Esempio n. 1
0
 def test_flip(self):
     trans = transforms.Compose([
         transforms.RandomHorizontalFlip(1.0),
         transforms.RandomHorizontalFlip(0.0),
         transforms.RandomVerticalFlip(0.0),
         transforms.RandomVerticalFlip(1.0),
     ])
     self.do_transform(trans)
Esempio n. 2
0
    def __init__(self,
                 path,
                 mode='train',
                 image_size=224,
                 resize_short_size=256):
        super(ImageNetDataset, self).__init__(path)
        self.mode = mode

        self.samples = []
        list_file = "train_list.txt" if self.mode == "train" else "val_list.txt"
        with open(os.path.join([path, list_file]), 'r') as f:
            for line in f:
                _image, _label = line.strip().split(" ")
                self.samples.append((_image, int(_label)))
        normalize = transforms.Normalize(mean=[123.675, 116.28, 103.53],
                                         std=[58.395, 57.120, 57.375])
        if self.mode == 'train':
            self.transform = transforms.Compose([
                transforms.RandomResizedCrop(image_size),
                transforms.RandomHorizontalFlip(),
                transforms.Transpose(), normalize
            ])
        else:
            self.transform = transforms.Compose([
                transforms.Resize(resize_short_size),
                transforms.CenterCrop(image_size),
                transforms.Transpose(), normalize
            ])
Esempio n. 3
0
 def test_trans_all(self):
     normalize = transforms.Normalize(
         mean=[123.675, 116.28, 103.53],
         std=[58.395, 57.120, 57.375], )
     trans = transforms.Compose([
         transforms.RandomResizedCrop(224),
         transforms.RandomHorizontalFlip(),
         normalize,
     ])
     self.do_transform(trans)
Esempio n. 4
0
    def test_trans_all(self):
        normalize = transforms.Normalize(
            mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375])
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224), transforms.GaussianNoise(),
            transforms.ColorJitter(
                brightness=0.4, contrast=0.4, saturation=0.4,
                hue=0.4), transforms.RandomHorizontalFlip(),
            transforms.Permute(mode='CHW'), normalize
        ])

        self.do_transform(trans)
    def build_model(self):
        """ DataLoader """
        pad = int(30 * self.img_size // 256)
        train_transform = T.Compose([
            T.RandomHorizontalFlip(),
            T.Resize((self.img_size + pad, self.img_size + pad)),
            T.RandomCrop(self.img_size),
            T.ToTensor(),
            T.Normalize(mean=0.5, std=0.5),
        ])

        test_transform = T.Compose([
            T.Resize((self.img_size, self.img_size)),
            T.ToTensor(),
            T.Normalize(mean=0.5, std=0.5)
        ])

        self.trainA = ImageFolder('dataset/photo2cartoon/trainA', self.img_size, train_transform)
        self.trainB = ImageFolder('dataset/photo2cartoon/trainB', self.img_size, train_transform)
        self.testA = ImageFolder('dataset/photo2cartoon/testA', self.img_size, test_transform)
        self.testB = ImageFolder('dataset/photo2cartoon/testB', self.img_size, test_transform)

        self.trainA_loader = DataLoader(self.trainA, batch_size=self.batch_size, shuffle=True)
        self.trainB_loader = DataLoader(self.trainB, batch_size=self.batch_size, shuffle=True)
        self.testA_loader = DataLoader(self.testA, batch_size=1, shuffle=False)
        self.testB_loader = DataLoader(self.testB, batch_size=1, shuffle=False)

        """ Define Generator, Discriminator """
        self.genA2B = ResnetGenerator(ngf=self.ch, img_size=self.img_size, light=self.light)
        self.genB2A = ResnetGenerator(ngf=self.ch, img_size=self.img_size, light=self.light)
        self.disGA = Discriminator(input_nc=3, ndf=self.ch, n_layers=7)
        self.disGB = Discriminator(input_nc=3, ndf=self.ch, n_layers=7)
        self.disLA = Discriminator(input_nc=3, ndf=self.ch, n_layers=5)
        self.disLB = Discriminator(input_nc=3, ndf=self.ch, n_layers=5)

        """ Define Loss """
        self.L1_loss = nn.loss.L1Loss()
        self.MSE_loss = nn.loss.MSELoss()
        self.BCE_loss = nn.loss.BCEWithLogitsLoss()

        self.G_optim = paddle.optimizer.Adam(
            learning_rate=self.lr, beta1=0.5, beta2=0.999, weight_decay=0.0001,
            parameters=self.genA2B.parameters()+self.genB2A.parameters()
        )
        self.D_optim = paddle.optimizer.Adam(
            learning_rate=self.lr, beta1=0.5, beta2=0.999, weight_decay=0.0001,
            parameters=self.disGA.parameters()+self.disGB.parameters()+self.disLA.parameters()+self.disLB.parameters()
        )

        self.Rho_clipper = RhoClipper(0, self.rho_clipper)
        self.W_clipper = WClipper(0, self.w_clipper)
Esempio n. 6
0
    def __init__(self,
                 data_dir,
                 mode='train',
                 image_size=224,
                 resize_short_size=256):
        super(ImageNetDataset, self).__init__()
        train_file_list = os.path.join(data_dir, 'train_list.txt')
        val_file_list = os.path.join(data_dir, 'val_list.txt')
        test_file_list = os.path.join(data_dir, 'test_list.txt')
        self.data_dir = data_dir
        self.mode = mode

        normalize = transforms.Normalize(
            mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375])
        if self.mode == 'train':
            self.transform = transforms.Compose([
                transforms.RandomResizedCrop(image_size),
                transforms.RandomHorizontalFlip(), transforms.Transpose(),
                normalize
            ])
        else:
            self.transform = transforms.Compose([
                transforms.Resize(resize_short_size),
                transforms.CenterCrop(image_size), transforms.Transpose(),
                normalize
            ])

        if mode == 'train':
            with open(train_file_list) as flist:
                full_lines = [line.strip() for line in flist]
                np.random.shuffle(full_lines)
                if os.getenv('PADDLE_TRAINING_ROLE'):
                    # distributed mode if the env var `PADDLE_TRAINING_ROLE` exits
                    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                    trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
                    per_node_lines = len(full_lines) // trainer_count
                    lines = full_lines[trainer_id * per_node_lines:(
                        trainer_id + 1) * per_node_lines]
                    print(
                        "read images from %d, length: %d, lines length: %d, total: %d"
                        % (trainer_id * per_node_lines, per_node_lines,
                           len(lines), len(full_lines)))
                else:
                    lines = full_lines
            self.data = [line.split() for line in lines]
        else:
            with open(val_file_list) as flist:
                lines = [line.strip() for line in flist]
                self.data = [line.split() for line in lines]
Esempio n. 7
0
    def __init__(self,
                 path,
                 mode='train',
                 image_size=224,
                 resize_short_size=256):
        super(ImageNetDataset, self).__init__(path)
        self.mode = mode

        normalize = transforms.Normalize(mean=[123.675, 116.28, 103.53],
                                         std=[58.395, 57.120, 57.375])
        if self.mode == 'train':
            self.transform = transforms.Compose([
                transforms.RandomResizedCrop(image_size),
                transforms.RandomHorizontalFlip(),
                transforms.Transpose(), normalize
            ])
        else:
            self.transform = transforms.Compose([
                transforms.Resize(resize_short_size),
                transforms.CenterCrop(image_size),
                transforms.Transpose(), normalize
            ])
Esempio n. 8
0
        train_image = self.transform(train_image)
        return train_image, 0

    def __len__(self):
        return len(self.img_names)


if __name__ == '__main__':
    from paddle.vision.transforms import transforms as T
    from paddle.io import DataLoader

    img_size = 256
    pad = 30

    train_transform = T.Compose([
        T.RandomHorizontalFlip(),
        T.Resize((img_size + pad, img_size + pad)),
        T.RandomCrop(img_size),
        T.ToTensor(),
        T.Normalize(mean=0.5, std=0.5)
    ])

    dataloader = ImageFolder('dataset/photo2cartoon/trainB',
                             transform=train_transform)

    train_loader = DataLoader(dataloader, batch_size=1, shuffle=True)
    print('num: ', len(train_loader))
    for i in range(300):
        print(i)
        try:
            real_A, _ = next(trainA_iter)