Esempio n. 1
0
    def test_selectedrows_gradient1(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for dtype in ["float32", "float64"]:
                for sort_sum_gradient in [True, False]:
                    paddle.disable_static(place)
                    fluid.set_flags(
                        {'FLAGS_sort_sum_gradient': sort_sum_gradient})
                    # grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)

                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
                    input = paddle.to_tensor(input_word)

                    simplenet = SimpleNet(20, 32, dtype)
                    adam = SGDOptimizer(learning_rate=0.001,
                                        parameter_list=simplenet.parameters()
                                        )  # grad_clip=grad_clip
                    input_emb, emb = simplenet(input)

                    self.assertTrue(emb.weight.gradient() is None)
                    self.assertTrue(input_emb.gradient() is None)

                    input_emb.backward()
                    adam.minimize(input_emb)
                    self.assertTrue(emb.weight.gradient() is not None)

                    emb.clear_gradients()
                    self.assertTrue(emb.weight.gradient() is None)

                    input_emb.clear_gradient()
                    self.assertTrue(input_emb.gradient() is not None)
                    paddle.enable_static()
Esempio n. 2
0
    def test_NoDetachMulti_DetachMulti(self):
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        array_no_detach_multi = self.no_detach_multi()
        array_detach_multi = self.detach_multi()

        assert not np.array_equal(array_no_detach_multi, array_detach_multi)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
    def test_selectedrows_gradient2(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for sort_sum_gradient in [True, False]:
                with fluid.dygraph.guard(place):
                    fluid.set_flags({
                        'FLAGS_sort_sum_gradient': sort_sum_gradient
                    })
                    grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)

                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
                    input = to_variable(input_word)

                    simplenet = SimpleNet(20, 32, "float32")
                    adam = SGDOptimizer(
                        learning_rate=0.001,
                        parameter_list=simplenet.parameters(),
                        grad_clip=grad_clip)
                    input_emb, emb = simplenet(input)

                    self.assertTrue(emb.weight.gradient() is None)
                    self.assertTrue(input_emb.gradient() is None)

                    input_emb.backward()
                    adam.minimize(input_emb)
                    self.assertTrue(emb.weight.gradient() is not None)

                    emb.clear_gradients()
                    self.assertTrue(emb.weight.gradient() is None)

                    input_emb.clear_gradient()
                    self.assertTrue(input_emb.gradient() is not None)
Esempio n. 4
0
 def test_coo_values_grad(self):
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
     with _test_eager_guard():
         indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
         values = [1.0, 2.0, 3.0, 4.0, 5.0]
         sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
             paddle.to_tensor(indices),
             paddle.to_tensor(values),
             shape=[3, 4],
             stop_gradient=False)
         values_tensor = sparse_x.values()
         out_grad = [2.0, 3.0, 5.0, 8.0, 9.0]
         # test coo_values_grad
         values_tensor.backward(paddle.to_tensor(out_grad))
         assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
         indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
         values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0],
                   [5.0, 5.0]]
         sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
             paddle.to_tensor(indices),
             paddle.to_tensor(values),
             shape=[3, 4, 2],
             stop_gradient=False)
         values_tensor = sparse_x.values()
         out_grad = [[2.0, 2.0], [3.0, 3.0], [5.0, 5.0], [8.0, 8.0],
                     [9.0, 9.0]]
         # test coo_values_grad
         values_tensor.backward(paddle.to_tensor(out_grad))
         assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Esempio n. 5
0
        def run_program(enable_addto):
            np.random.seed(10)
            paddle.seed(10)
            paddle.framework.random._manual_program_seed(10)
            if fluid.core.is_compiled_with_cuda():
                fluid.set_flags({"FLAGS_cudnn_deterministic": True})
            fluid.set_flags({"FLAGS_max_inplace_grad_add": 2})
            loss, main, startup, w = create_program(data_format=data_format)
            place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)

            strategy = fluid.BuildStrategy()
            strategy.enable_addto = enable_addto
            compiled = fluid.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name, build_strategy=strategy)

            exe.run(startup)
            img = np.random.uniform(-128, 128,
                                    [8, 3, 224, 224]).astype(np.float32)
            for i in range(10):
                res = exe.run(compiled,
                              feed={'img': img},
                              fetch_list=[loss.name, w.name])
            return res
Esempio n. 6
0
    def func_sum_op(self):
        x = np.ones([2, 2], np.float32)
        with fluid.dygraph.guard():
            inputs = []
            for _ in range(10):
                tmp = paddle.to_tensor(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
            ret = paddle.add_n(inputs)
            loss = fluid.layers.reduce_sum(ret)
            loss.backward()
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
                tmp = paddle.to_tensor(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
            ret2 = paddle.add_n(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            loss2.backward()

            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
Esempio n. 7
0
    def test_coo_to_dense(self):
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                paddle.to_tensor(indices),
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
            dense_tensor = sparse_x.to_dense()
            #test to_dense_grad backward
            out_grad = [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                        [9.0, 10.0, 11.0, 12.0]]
            dense_tensor.backward(paddle.to_tensor(out_grad))
            #mask the out_grad by sparse_x.indices()
            correct_x_grad = [2.0, 4.0, 7.0, 9.0, 10.0]
            assert np.array_equal(correct_x_grad,
                                  sparse_x.grad.values().numpy())

            paddle.device.set_device("cpu")
            sparse_x_cpu = paddle.incubate.sparse.sparse_coo_tensor(
                paddle.to_tensor(indices),
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
            dense_tensor_cpu = sparse_x_cpu.to_dense()
            dense_tensor_cpu.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(correct_x_grad,
                                  sparse_x_cpu.grad.values().numpy())
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Esempio n. 8
0
    def test_assign_LoDTensorArray(self):
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1)
            z = fluid.layers.elementwise_add(x=x, y=y)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = fluid.layers.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
            mean = fluid.layers.mean(sums)
            append_backward(mean)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
        res = exe.run(main_program,
                      feed={'x': feed_x},
                      fetch_list=[sums.name, x.grad_name])
        self.assertTrue(np.allclose(res[0], feed_add))
        self.assertTrue(np.allclose(res[1], ones / 1000.0))
Esempio n. 9
0
 def test_in_static_mode_mkldnn(self):
     fluid.set_flags({'FLAGS_use_mkldnn': True})
     try:
         if paddle.fluid.core.is_compiled_with_mkldnn():
             self.resnet_helper.train(to_static=True)
     finally:
         fluid.set_flags({'FLAGS_use_mkldnn': False})
Esempio n. 10
0
    def test_clone(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        self.python_api = paddle.clone

        x = paddle.ones([2])
        x.stop_gradient = False
        clone_x = paddle.clone(x)

        y = clone_x**3
        y.backward()

        self.assertTrue(np.array_equal(x, [1, 1]), True)
        self.assertTrue(np.array_equal(clone_x.grad.numpy(), [3, 3]), True)
        self.assertTrue(np.array_equal(x.grad.numpy(), [3, 3]), True)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
        paddle.enable_static()

        with program_guard(Program(), Program()):
            x_np = np.random.randn(2, 3).astype('float32')
            x = paddle.static.data("X", shape=[2, 3])
            clone_x = paddle.clone(x)
            exe = paddle.static.Executor()
            y_np = exe.run(paddle.static.default_main_program(),
                           feed={'X': x_np},
                           fetch_list=[clone_x])[0]

        self.assertTrue(np.array_equal(y_np, x_np), True)
    def test_dim2_offset1(self):
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        expected_np = np.array([[2, 1, 2], [2, 2, 1], [2, 2, 2],
                                [2, 2, 2]]).astype('float32')
        expected_grad = np.array([[1, 0, 1], [1, 1, 0], [1, 1, 1],
                                  [1, 1, 1]]).astype('float32')

        for idx, p in enumerate(self.places):
            if idx == 0:
                paddle.set_device('cpu')
            else:
                paddle.set_device('gpu')
            for dtype in self.typelist:
                v = paddle.ones((2, ), dtype=dtype)
                var = (np.random.random() + 1)
                x = paddle.ones((4, 3), dtype=dtype)
                x.stop_gradient = False
                y = x * 2
                ny = y.fill_diagonal_tensor(v, offset=1, dim1=0, dim2=1)
                loss = ny.sum()
                loss.backward()

                self.assertEqual(
                    (ny.numpy().astype('float32') == expected_np).all(), True)
                self.assertEqual(
                    (y.grad.numpy().astype('float32') == expected_grad).all(),
                    True)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Esempio n. 12
0
 def test_environ(self):
     self.input_np = np.random.random([2, 3, 5, 5]).astype("float32")
     for place in [paddle.CPUPlace(), paddle.CUDAPlace(0)]:
         fluid.set_flags({'FLAGS_conv2d_disable_cudnn': False})
         self.run_all(place)
         fluid.set_flags({'FLAGS_conv2d_disable_cudnn': True})
         self.run_all(place)
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.multiply_wrapper,
                                                       [x, y],
                                                       out,
                                                       x_init=[x_arr, y_arr],
                                                       place=place)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
 def test_all_cases(self):
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
     self.func_exception()
     self.func_example_with_gradient_and_create_graph()
     with _test_eager_guard():
         self.func_exception()
         self.func_example_with_gradient_and_create_graph()
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Esempio n. 15
0
 def init_dtype_type(self):
     if fluid.is_compiled_with_cuda():
         fluid.set_flags({'FLAGS_cudnn_deterministic': True})
     self.x_type = np.float32
     self.index_type = np.int32
     self.dim = -2
     self.x_shape = (10, 10, 4, 10)
     self.index_size = 10
    def load_and_train_dygraph(self):
        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})

            mnist = fluid.dygraph.static_runner.StaticModelRunner(
                model_dir=self.save_dirname,
                model_filename=self.model_filename,
                params_filename=self.params_filename)

            suffix_varname_dict = mnist._program_holder_dict[
                'forward']._suffix_varname_dict
            dict_old_new = {v: k for k, v in suffix_varname_dict.items()}
            dy_param_init_value = {}
            for param in mnist.parameters():
                dy_param_init_value[param.name] = param.numpy()

            sgd = fluid.optimizer.SGD(learning_rate=0.001,
                                      parameter_list=mnist.parameters())

            train_reader = paddle.batch(
                self.reader_decorator(paddle.dataset.mnist.train()),
                batch_size=self.batch_size,
                drop_last=True)
            train_loader = fluid.io.DataLoader.from_generator(capacity=10)
            train_loader.set_sample_list_generator(train_reader, places=place)

            mnist.train()

            for epoch in range(self.epoch_num):
                for batch_id, data in enumerate(train_loader()):
                    img = data[0]
                    label = data[1]
                    label.stop_gradient = True

                    cost = mnist(img)

                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

                    avg_loss.backward()
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    if batch_id >= self.batch_num:
                        break

            dy_x_data = img.numpy()
            dy_out = avg_loss.numpy()

            dy_param_value = {}
            for param in mnist.parameters():
                dy_param_value[param.name] = param.numpy()

        return dy_x_data, dy_out, dy_param_init_value, dy_param_value, dict_old_new
Esempio n. 17
0
 def test_dygraph_static_same_loss(self):
     if fluid.is_compiled_with_cuda():
         fluid.set_flags({"FLAGS_cudnn_deterministic": True})
     args = parse_args()
     fake_data_reader = FakeDataReader("train", parse_config(args.config))
     dygraph_loss = train(args, fake_data_reader, to_static=False)
     static_loss = train(args, fake_data_reader, to_static=True)
     self.assertTrue(np.allclose(dygraph_loss, static_loss),
                     msg="dygraph_loss: {} \nstatic_loss: {}".format(
                         dygraph_loss, static_loss))
Esempio n. 18
0
    def test_dygraph_static_same_loss(self):
        if fluid.is_compiled_with_cuda():
            fluid.set_flags({"FLAGS_cudnn_deterministic": True})
        conf_dict = create_conf_dict()
        dygraph_loss = train(conf_dict, to_static=False)
        static_loss = train(conf_dict, to_static=True)

        self.assertEqual(len(dygraph_loss), len(static_loss))
        for i in range(len(dygraph_loss)):
            self.assertAlmostEqual(dygraph_loss[i], static_loss[i])
Esempio n. 19
0
 def test_errors(self):
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
     with program_guard(Program(), Program()):
         # The type of input must be Variable or numpy.ndarray.
         x1 = fluid.create_lod_tensor(
             np.array([[-1]]), [[1]], fluid.CPUPlace())
         self.assertRaises(TypeError, paddle.assign, x1)
         # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
         x2 = np.array([[2.5, 2.5]], dtype='uint8')
         self.assertRaises(TypeError, paddle.assign, x2)
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Esempio n. 20
0
 def test_mnist_declarative_cpu_vs_mkldnn(self):
     dygraph_loss_cpu = self.train_dygraph()
     fluid.set_flags({'FLAGS_use_mkldnn': True})
     try:
         dygraph_loss_mkldnn = self.train_dygraph()
     finally:
         fluid.set_flags({'FLAGS_use_mkldnn': False})
     self.assertTrue(
         np.allclose(dygraph_loss_cpu, dygraph_loss_mkldnn),
         msg='cpu dygraph is {}\n mkldnn dygraph is \n{}'.format(
             dygraph_loss_cpu, dygraph_loss_mkldnn))
        def run_dygraph():
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            paddle.seed(seed)
            paddle.framework.random._manual_program_seed(seed)
            ocr_attention = OCRAttention()

            if Config.learning_rate_decay == "piecewise_decay":
                learning_rate = fluid.layers.piecewise_decay(
                    [50000], [Config.LR, Config.LR * 0.01])
            else:
                learning_rate = Config.LR
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.001, parameter_list=ocr_attention.parameters())
            dy_param_init_value = {}
            for param in ocr_attention.parameters():
                dy_param_init_value[param.name] = param.numpy()
            for epoch in range(epoch_num):
                for batch_id in range(batch_num):
                    label_in = to_variable(label_in_np)
                    label_out = to_variable(label_out_np)
                    label_out.stop_gradient = True
                    img = to_variable(image_np)
                    dy_prediction = ocr_attention(img, label_in)
                    label_out = fluid.layers.reshape(label_out, [-1, 1],
                                                     inplace=False)
                    dy_prediction = fluid.layers.reshape(
                        dy_prediction, [label_out.shape[0], -1], inplace=False)
                    loss = fluid.layers.cross_entropy(input=dy_prediction,
                                                      label=label_out)
                    avg_loss = fluid.layers.reduce_sum(loss)

                    dy_out = avg_loss.numpy()

                    if epoch == 0 and batch_id == 0:
                        for param in ocr_attention.parameters():
                            if param.name not in dy_param_init_value:
                                dy_param_init_value[param.name] = param.numpy()
                    avg_loss.backward()
                    dy_grad_value = {}
                    for param in ocr_attention.parameters():
                        if param.trainable:
                            np_array = np.array(
                                param._grad_ivar().value().get_tensor())
                            dy_grad_value[param.name +
                                          core.grad_var_suffix()] = np_array

                    optimizer.minimize(avg_loss)
                    ocr_attention.clear_gradients()
                    dy_param_value = {}
                    for param in ocr_attention.parameters():
                        dy_param_value[param.name] = param.numpy()

            return dy_out, dy_param_init_value, dy_param_value
Esempio n. 22
0
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
            simple_rnn = SimpleRNN()
            outs, pre_hiddens = simple_rnn.forward(var_inp)
            dy_out = outs[3].numpy()
            outs[3].backward()
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()

        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
            simple_rnn2 = SimpleRNN()
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            outs2[3].backward()
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

        with new_program_scope():
            inp = fluid.layers.data(name="inp",
                                    shape=[1, 4, 3],
                                    append_batch_size=False)
            simple_rnn = SimpleRNN()
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
Esempio n. 23
0
 def func_append_activation_in_dygraph_global_use_mkldnn(self):
     a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
     helper = LayerHelper(fluid.unique_name.generate("test"), act="relu")
     func = helper.append_activation
     with fluid.dygraph.guard(fluid.core.CPUPlace()):
         a = paddle.to_tensor(a_np)
         fluid.set_flags({'FLAGS_use_mkldnn': True})
         try:
             res1 = func(a)
         finally:
             fluid.set_flags({'FLAGS_use_mkldnn': False})
         res2 = fluid.layers.relu(a)
     self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))
    def __init__(self, cfg):
        paddle.seed(1)
        paddle.framework.random._manual_program_seed(1)

        self.generator = Generator(cfg)
        self.discriminator = Discriminator(cfg)

        self.g_optimizer = build_optimizer(self.generator, cfg)
        self.d_optimizer = build_optimizer(self.discriminator, cfg)

        self.cfg = cfg

        fluid.set_flags({'FLAGS_sort_sum_gradient': cfg.sort_sum_gradient})
Esempio n. 25
0
    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out = out.numpy()
            out.backward()
            dy_grad = mlp._linear1.weight.gradient()

        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            mlp2 = MLP(input_size=2)
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            out2.backward()
            dy_grad2 = mlp2._linear1.weight.gradient()

        with new_program_scope():
            inp = fluid.layers.data(name="inp",
                                    shape=[2, 2],
                                    append_batch_size=False)
            mlp = MLP(input_size=2)
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._linear1.weight.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))

        params = mlp.parameters(True)
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
        self.assertEqual(len(sublayers), 2)
 def setUp(self):
     paddle.enable_static()
     if paddle.is_compiled_with_cuda():
         fluid.set_flags({
             'FLAGS_cudnn_deterministic': 1,
             'FLAGS_max_inplace_grad_add': 6,
         })
         self.place = paddle.CUDAPlace(0)
     else:
         self.place = paddle.CPUPlace()
     self.use_cuda = isinstance(self.place, paddle.CUDAPlace)
     self.executor = paddle.static.Executor(self.place)
     self.num_classes = 1000
     self.seed = 1
Esempio n. 27
0
 def test_single_api(sort_sum_gradient):
     fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
     x = paddle.to_tensor(5., stop_gradient=False)
     for i in range(10):
         y = paddle.pow(x, 4.0)
         y.backward()
         self.assertEqual(x.grad.numpy(), (i + 1) * 500)
     x.clear_gradient()
     self.assertEqual(x.grad.numpy(), 0.)
     for i in range(10):
         y = paddle.pow(x, 4.0)
         y.backward()
         self.assertEqual(x.grad.numpy(), (i + 1) * 500)
     x.clear_grad()
     self.assertEqual(x.grad.numpy(), 0.)
Esempio n. 28
0
 def func(self, place):
     shape = [2, 3, 7, 9]
     eps = 0.0005
     dtype = np.float64
     x = layers.data('x', shape, False, dtype=dtype)
     x.persistable = True
     y = layers.tanh(x)
     x_arr = np.random.random(shape).astype(dtype)
     x_arr[np.abs(x_arr) < 0.005] = 0.002
     gradient_checker.triple_grad_check(
         [x], y, x_init=x_arr, place=place, eps=eps)
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
     gradient_checker.triple_grad_check_for_dygraph(
         self.tanh_wrapper, [x], y, x_init=x_arr, place=place)
     fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
Esempio n. 29
0
 def grad(self,
          outputs,
          inputs,
          grad_outputs=None,
          no_grad_vars=None,
          retain_graph=None,
          create_graph=False,
          allow_unused=False):
     fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
     return fluid.dygraph.grad(outputs=outputs,
                               inputs=inputs,
                               grad_outputs=grad_outputs,
                               no_grad_vars=no_grad_vars,
                               retain_graph=retain_graph,
                               create_graph=create_graph,
                               allow_unused=allow_unused)
Esempio n. 30
0
    def test_api(self):
        flags = {
            'FLAGS_eager_delete_tensor_gb': 1.0,
            'FLAGS_check_nan_inf': True
        }

        fluid.set_flags(flags)

        flags_list = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
        flag = 'FLAGS_eager_delete_tensor_gb'

        res_list = fluid.get_flags(flags_list)
        res = fluid.get_flags(flag)

        self.assertTrue(res_list['FLAGS_eager_delete_tensor_gb'], 1.0)
        self.assertTrue(res_list['FLAGS_check_nan_inf'], True)
        self.assertTrue(res['FLAGS_eager_delete_tensor_gb'], 1.0)