrad': self.encode_grad_name, 'Grad_out': self.grad_name, 'k': self.k_name, 'GatherBuff': self.gather_buff_name, # attrs 'm': 0.9, 'sparsity': [0.75, 0.9375, 0.984375, 0.996, 0.999], 'use_nesterov': True, 'rampup_begin_step': float(0.0), 'rampup_step': float(10.0), 'regular_coeff': float(1e-4), 'regular_type': int(2), } dgc_op = Operator('dgc', **kwargs) #atol = 1e-6 dgc_op.run(self.scope, self.place) u_out = np.array(self.u_tensor) v_out = np.array(self.v_tensor) grad_out = np.array(self.grad_tensor) encode_grad_out = np.array(self.encode_grad_tensor) k = int(np.array(self.k_tensor)[0]) print("u_out:", u_out[0:20]) print("v_out:", v_out[0:20]) print("encode_grad_out:", encode_grad_out) print("k_out:", k) self.assertEqual(k, int(g_array_size * 0.25)) index = encode_grad_out[0:k].view(dtype=np.int32) value = encode_grad_out[k:2 * k] acl = 1e-7 for i in range(0, k): self.assertAlmostEqual(u_out[index[i]], 0.0) self.assertAlmostEqual(v_out[index[i]], 0.0) a_min = np.amin(value) dangling = [x for x in v_out if x > a_min]
def check_with_place(self, place): scope = core.Scope() row_width = 12 # create and initialize Grad Variable grad_height = 10 grad_rows = [0, 4, 7] grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(grad_height) grad_selected_rows.set_rows(grad_rows) grad_array = np.ones((len(grad_rows), row_width)).astype("float32") grad_array[0, 0] = 2.0 grad_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(grad_array, place) # create and initialize Param Variable # create and initialize W Variable param_rows = [0, 1, 2, 3, 4, 5, 6, 7] # init Param w_selected_rows = scope.var('Param').get_selected_rows() w_selected_rows.set_height(len(param_rows)) w_selected_rows.set_rows(param_rows) w_array = np.ones((len(param_rows), row_width)).astype("float32") for i in range(len(param_rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) w_before_optimize = np.array(w_tensor) # create and initialize LeraningRate Variable lr_value = 0.1 lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), lr_value).astype("float32") lr.set(lr_array, place) # optimize with Python w_after_optimize = np.copy(w_before_optimize) for index, id in enumerate(grad_rows): w_after_optimize[id] = w_before_optimize[ id] - lr_value * grad_array[index] # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate') sgd_op.run(scope, place) # get and compare result result_array = np.array(w_tensor) assert (result_array == w_after_optimize).all()
def check_with_place(self, place): scope = core.Scope() # create and initialize W Variable table_size = 10000 row_numel = 8 w_selected_rows = scope.var('W').get_selected_rows() w_selected_rows.set_height(table_size) w_array = np.ones((table_size, row_numel)).astype("float32") for i in range(table_size): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) # create and initialize Id Variable ids = scope.var("Ids").get_tensor() ids_array1 = np.array([0, 2, 3, 2, 5, 0, 100]).astype("int64") ids.set(ids_array1, place) # create Out Variable out_tensor = scope.var('Out').get_tensor() # create and run lookup_table operator lookup_table = Operator("lookup_sparse_table", W='W', Ids='Ids', Out='Out', min=-5.0, max=10.0, seed=10) lookup_table.run(scope, place) # get result from Out result_array1 = np.array(out_tensor) # all(): return True if all elements of the iterable are true (or if the iterable is empty) assert (result_array1[0] == w_array[0]).all() assert (result_array1[1] == w_array[1]).all() assert (result_array1[2] == w_array[2]).all() assert (result_array1[3] == w_array[1]).all() assert (result_array1[4] == w_array[3]).all() assert (result_array1[5] == w_array[0]).all() assert (result_array1[6] == w_array[4]).all() # create and initialize Id Variable ids = scope.var("Ids").get_tensor() ids_array2 = np.array([4, 2, 3, 7, 100000]).astype("int64") ids.set(ids_array2, place) lookup_table.run(scope, place) result_array2 = np.array(out_tensor) assert (result_array2[0] == w_array[5]).all() assert (result_array2[1] == w_array[1]).all() assert (result_array2[2] == w_array[2]).all() assert (result_array2[3] == w_array[6]).all() assert (result_array2[4] == w_array[7]).all()
def check_momentum_step(self, place): self.setup(place=place) dgc_momentum_op = Operator(self.op_type, **self.kwargs) dgc_momentum_op.run(self.scope, self.place) self.check(np.array(self.param_tensor), self.outputs['ParamOut'], self.place, self.param_name) self.check(np.array(self.velocity_tensor), self.outputs['VelocityOut'], self.place, self.velocity_name)
def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7] self.conf() grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) np_array = np.ones((len(rows), self.row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array, place) # create and initialize Param Variable param = scope.var('Param').get_tensor() param_array = np.full((height, self.row_numel), 5.0).astype("float32") param.set(param_array, place) # create and initialize LeraningRate Variable lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), 2.0).astype("float32") lr.set(lr_array, place) # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate') sgd_op.run(scope, place) # get and compare result result_array = np.array(param) # rows[0] = 0, 5.0 - 2.0 * 2.0 self.assertAlmostEqual(1.0, result_array[rows[0], 0]) # rows[0] = 0, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[0], 2]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[1, 0]) # rows[1] = 4, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[1], 10]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[5, 8]) # rows[2] = 7, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[2], 1]) # rows[2] = 7, 5.0 - 2.0 * 4.0 self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
def check_with_place(self, place): scope = core.Scope() self.prepare_input(scope, place) out_selected_rows = self.create_out_selected_row(scope) out_selected_rows.set_height(0) out_selected_rows.set_rows([]) elementwise_mul = Operator("elementwise_mul", X='X', Y='Y', Out='Out') elementwise_mul.run(scope, place) self.check_result(out_selected_rows)
def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7] row_numel = 12 grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array, place) # create and initialize Param Variable param = scope.var('Param').get_tensor() param_array = np.full((height, row_numel), 5.0).astype("float32") param.set(param_array, place) # create and initialize LeraningRate Variable lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), 2.0).astype("float32") lr.set(lr_array, place) # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate') sgd_op.run(scope, place) # get and compare result result_array = np.array(param) # rows[0] = 0, 5.0 - 2.0 * 2.0 self.assertAlmostEqual(1.0, result_array[rows[0], 0]) # rows[0] = 0, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[0], 2]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[1, 0]) # rows[1] = 4, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[1], 10]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[5, 8]) # rows[2] = 7, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[2], 1]) # rows[2] = 7, 5.0 - 2.0 * 4.0 self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
def check_with_place(self, place): scope = core.Scope() rows = [0, 5, 7, 4, 20] height = 20 row_numel = 2 # initialize input variable X x = scope.var('X').get_selected_rows() x.set_rows(rows) x.set_height(height) np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 1] = 4.0 np_array[4, 1] = 8.0 x_tensor = x.get_tensor() x_tensor.set(np_array, place) height_sections = [5, 5, 5, 5, 3] # initialize output variables [out0, out1] outs_name = ["out%d" % i for i in range(len(height_sections))] outs = [ scope.var(var_name).get_selected_rows() for var_name in outs_name ] # expected output selected rows expected_out0_rows = [0, 4] expected_out1_rows = [0, 2] expected_out2_rows = [] expected_out4_rows = [0] op = Operator( "split_selected_rows", X="X", Out=outs_name, height_sections=height_sections) op.run(scope, place) self.assertEqual(outs[0].rows(), expected_out0_rows) self.assertEqual(outs[1].rows(), expected_out1_rows) self.assertEqual(outs[2].rows(), expected_out2_rows) self.assertEqual(outs[4].rows(), expected_out4_rows) self.assertEqual(outs[0].height(), height_sections[0]) self.assertEqual(outs[4].height(), height_sections[4]) self.assertAlmostEqual(2.0, np.array(outs[0].get_tensor())[0, 0]) self.assertAlmostEqual(4.0, np.array(outs[1].get_tensor())[1, 1]) self.assertAlmostEqual(8.0, np.array(outs[4].get_tensor())[0, 1]) self.assertEqual(outs[2].numel(), 0) self.assertEqual(outs[3].numel(), 0)
def check_with_tensor(self, place): scope = core.Scope() np_array = np.random.rand(2, 3, 5).astype("float32") # initialize input and output variable x = scope.var('X').get_tensor() x.set(np_array, place) out = scope.var("Out").get_tensor() op = Operator("share_data", X="X", Out="Out") op.run(scope, place) self.assertTrue(np.allclose(np_array, out))
def test_get_set(self): ids = self.scope.var("ids").get_lod_tensor_array() self.append_lod_tensor( ids, [[0, 3, 6], [0, 1, 2, 3, 4, 5, 6]], np.array( [1, 2, 3, 4, 5, 6], dtype="int64")) self.append_lod_tensor( ids, [[0, 3, 6], [0, 1, 1, 3, 5, 5, 6]], np.array( [0, 1, 2, 3, 4, 5], dtype="int64")) self.append_lod_tensor( ids, [[0, 3, 6], [0, 0, 1, 2, 3, 4, 5]], np.array( [0, 1, 2, 3, 4], dtype="int64")) scores = self.scope.var("scores").get_lod_tensor_array() self.append_lod_tensor( scores, [[0, 3, 6], [0, 1, 2, 3, 4, 5, 6]], np.array( [1, 2, 3, 4, 5, 6], dtype="float64")) self.append_lod_tensor( scores, [[0, 3, 6], [0, 1, 1, 3, 5, 5, 6]], np.array( [0, 1, 2, 3, 4, 5], dtype="float64")) self.append_lod_tensor( scores, [[0, 3, 6], [0, 0, 1, 2, 3, 4, 5]], np.array( [0, 1, 2, 3, 4], dtype="float64")) sentence_ids = self.scope.var("sentence_ids").get_tensor() sentence_scores = self.scope.var("sentence_scores").get_tensor() beam_search_decode_op = Operator( "beam_search_decode", # inputs Ids="ids", Scores="scores", # outputs SentenceIds="sentence_ids", SentenceScores="sentence_scores") beam_search_decode_op.run(self.scope, self.place) expected_lod = [[0, 4, 8], [0, 1, 3, 6, 9, 10, 13, 16, 19]] self.assertEqual(sentence_ids.lod(), expected_lod) self.assertEqual(sentence_scores.lod(), expected_lod) expected_data = np.array( [2, 1, 0, 3, 1, 0, 3, 2, 1, 5, 4, 3, 2, 4, 4, 3, 6, 5, 4], "int64") self.assertTrue(np.array_equal(np.array(sentence_ids), expected_data)) self.assertTrue( np.array_equal(np.array(sentence_scores), expected_data))
def check_with_place(self, place): scope = core.Scope() condition = scope.var('Condition').get_tensor() condition.set(self.cond_data, place) out = scope.var("Out").get_tensor() out.set(np.full(self.shape, 0).astype('int64'), place) op = Operator("where_index", Condition="Condition", Out="Out") op.run(scope, place) out_array = np.array(out) self.assertTrue((out_array == self.out_data).all())
def test_check_output(self): self.prepare_ids() self.prepare_w() out_tensor = self.scope.var('Out').get_tensor() # create and run lookup_table operator lookup_table = Operator(self.op_type, W='W', Ids='Ids', Out='Out') lookup_table.run(self.scope, self.place) # get result from Out result_array = np.array(out_tensor) ref = _lookup(self.w_fp32, self.ids, self.flat_ids, self.op_type) self._check_output(ref, result_array)
def run_and_check(self): grad_name = self.grad_sr_name if self.is_sparse else self.grad_name kwargs = { 'Param': self.param_name, 'Grad': grad_name, 'MeanSquare': self.mean_square_name, 'Moment': self.moment_name, 'LearningRate': self.lr_name, 'ParamOut': self.param_name, 'MeanSquareOut': self.mean_square_name, 'MomentOut': self.moment_name, 'epsilon': self.epsilon, 'decay': self.decay, 'momentum': self.momentum, 'centered': self.centered } if self.centered: kwargs['MeanGrad'] = self.mean_grad_name kwargs['MeanGradOut'] = self.mean_grad_name rmsprop_op = Operator('rmsprop', **kwargs) atol = 1e-6 rmsprop_op.run(self.scope, self.place) self.check( np.array(self.mean_square_tensor), self.ms_out, self.place, self.mean_square_name, atol=atol) self.check( np.array(self.moment_tensor), self.moment_out, self.place, self.moment_name, atol=atol) self.check( np.array(self.param_tensor), self.param_out, self.place, self.param_name, atol=atol) if self.centered: self.check( np.array(self.mean_grad_tensor), self.mg_out, self.place, self.mean_grad_name)
def check_with_place(self, place): scope = core.Scope() out = scope.var("X").get_selected_rows() paddle.seed(10) op = Operator("uniform_random", Out="X", shape=[1000, 784], min=-5.0, max=10.0, seed=10) op.run(scope, place) self.assertEqual(out.get_tensor().shape(), [1000, 784]) hist, prob = output_hist(np.array(out.get_tensor())) self.assertTrue(np.allclose(hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
def test_run(self): op = Operator( 'beam_search', pre_ids="pre_ids", ids='ids', scores='scores', selected_ids='selected_ids', selected_scores='selected_scores', level=0, beam_size=2, end_id=0, ) op.run(self.scope, core.CPUPlace()) selected_ids = self.scope.find_var("selected_ids").get_tensor() print 'selected_ids', np.array(selected_ids) print 'lod', selected_ids.lod()
def check_with_place(self, place): scope = core.Scope() # create Out Variable out = scope.var('Out').get_selected_rows() # create and run fill_constant_op operator fill_constant_op = Operator( "fill_constant", shape=[123, 92], value=3.8, Out='Out') fill_constant_op.run(scope, place) # get result from Out result_array = np.array(out.get_tensor()) full_array = np.full((123, 92), 3.8, 'float32') self.assertTrue(np.array_equal(result_array, full_array))
def check_with_place(self, place): scope = core.Scope() rows = [0, 5, 7, 4, 20] height = 20 row_numel = 2 # initialize input variable X x = scope.var('X').get_selected_rows() x.set_rows(rows) x.set_height(height) np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 1] = 4.0 np_array[4, 1] = 8.0 x_tensor = x.get_tensor() x_tensor.set(np_array, place) height_sections = [5, 5, 5, 5, 3] # initialize output variables [out0, out1] outs_name = ["out%d" % i for i in xrange(len(height_sections))] outs = [ scope.var(var_name).get_selected_rows() for var_name in outs_name ] # expected output selected rows expected_out0_rows = [0, 4] expected_out1_rows = [0, 2] expected_out4_rows = [0] op = Operator( "split_selected_rows", X="X", Out=outs_name, height_sections=height_sections) op.run(scope, place) self.assertEqual(outs[0].rows(), expected_out0_rows) self.assertEqual(outs[1].rows(), expected_out1_rows) self.assertEqual(outs[4].rows(), expected_out4_rows) self.assertEqual(outs[0].height(), height_sections[0]) self.assertEqual(outs[4].height(), height_sections[4]) self.assertAlmostEqual(2.0, np.array(outs[0].get_tensor())[0, 0]) self.assertAlmostEqual(4.0, np.array(outs[1].get_tensor())[1, 1]) self.assertAlmostEqual(8.0, np.array(outs[4].get_tensor())[0, 1])
def check_with_place(self, place): scope = core.Scope() ids_array = self.prepare_ids(scope, place) self.prepare_w(scope, place) out_tensor = self.create_out_tensor(scope, place) # create and run lookup_table_v2 operator lookup_table = Operator("lookup_table_v2", W='W', Ids='Ids', Out='Out') lookup_table.run(scope, place) # get result from Out result_array = np.array(out_tensor) self.check_result(ids_array, result_array)
def check_with_place(self, place): scope = core.Scope() out = scope.var("X").get_selected_rows() op = Operator( "uniform_random", Out="X", shape=[4, 784], min=-5.0, max=10.0, seed=10) op.run(scope, place) self.assertEqual(out.get_tensor().shape(), [4, 784]) hist, prob = output_hist(np.array(out.get_tensor())) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
def check_with_place(self, place): scope = core.Scope() # create and initialize Id Variable ids = scope.var("Ids").get_tensor() ids_array = np.array([0, 2, 3, 5, 100]).astype("int64") ids.set(ids_array, place) # create and initialize W Variable rows = [0, 1, 2, 3, 4, 5, 6] row_numel = 10000 w_selected_rows = scope.var('W').get_selected_rows() w_selected_rows.set_height(len(rows)) w_selected_rows.set_rows(rows) w_array = np.ones((len(rows), row_numel)).astype("float32") for i in range(len(rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) # create Out Variable out_tensor = scope.var('Out').get_tensor() # create and run lookup_table operator lookup_table = Operator( "lookup_sparse_table", W='W', Ids='Ids', Out='Out', min=-5.0, max=10.0, seed=10) lookup_table.run(scope, place) # get result from Out result_array = np.array(out_tensor) # all(): return True if all elements of the iterable are true (or if the iterable is empty) for idx, row in enumerate(ids_array[:-2]): assert (row == result_array[idx]).all() # check the random value hist, prob = output_hist(result_array[-1]) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
def check_with_place(self, place, is_selected_rows): scope = core.Scope() out_var_name = 'Out' if is_selected_rows: out_tensor = scope.var( out_var_name).get_selected_rows().get_tensor() else: out_tensor = scope.var(out_var_name).get_tensor() var_shape = [4, 784] # create and run fake_init_op fake_init_op = Operator("fake_init", Out=out_var_name, shape=var_shape) fake_init_op.run(scope, place) self.assertEqual(var_shape, out_tensor._get_dims())
def check_with_place(self, place): scope = core.Scope() out = scope.var("X").get_selected_rows() shape_tensor = scope.var("Shape").get_tensor() shape_tensor.set(np.array([4, 784]).astype("int64"), place) op = Operator("uniform_random", ShapeTensor="Shape", Out="X", min=-5.0, max=10.0, seed=10) op.run(scope, place) self.assertEqual(out.get_tensor().shape(), [4, 784]) hist, prob = output_hist(np.array(out.get_tensor())) self.assertTrue(np.allclose(hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
def check_grad_with_place(self, place): scope = core.Scope() height = 10 row_numel = 2 # attr height_sections = [5, 5] # initialize input variable X out0_grad = scope.var("out0@GRAD").get_selected_rows() rows0 = [0, 5] out0_grad.set_rows(rows0) out0_grad.set_height(height) out0_grad_tensor = out0_grad.get_tensor() np_array = np.ones((len(rows0), row_numel)).astype("float32") np_array[0, 0] = 2.0 out0_grad_tensor.set(np_array, place) out1_grad = scope.var("out1@GRAD").get_selected_rows() rows1 = [2, 0] out1_grad.set_rows(rows1) out1_grad.set_height(height) out1_grad_tensor = out1_grad.get_tensor() np_array = np.ones((len(rows1), row_numel)).astype("float32") np_array[0, 1] = 4.0 out1_grad_tensor.set(np_array, place) x_grad = scope.var("X@GRAD").get_selected_rows() grad_op = Operator( "sum", X=["out0@GRAD", "out1@GRAD"], Out="X@GRAD", height_sections=height_sections) grad_op.run(scope, place) self.assertEqual(x_grad.rows(), rows0 + rows1) self.assertEqual(x_grad.height(), height) self.assertAlmostEqual(2.0, np.array(x_grad.get_tensor())[0, 0]) self.assertAlmostEqual(4.0, np.array(x_grad.get_tensor())[2, 1])
def check_with_place(self, place): scope = core.Scope() # create and initialize Variable height = 10 rows = [0, 4, 4, 7] row_numel = 12 # create and initialize W Variable W = scope.var('W').get_tensor() W_array = np.full((height, row_numel), 1.0).astype("float32") for i in range(height): W_array[i] *= i W.set(W_array, place) # create and initialize Ids Variable ids_selected_rows = scope.var('Ids').get_selected_rows() ids_selected_rows.set_height(len(rows)) ids_selected_rows.set_rows(rows) np_array = np.ones((len(rows), row_numel)).astype("float32") ids_tensor = ids_selected_rows.get_tensor() ids_tensor.set(np_array, place) # create Out Variable Out = scope.var('Out').get_selected_rows() # create and run lookup_table operator concat_rows_op = Operator("lookup_table", W='W', Ids='Ids', Out='Out') concat_rows_op.run(scope, place) # get result from Out Out_tensor = Out.get_tensor() result_array = np.array(Out_tensor) # all(): return True if all elements of the iterable are true (or if the iterable is empty) for idx, row in enumerate(rows): assert (row == result_array[idx]).all()
def check_with_place(self, place, data_layout, dtype, shape): epsilon = 0.00001 if len(shape) == 2: x_shape = shape c = x_shape[1] else: n, h, w, c = shape[0], shape[1], shape[2], shape[3] if data_layout == "NHWC": x_shape = [n, h, w, c] elif data_layout == "NCHW": x_shape = [n, c, h, w] else: raise ValueError("Unknown data layout.") scale_shape = [c] x_val = np.random.random_sample(x_shape).astype(dtype) scale_val = np.random.random_sample(scale_shape).astype(np.float32) bias_val = np.random.random_sample(scale_shape).astype(np.float32) mean = np.zeros(scale_shape).astype(np.float32) variance = np.ones(scale_shape).astype(np.float32) y_out = _reference_testing(x_val, scale_val, bias_val, mean, variance, epsilon, data_layout).astype(dtype) scope = core.Scope() # create input x_tensor = create_or_get_tensor(scope, "x_val", OpTest.np_dtype_to_fluid_dtype(x_val), place) scale_tensor = create_or_get_tensor( scope, "scale_val", OpTest.np_dtype_to_fluid_dtype(scale_val), place) bias_tensor = create_or_get_tensor( scope, "bias_val", OpTest.np_dtype_to_fluid_dtype(bias_val), place) mean_tensor = create_or_get_tensor(scope, "mean", OpTest.np_dtype_to_fluid_dtype(mean), place) variance_tensor = create_or_get_tensor( scope, "variance", OpTest.np_dtype_to_fluid_dtype(variance), place) # create output y_tensor = create_or_get_tensor(scope, "y_out", None, place) saved_mean_tensor = create_or_get_tensor(scope, "saved_mean", None, place) saved_variance_tensor = create_or_get_tensor(scope, "saved_variance", None, place) mean_out_tensor = mean_tensor variance_out_tensor = variance_tensor batch_norm_op = Operator( "batch_norm", # inputs X="x_val", Scale="scale_val", Bias="bias_val", Mean="mean", Variance="variance", # outputs Y="y_out", MeanOut="mean", VarianceOut="variance", SavedMean="saved_mean", SavedVariance="saved_variance", # attrs is_test=True, data_layout=data_layout, use_mkldnn=self.use_mkldnn, epsilon=epsilon) batch_norm_op.run(scope, place) # check inference result self.__assert_close( y_tensor, y_out, "inference output are different at " + str(place) + ", " + data_layout + ", " + str(np.dtype(dtype)) + str(np.array(y_tensor)) + str(y_out), atol=1e-3)
def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7, 4] row_numel = 12 grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array, place) # create and initialize Param Variable param = scope.var('Param').get_tensor() param_array = np.full((height, row_numel), 5.0).astype("float32") param.set(param_array, place) # create and initialize LeraningRate Variable lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), 2.0).astype("float32") lr.set(lr_array, place) # create and initialize moment Variable moment = scope.var('Moment').get_tensor() moment_np_array = np.full((height, row_numel), 2.0).astype("float32") moment.set(moment_np_array, place) # create and run sgd operator adagrad_op = Operator( "adagrad", Param='Param', Grad='Grad', ParamOut='Param', Moment='Moment', MomentOut='Moment', LearningRate='LearningRate', epsilon=2.0) adagrad_op.run(scope, place) # get and compare moment result moment_result_array = np.array(moment) self.assertAlmostEqual(6.0, moment_result_array[rows[0], 0]) self.assertAlmostEqual(3.0, moment_result_array[rows[0], 2]) self.assertAlmostEqual(2.0, moment_result_array[1, 0]) # 2.0 + (1.0 + 1.0)^2 self.assertAlmostEqual(6.0, moment_result_array[rows[1], 10]) self.assertAlmostEqual(6.0, moment_result_array[rows[3], 4]) self.assertAlmostEqual(2.0, moment_result_array[5, 8]) self.assertAlmostEqual(3.0, moment_result_array[rows[2], 1]) self.assertAlmostEqual(18.0, moment_result_array[rows[2], 8]) # get and compare param result result_array = np.array(param) def get_out(param, lr, grad, m, epsilon): return param - lr * grad / (math.sqrt(m) + epsilon) self.assertAlmostEqual( get_out(5.0, 2.0, 2.0, 6.0, 2.0), result_array[rows[0], 0], places=5) self.assertAlmostEqual( get_out(5.0, 2.0, 1.0, 3.0, 2.0), result_array[rows[0], 2], places=5) self.assertAlmostEqual( get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[1, 0], places=5) # grad_merge = 1.0 + 1.0 # m = 6.0 self.assertAlmostEqual( get_out(5.0, 2.0, 2.0, 6.0, 2.0), result_array[rows[1], 10], places=5) self.assertAlmostEqual( get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[5, 8], places=5) self.assertAlmostEqual( get_out(5.0, 2.0, 1.0, 3.0, 2.0), result_array[rows[2], 1], places=5) self.assertAlmostEqual( get_out(5.0, 2.0, 4.0, 18.0, 2.0), result_array[rows[2], 8], places=5)