def __init__ (self, input_channel, output_nc, config, norm_layer=InstanceNorm, dropout_rate=0, n_blocks=9, padding_type='reflect'): super(SubMobileResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == InstanceNorm else: use_bias = norm_layer == InstanceNorm self.model = fluid.dygraph.LayerList([Pad2D(paddings=[3, 3, 3, 3], mode="reflect"), Conv2D(input_channel, config['channels'][0], filter_size=7, padding=0, use_cudnn=use_cudnn, bias_attr=use_bias), norm_layer(config['channels'][0]), ReLU()]) n_downsampling = 2 for i in range(n_downsampling): mult = 2 ** i in_c = config['channels'][i] out_c = config['channels'][i + 1] self.model.extend([Conv2D(in_c * mult, out_c * mult * 2, filter_size=3, stride=2, padding=1, use_cudnn=use_cudnn, bias_attr=use_bias), norm_layer(out_c * mult * 2), ReLU()]) mult = 2 ** n_downsampling in_c = config['channels'][2] for i in range(n_blocks): if len(config['channels']) == 6: offset = 0 else: offset = i // 3 out_c = config['channels'][offset + 3] self.model.extend([MobileResnetBlock(in_c * mult, out_c * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias)]) if len(config['channels']) == 6: offset = 4 else: offset = 6 for i in range(n_downsampling): out_c = config['channels'][offset + i] mult = 2 ** (n_downsampling - i) output_size = (i + 1) * 128 self.model.extend([Conv2DTranspose(in_c * mult, int(out_c * mult / 2), filter_size=3, output_size=output_size, stride=2, padding=1, use_cudnn=use_cudnn, bias_attr=use_bias), # self.model.extend([Conv2DTranspose(in_c * mult, int(out_c * mult / 2), filter_size=3, stride=2, padding=1, use_cudnn=use_cudnn, bias_attr=use_bias), # Pad2D(paddings=[0, 1, 0, 1], mode='constant', pad_value=0.0), norm_layer(int(out_c * mult / 2)), ReLU()]) in_c = out_c self.model.extend([Pad2D(paddings=[3, 3, 3, 3], mode="reflect")]) self.model.extend([Conv2D(in_c, output_nc, filter_size=7, padding=0)])
def __init__(self, dim, padding_type, norm_layer, dropout_rate, use_bias=False): super(ResnetBlock,self).__init__() self.conv_block = fluid.dygraph.LayerList([]) p = 0 if padding_type == 'reflect': self.conv_block.extend([Pad2D(paddings=[1,1,1,1], mode='reflect')]) elif padding_type == 'replicate': self.conv_block.extend([Pad2D(paddings=[1,1,1,1], mode='edge')]) elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) self.conv_block.extend([Conv2D(dim, dim, filter_size=3, padding=p, bias_attr=use_bias), norm_layer(dim), ReLU()]) self.conv_block.extend([Dropout(dropout_rate)]) p = 0 if padding_type == 'reflect': self.conv_block.extend([Pad2D(paddings=[1,1,1,1], mode='reflect')]) elif padding_type == 'replicate': self.conv_block.extend([Pad2D(paddings=[1,1,1,1], mode='edge')]) elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) self.conv_block.extend([Conv2D(dim, dim, filter_size=3, padding=p, bias_attr=use_bias), norm_layer(dim)])
def __init__(self, in_c, out_c, padding_type, norm_layer, dropout_rate, use_bias): super(MobileResnetBlock, self).__init__() self.padding_type = padding_type self.dropout_rate = dropout_rate self.conv_block = fluid.dygraph.LayerList([]) p = 0 if self.padding_type == 'reflect': self.conv_block.extend([Pad2D(paddings=[1,1,1,1], mode='reflect')]) elif self.padding_type == 'replicate': self.conv_block.extend([Pad2D(inputs, paddings=[1,1,1,1], mode='edge')]) elif self.padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % self.padding_type) self.conv_block.extend([SeparableConv2D(num_channels=in_c, num_filters=out_c, filter_size=3, padding=p, stride=1), norm_layer(out_c), ReLU()]) self.conv_block.extend([Dropout(p=self.dropout_rate)]) if self.padding_type == 'reflect': self.conv_block.extend([Pad2D(paddings=[1,1,1,1], mode='reflect')]) elif self.padding_type == 'replicate': self.conv_block.extend([Pad2D(inputs, paddings=[1,1,1,1], mode='edge')]) elif self.padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % self.padding_type) self.conv_block.extend([SeparableConv2D(num_channels=out_c, num_filters=in_c, filter_size=3, padding=p, stride=1), norm_layer(in_c)])
def __init__(self, num_channels, num_filters=64, filter_size=7, stride=1, stddev=0.02, padding=0, norm=True, norm_layer=InstanceNorm, relu=True, relufactor=0.0, use_bias=False): super(conv2d, self).__init__() if use_bias == False: con_bias_attr = False else: con_bias_attr = fluid.ParamAttr( initializer=fluid.initializer.Constant(0.0)) self.conv = Conv2D(num_channels=num_channels, num_filters=int(num_filters), filter_size=int(filter_size), stride=stride, padding=padding, use_cudnn=use_cudnn, param_attr=fluid.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=stddev)), bias_attr=con_bias_attr) if norm_layer == InstanceNorm: self.bn = InstanceNorm( num_channels=num_filters, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(1.0), trainable=False), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(0.0), trainable=False), ) elif norm_layer == BatchNorm: self.bn = BatchNorm( num_channels=num_filters, param_attr=fluid.ParamAttr(initializer=fluid.initializer. NormalInitializer(1.0, 0.02)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(0.0)), ) else: raise NotImplementedError self.relufactor = relufactor self.use_bias = use_bias self.norm = norm if relu: if relufactor == 0.0: self.lrelu = ReLU() else: self.lrelu = Leaky_ReLU(self.relufactor) self.relu = relu
def __init__(self, num_classes=10): super(ImperativeLenet, self).__init__() conv2d_w1_attr = fluid.ParamAttr(name="conv2d_w_1") conv2d_w2_attr = fluid.ParamAttr(name="conv2d_w_2") fc_w1_attr = fluid.ParamAttr(name="fc_w_1") fc_w2_attr = fluid.ParamAttr(name="fc_w_2") fc_w3_attr = fluid.ParamAttr(name="fc_w_3") conv2d_b2_attr = fluid.ParamAttr(name="conv2d_b_2") fc_b1_attr = fluid.ParamAttr(name="fc_b_1") fc_b2_attr = fluid.ParamAttr(name="fc_b_2") fc_b3_attr = fluid.ParamAttr(name="fc_b_3") self.features = Sequential( Conv2D( in_channels=1, out_channels=6, kernel_size=3, stride=1, padding=1, weight_attr=conv2d_w1_attr, bias_attr=False), BatchNorm2D(6), ReLU(), MaxPool2D( kernel_size=2, stride=2), Conv2D( in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, weight_attr=conv2d_w2_attr, bias_attr=conv2d_b2_attr), BatchNorm2D(16), PReLU(), MaxPool2D( kernel_size=2, stride=2)) self.fc = Sequential( Linear( in_features=400, out_features=120, weight_attr=fc_w1_attr, bias_attr=fc_b1_attr), LeakyReLU(), Linear( in_features=120, out_features=84, weight_attr=fc_w2_attr, bias_attr=fc_b2_attr), Sigmoid(), Linear( in_features=84, out_features=num_classes, weight_attr=fc_w3_attr, bias_attr=fc_b3_attr), Softmax())
def __init__ (self, input_channel, output_nc, ngf, norm_layer=InstanceNorm, dropout_rate=0, n_blocks=9, padding_type='reflect'): super(MobileResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == InstanceNorm else: use_bias = norm_layer == InstanceNorm self.model = fluid.dygraph.LayerList([Pad2D(paddings=[3, 3, 3, 3], mode="reflect"), Conv2D(input_channel, int(ngf), filter_size=7, padding=0, use_cudnn=use_cudnn, bias_attr=use_bias), norm_layer(ngf), ReLU()]) n_downsampling = 2 for i in range(n_downsampling): mult = 2 ** i self.model.extend([Conv2D(ngf * mult, ngf * mult * 2, filter_size=3, stride=2, padding=1, use_cudnn=use_cudnn, bias_attr=use_bias), norm_layer(ngf * mult * 2), ReLU()]) mult = 2 ** n_downsampling n_blocks1 = n_blocks // 3 n_blocks2 = n_blocks1 n_blocks3 = n_blocks - n_blocks1 - n_blocks2 for i in range(n_blocks1): self.model.extend([MobileResnetBlock(ngf * mult, ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias)]) for i in range(n_blocks2): self.model.extend([MobileResnetBlock(ngf * mult, ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias)]) for i in range(n_blocks3): self.model.extend([MobileResnetBlock(ngf * mult, ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias)]) for i in range(n_downsampling): mult = 2 ** (n_downsampling - i) output_size = (i + 1) * 128 self.model.extend([Conv2DTranspose(ngf * mult, int(ngf * mult / 2), filter_size=3, output_size=output_size, stride=2, padding=1, use_cudnn=use_cudnn, bias_attr=use_bias), norm_layer(int(ngf * mult / 2)), ReLU()]) self.model.extend([Pad2D(paddings=[3, 3, 3, 3], mode="reflect")]) self.model.extend([Conv2D(ngf, output_nc, filter_size=7, padding=0)])
def __init__(self, dim, padding_type, norm_layer, dropout_rate, use_bias): super(SuperMobileResnetBlock, self).__init__() self.conv_block = fluid.dygraph.LayerList([]) p = 0 if padding_type == 'reflect': self.conv_block.extend( [Pad2D(paddings=[1, 1, 1, 1], mode="reflect")]) elif padding_type == 'replicate': self.conv_block.extend([Pad2D(paddings=[1, 1, 1, 1], mode="edge")]) elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % self.padding_type) self.conv_block.extend([ SuperSeparableConv2D(num_channels=dim, num_filters=dim, filter_size=3, stride=1, padding=p), norm_layer(dim), ReLU() ]) self.conv_block.extend([Dropout(dropout_rate)]) p = 0 if padding_type == 'reflect': self.conv_block.extend( [Pad2D(paddings=[1, 1, 1, 1], mode="reflect")]) elif padding_type == 'replicate': self.conv_block.extend([Pad2D(paddings=[1, 1, 1, 1], mode="edge")]) elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % self.padding_type) self.conv_block.extend([ SuperSeparableConv2D(num_channels=dim, num_filters=dim, filter_size=3, stride=1, padding=p), norm_layer(dim) ])
def __init__(self, num_channels, num_filters=64, filter_size=7, stride=1, stddev=0.02, padding=[0, 0], outpadding=[0, 0, 0, 0], relu=True, norm=True, norm_layer=InstanceNorm, relufactor=0.0, use_bias=False): super(DeConv2D, self).__init__() if use_bias == False: de_bias_attr = False else: de_bias_attr = fluid.ParamAttr( initializer=fluid.initializer.Constant(0.0)) self._deconv = Conv2DTranspose( num_channels, num_filters, filter_size=filter_size, stride=stride, padding=padding, param_attr=fluid.ParamAttr( initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=stddev)), bias_attr=de_bias_attr) self.pad = Pad2D(paddings=outpadding, mode='constant', pad_value=0.0) if norm_layer == InstanceNorm: self.bn = InstanceNorm( num_channels=num_filters, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(1.0), trainable=False), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(0.0), trainable=False), ) elif norm_layer == BatchNorm: self.bn = BatchNorm( num_channels=num_filters, param_attr=fluid.ParamAttr(initializer=fluid.initializer. NormalInitializer(1.0, 0.02)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(0.0)), ) else: raise NotImplementedError self.outpadding = outpadding self.relufactor = relufactor self.use_bias = use_bias self.norm = norm self.relu = relu if relu: if relufactor == 0.0: self.lrelu = ReLU() else: self.lrelu = Leaky_ReLU(self.relufactor)
def __init__(self, num_classes=10, classifier_activation='softmax'): super(ImperativeLenet, self).__init__() conv2d_w1_attr = fluid.ParamAttr(name="conv2d_w_1") conv2d_w2_attr = fluid.ParamAttr(name="conv2d_w_2") fc_w1_attr = fluid.ParamAttr(name="fc_w_1") fc_w2_attr = fluid.ParamAttr(name="fc_w_2") fc_w3_attr = fluid.ParamAttr(name="fc_w_3") conv2d_b1_attr = fluid.ParamAttr(name="conv2d_b_1") conv2d_b2_attr = fluid.ParamAttr(name="conv2d_b_2") fc_b1_attr = fluid.ParamAttr(name="fc_b_1") fc_b2_attr = fluid.ParamAttr(name="fc_b_2") fc_b3_attr = fluid.ParamAttr(name="fc_b_3") self.conv2d_0 = Conv2D( in_channels=1, out_channels=6, kernel_size=3, stride=1, padding=1, weight_attr=conv2d_w1_attr, bias_attr=conv2d_b1_attr) self.conv2d_0.skip_quant = True self.batch_norm_0 = BatchNorm(6) self.relu_0 = ReLU() self.pool2d_0 = Pool2D(pool_size=2, pool_type='max', pool_stride=2) self.conv2d_1 = Conv2D( in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, weight_attr=conv2d_w2_attr, bias_attr=conv2d_b2_attr) self.conv2d_1.skip_quant = False self.batch_norm_1 = BatchNorm(16) self.relu6_0 = ReLU6() self.pool2d_1 = Pool2D(pool_size=2, pool_type='max', pool_stride=2) self.linear_0 = Linear( in_features=400, out_features=120, weight_attr=fc_w1_attr, bias_attr=fc_b1_attr) self.linear_0.skip_quant = True self.leaky_relu_0 = LeakyReLU() self.linear_1 = Linear( in_features=120, out_features=84, weight_attr=fc_w2_attr, bias_attr=fc_b2_attr) self.linear_1.skip_quant = False self.sigmoid_0 = Sigmoid() self.linear_2 = Linear( in_features=84, out_features=num_classes, weight_attr=fc_w3_attr, bias_attr=fc_b3_attr) self.linear_2.skip_quant = False self.softmax_0 = Softmax()
def __init__(self, input_channel, output_nc, ngf, norm_layer=InstanceNorm, dropout_rate=0, n_blocks=6, padding_type='reflect'): assert n_blocks >= 0 super(SuperMobileResnetGenerator, self).__init__() use_bias = norm_layer == InstanceNorm if norm_layer.func == InstanceNorm or norm_layer == InstanceNorm: norm_layer = SuperInstanceNorm else: raise NotImplementedError self.model = fluid.dygraph.LayerList([]) self.model.extend([ Pad2D(paddings=[3, 3, 3, 3], mode="reflect"), SuperConv2D(input_channel, ngf, filter_size=7, padding=0, bias_attr=use_bias), norm_layer(ngf), ReLU() ]) n_downsampling = 2 for i in range(n_downsampling): mult = 2**i self.model.extend([ SuperConv2D(ngf * mult, ngf * mult * 2, filter_size=3, stride=2, padding=1, bias_attr=use_bias), norm_layer(int(ngf * mult * 2)), ReLU() ]) mult = 2**n_downsampling n_blocks1 = n_blocks // 3 n_blocks2 = n_blocks1 n_blocks3 = n_blocks - n_blocks1 - n_blocks2 for i in range(n_blocks1): self.model.extend([ SuperMobileResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias) ]) for i in range(n_blocks2): self.model.extend([ SuperMobileResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias) ]) for i in range(n_blocks3): self.model.extend([ SuperMobileResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, dropout_rate=dropout_rate, use_bias=use_bias) ]) for i in range(n_downsampling): mult = 2**(n_downsampling - i) output_size = (i + 1) * 128 #### torch:out_padding = 1 => paddle:deconv + pad self.model.extend([ SuperConv2DTranspose(ngf * mult, int(ngf * mult / 2), filter_size=3, output_size=output_size, stride=2, padding=1, bias_attr=use_bias), norm_layer(int(ngf * mult / 2)), ReLU() ]) self.model.extend([Pad2D(paddings=[3, 3, 3, 3], mode="reflect")]) self.model.extend( [SuperConv2D(ngf, output_nc, filter_size=7, padding=0)])