def test_bert_base_uncased(self): model = BertModel.from_pretrained('bert-base-uncased', attention_probs_dropout_prob=0.0, hidden_dropout_prob=0.0) self.config = copy.deepcopy(model.config) self.config['seq_len'] = 32 self.config['batch_size'] = 3 input_ids, _ = create_input_data(self.config, 102) input_ids = paddle.to_tensor(input_ids) output = model(input_ids) expected_seq_shape = (self.config['batch_size'], self.config['seq_len'], self.config['hidden_size']) expected_pooled_shape = (self.config['batch_size'], self.config['hidden_size']) self.check_output_equal(output[0].numpy().shape, expected_seq_shape) self.check_output_equal(output[1].numpy().shape, expected_pooled_shape) expected_seq_slice = np.array([[0.17383946, 0.09206937, 0.45788339], [-0.28287640, 0.06244858, 0.54864359], [-0.54589444, 0.04811822, 0.50559914]]) # There's output diff about 1e-6 between cpu and gpu self.check_output_equal(output[0].numpy()[0, 0:3, 0:3], expected_seq_slice, atol=1e-6) expected_pooled_slice = np.array( [[-0.67418981, -0.07148759, 0.85799801], [-0.62072051, -0.08452632, 0.96691507], [-0.74019802, -0.10187808, 0.95353240]]) self.check_output_equal(output[1].numpy()[0:3, 0:3], expected_pooled_slice, atol=1e-6)
def get_bert(params): model_bert = BertModel.from_pretrained("bert-base-uncased") bert_config = BertPretrainedModel.pretrained_init_configuration[ "bert-base-uncased"] tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') return model_bert, tokenizer, bert_config
def _construct_model(self, model): """ Construct the inference model for the predictor. """ self._model = BertModel.from_pretrained(self._task_path, pool_act='linear') self._model.eval()
def test_forward(self): config = copy.deepcopy(self.config) del config['batch_size'] del config['seq_len'] bert = BertModel(**config) model = self.TEST_MODEL_CLASS(bert) input_ids = paddle.to_tensor(self.input_ids) self.output = model(input_ids) self.check_testcase()
def test_forward(self): config = copy.deepcopy(self.config) del config['batch_size'] del config['seq_len'] bert = BertModel(**config) model = self.TEST_MODEL_CLASS(bert) input_ids = paddle.to_tensor(self.input_ids, dtype="int64") masked_lm_positions = paddle.to_tensor(self.masked_lm_positions, dtype="int64") self.output = model(input_ids, masked_positions=masked_lm_positions) self.check_testcase()
def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.set_device(args.select_device) fleet.init(is_collective=True) worker_num = fleet.worker_num() worker_index = fleet.worker_index() # Create the random seed for the worker set_seed(args.seed) worker_init = WorkerInitObj(args.seed + worker_index) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ], multi_precision=args.use_pure_fp16) if worker_num == 1 and args.use_amp: custom_black_list = (['lookup_table', 'lookup_table_v2'] if args.use_pure_fp16 else None) amp_list = paddle.static.amp.AutoMixedPrecisionLists( custom_white_list=['softmax', 'layer_norm', 'gelu'], custom_black_list=custom_black_list) optimizer = paddle.static.amp.decorate( optimizer, amp_list, init_loss_scaling=args.scale_loss, use_dynamic_loss_scaling=True, use_pure_fp16=args.use_pure_fp16) if worker_num > 1: # Use the fleet api to compile the distributed optimizer optimizer = dist_optimizer(args, optimizer) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) if args.use_amp: optimizer.amp_init(place) if worker_num == 1: # Construct the compiled program main_program = build_compiled_program(main_program, loss) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker( files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() for step, batch in enumerate(train_data_loader): train_reader_cost += time.time() - reader_start global_step += 1 train_start = time.time() loss_return = exe.run(main_program, feed=batch, fetch_list=[loss]) train_run_cost += time.time() - train_start total_samples += args.batch_size # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: print( "tobal step: %d, epoch: %d, batch: %d, loss: %f, " "avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec" % (global_step, epoch, step, loss_return[0], train_reader_cost / args.logging_steps, (train_reader_cost + train_run_cost) / args.logging_steps, total_samples / args.logging_steps, total_samples / (train_reader_cost + train_run_cost))) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: reader_start = time.time() del train_data_loader return reader_start = time.time() del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1
def do_train(args): # Initialize the paddle execute enviroment paddle.enable_static() place = paddle.set_device(args.select_device) # Set the random seed set_seed(args.seed) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) if args.use_amp: amp_list = paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists( custom_white_list=['layer_norm', 'softmax', 'gelu']) optimizer = paddle.fluid.contrib.mixed_precision.decorate( optimizer, amp_list, init_loss_scaling=args.scale_loss, use_dynamic_loss_scaling=True) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) # Construct the compiled program main_program = build_compiled_program(args, main_program, loss) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() random.Random(args.seed + epoch).shuffle(files) for f_id in range(0, len(files)): train_data_loader, _ = create_pretraining_dataset( files[f_id], args.max_predictions_per_seq, args, data_holders) for step, batch in enumerate(train_data_loader): global_step += 1 loss_return = exe.run(main_program,\ feed=batch, fetch_list=[loss]) # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: time_cost = time.time() - tic_train print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, ips: %.2f sequences/s" % (global_step, epoch, step, loss_return[0], args.logging_steps / time_cost, args.logging_steps * args.batch_size / time_cost)) tic_train = time.time() if global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: del train_data_loader return del train_data_loader epoch += 1
def do_train(args): paddle.enable_static() if not args.eager_run else None paddle.set_device("gpu" if args.n_gpu else "cpu") if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) args.task_name = args.task_name.lower() dataset_class, metric_class = TASK_CLASSES[args.task_name] args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] train_dataset, dev_dataset = dataset_class.get_datasets(["train", "dev"]) tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) trans_func = partial(convert_example, tokenizer=tokenizer, label_list=train_dataset.get_labels(), max_seq_length=args.max_seq_length) train_dataset = train_dataset.apply(trans_func, lazy=True) # train_batch_sampler = SamplerHelper(train_dataset).shuffle().batch( # batch_size=args.batch_size).shard() train_batch_sampler = paddle.io.DistributedBatchSampler( # train_dataset, batch_size=args.batch_size, shuffle=True) train_dataset, batch_size=args.batch_size, shuffle=False) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # input Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # segment Stack(), # length Stack(dtype="int64" if train_dataset.get_labels() else "float32") # label ): [data for i, data in enumerate(fn(samples)) if i != 2] train_data_loader = DataLoader(dataset=train_dataset, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_dataset = dev_dataset.apply(trans_func, lazy=True) # dev_batch_sampler = SamplerHelper(dev_dataset).batch( # batch_size=args.batch_size) dev_batch_sampler = paddle.io.BatchSampler(dev_dataset, batch_size=args.batch_size, shuffle=False) dev_data_loader = DataLoader(dataset=dev_dataset, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) # model = model_class.from_pretrained( # args.model_name_or_path,) num_classes=len(train_dataset.get_labels())) model = BertForPretraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params) loss_fct = paddle.nn.loss.CrossEntropyLoss() if train_dataset.get_labels( ) else paddle.nn.loss.MSELoss() metric = metric_class() ### TODO: use hapi # trainer = paddle.hapi.Model(model) # trainer.prepare(optimizer, loss_fct, paddle.metric.Accuracy()) # trainer.fit(train_data_loader, # dev_data_loader, # log_freq=args.logging_steps, # epochs=args.num_train_epochs, # save_dir=args.output_dir) model.eval() param_names = list(model.state_dict().keys()) import pickle with open(args.params_pd_path, "rb") as f: np_params = pickle.load(f) model.set_state_dict(dict(zip(param_names, np_params))) paddle.save(model.state_dict(), "%s.pdparams" % args.model_name_or_path) for data in train_data_loader(): print(model(*data[:-1])) exit(0) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): input_ids, segment_ids, labels = batch logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) if global_step % args.logging_steps == 0: print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s" % (global_step, epoch, step, loss, args.logging_steps / (time.time() - tic_train))) tic_train = time.time() loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_grad() if global_step % args.save_steps == 0: evaluate(model, loss_fct, metric, dev_data_loader) if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0: paddle.save( model.state_dict(), os.path.join(args.output_dir, "model_%d.pdparams" % global_step)) global_step += 1
def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.set_device(args.device) fleet.init(is_collective=True) worker_num = fleet.worker_num() worker_index = fleet.worker_index() # Create the random seed for the worker set_seed(args.seed) worker_init = WorkerInitObj(args.seed + worker_index) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params, multi_precision=args.use_pure_fp16) # Use the fleet api to compile the distributed optimizer optimizer = dist_optimizer(args, optimizer) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) if args.use_amp: optimizer.amp_init(place) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker( files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) train_cost_avg = TimeCostAverage() reader_cost_avg = TimeCostAverage() total_samples = 0 batch_start = time.time() for step, batch in enumerate(train_data_loader): train_reader_cost = time.time() - batch_start reader_cost_avg.record(train_reader_cost) global_step += 1 train_start = time.time() loss_return = exe.run(main_program, feed=batch, fetch_list=[loss]) total_samples += args.batch_size # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() train_run_cost = time.time() - batch_start train_cost_avg.record(train_run_cost) # Profile for model benchmark if args.profiler_options is not None: profiler.add_profiler_step(args.profiler_options) if global_step % args.logging_steps == 0: print( "tobal step: %d, epoch: %d, batch: %d, loss: %f, " "avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec" % (global_step, epoch, step, loss_return[0], reader_cost_avg.get_average(), train_cost_avg.get_average(), total_samples / args.logging_steps, args.batch_size / ( reader_cost_avg.get_average() + train_cost_avg.get_average()))) total_samples = 0 train_cost_avg.reset() reader_cost_avg.reset() if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) model.save_model_config(output_dir) paddle.static.save(main_program, os.path.join(output_dir, "model_state")) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: reader_start = time.time() del train_data_loader return batch_start = time.time() del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1
def do_train(args): paddle.set_device("gpu" if args.n_gpu else "cpu") if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) worker_init = WorkerInitObj(args.seed + paddle.distributed.get_rank()) args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) model = BertForPretraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) criterion = BertPretrainingCriterion( getattr(model, BertForPretraining.base_model_prefix).config["vocab_size"]) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) # If use defalut last_epoch, lr of the first iteration is 0. # Use `last_epoch = 0` to be consistent with nv bert. lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps))), last_epoch=0) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 shared_file_list = {} if paddle.distributed.get_world_size() > num_files: remainder = paddle.distributed.get_world_size() % num_files data_file = files[ (f_start_id * paddle.distributed.get_world_size() + paddle.distributed.get_rank() + remainder * f_start_id) % num_files] else: data_file = files[ (f_start_id * paddle.distributed.get_world_size() + paddle.distributed.get_rank()) % num_files] previous_file = data_file train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init) # TODO(guosheng): better way to process single file single_file = True if f_start_id + 1 == len(files) else False for f_id in range(f_start_id, len(files)): if not single_file and f_id == f_start_id: continue if paddle.distributed.get_world_size() > num_files: data_file = files[(f_id * paddle.distributed.get_world_size() + paddle.distributed.get_rank() + remainder * f_id) % num_files] else: data_file = files[(f_id * paddle.distributed.get_world_size() + paddle.distributed.get_rank()) % num_files] previous_file = data_file dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init) for step, batch in enumerate(train_data_loader): global_step += 1 (input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale) = batch prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) if global_step % args.logging_steps == 0: if (not args.n_gpu > 1 ) or paddle.distributed.get_rank() == 0: logger.info( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s" % (global_step, epoch, step, loss, args.logging_steps / (time.time() - tic_train))) tic_train = time.time() loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_gradients() if global_step % args.save_steps == 0: if (not args.n_gpu > 1 ) or paddle.distributed.get_rank() == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # need better way to get inner model of DataParallel model_to_save = model._layers if isinstance( model, paddle.DataParallel) else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) paddle.save( optimizer.state_dict(), os.path.join(output_dir, "model_state.pdopt")) if global_step >= args.max_steps: del train_data_loader return del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None)
def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.set_device(args.select_device) fleet.init(is_collective=True) # paddle.distributed.init_parallel_env() worker_num = fleet.worker_num() worker_index = fleet.worker_index() # Create the random seed for the worker set_seed(args.seed) # worker_init = WorkerInitObj(args.seed + worker_index) worker_init = WorkerInitObj(args.seed) tracker = get_rng_state_tracker() tracker.add('global_seed', args.seed) tracker.add('local_seed', args.seed + worker_index + 2021) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) config['num_partitions'] = args.num_partitions model = BertForPretraining(BertModel(**config), args.num_partitions) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) # if worker_num == 1 and args.use_amp: # amp_list = paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists( # custom_white_list=['softmax', 'layer_norm', 'gelu']) # optimizer = paddle.fluid.contrib.mixed_precision.decorate( # optimizer, # amp_list, # init_loss_scaling=args.scale_loss, # use_dynamic_loss_scaling=True) if fleet.worker_num() > 1: # Use the fleet api to compile the distributed optimizer optimizer = dist_optimizer(args, optimizer) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) # state_dict = model.state_dict() # Use the state dict to update the parameter # reset_state_dict = reset_program_state_dict(model, state_dict) # paddle.static.set_program_state(main_program, reset_state_dict) # if worker_num == 1: # # Construct the compiled program # main_program = build_compiled_program(main_program, loss) main_program._graph = None if fleet.worker_index() == 0: with open('startup_%d' % fleet.worker_num(), 'w') as f: f.writelines(str(startup_program)) with open('main_%d' % fleet.worker_num(), 'w') as f: f.writelines(str(main_program)) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, 1, 0) #files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker(files, f_id, 1, 0) # files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for step, batch in enumerate(train_data_loader): global_step += 1 if step == 10 and worker_index == 0: profiler.start_profiler("All") if step == 20 and worker_index == 0: profiler.stop_profiler("total", "/tmp/profile") loss_return = exe.run(main_program, feed=batch, fetch_list=[loss]) # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: time_cost = time.time() - tic_train print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, ips: %.2f sequences/s" % (global_step, epoch, step, loss_return[0], args.logging_steps / time_cost, args.logging_steps * args.batch_size / time_cost)) tic_train = time.time() if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: del train_data_loader return del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1
def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.CUDAPlace(int(os.environ.get('FLAGS_selected_gpus', 0))) fleet.init(is_collective=True) # Create the random seed for the worker set_seed(args.seed) worker_init = WorkerInitObj(args.seed + fleet.worker_index()) # Define the input data in the static mode data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) model = BertForPretraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) # Use the fleet api to compile the distributed optimizer strategy = fleet.DistributedStrategy() optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(paddle.static.default_main_program(), reset_state_dict) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() worker_num = fleet.worker_num() worker_index = fleet.worker_index() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker( files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for step, batch in enumerate(train_data_loader): global_step += 1 loss_return = exe.run(paddle.static.default_main_program(),\ feed=batch, fetch_list=[loss]) # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: time_cost = time.time() - tic_train print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, ips :%.2f sequences/s" % (global_step, epoch, step, loss_return[0], args.logging_steps / time_cost, args.logging_steps * args.batch_size / time_cost)) tic_train = time.time() if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: del train_data_loader return del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1
def do_train(args): # Initialize the paddle execute enviroment paddle.enable_static() place = paddle.set_device(args.device) # Set the random seed set_seed(args.seed) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params, multi_precision=False) if args.use_amp: custom_black_list = (['lookup_table', 'lookup_table_v2'] if args.use_pure_fp16 else None) amp_list = paddle.static.amp.AutoMixedPrecisionLists( custom_white_list=['layer_norm', 'softmax', 'gelu'], custom_black_list=custom_black_list) optimizer = paddle.static.amp.decorate( optimizer, amp_list, init_loss_scaling=args.scale_loss, use_dynamic_loss_scaling=True, use_pure_fp16=args.use_pure_fp16) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) if args.use_amp: optimizer.amp_init(place) # Construct the compiled program main_program = build_compiled_program(args, main_program, loss) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() random.Random(args.seed + epoch).shuffle(files) for f_id in range(0, len(files)): train_data_loader, _ = create_pretraining_dataset( files[f_id], args.max_predictions_per_seq, args, data_holders) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() for step, batch in enumerate(train_data_loader): train_reader_cost += time.time() - reader_start global_step += 1 train_start = time.time() loss_return = exe.run(main_program,\ feed=batch, fetch_list=[loss]) train_run_cost += time.time() - train_start total_samples += args.batch_size # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: print( "global step: %d, epoch: %d, batch: %d, loss: %f, " "avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec" % (global_step, epoch, step, loss_return[0], train_reader_cost / args.logging_steps, (train_reader_cost + train_run_cost) / args.logging_steps, total_samples / args.logging_steps, total_samples / (train_reader_cost + train_run_cost))) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 if global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: reader_start = time.time() del train_data_loader return reader_start = time.time() del train_data_loader epoch += 1
def do_train(args): paddle.set_device(args.device) if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) args.task_name = args.task_name.lower() metric_class = METRIC_CLASSES[args.task_name] args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] train_ds = load_dataset('glue', args.task_name, splits="train") tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) trans_func = partial(convert_example, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=args.max_seq_length) train_ds = train_ds.map(trans_func, lazy=True) train_batch_sampler = paddle.io.DistributedBatchSampler( train_ds, batch_size=args.batch_size, shuffle=False) # for same data when converting batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment Stack(dtype="int64" if train_ds.label_list else "float32") # label ): fn(samples) train_data_loader = DataLoader(dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) if args.task_name == "mnli": dev_ds_matched, dev_ds_mismatched = load_dataset( 'glue', args.task_name, splits=["dev_matched", "dev_mismatched"]) dev_ds_matched = dev_ds_matched.map(trans_func, lazy=True) dev_ds_mismatched = dev_ds_mismatched.map(trans_func, lazy=True) dev_batch_sampler_matched = paddle.io.BatchSampler( dev_ds_matched, batch_size=args.batch_size, shuffle=False) dev_data_loader_matched = DataLoader( dataset=dev_ds_matched, batch_sampler=dev_batch_sampler_matched, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_batch_sampler_mismatched = paddle.io.BatchSampler( dev_ds_mismatched, batch_size=args.batch_size, shuffle=False) dev_data_loader_mismatched = DataLoader( dataset=dev_ds_mismatched, batch_sampler=dev_batch_sampler_mismatched, collate_fn=batchify_fn, num_workers=0, return_list=True) else: dev_ds = load_dataset('glue', args.task_name, splits='dev') dev_ds = dev_ds.map(trans_func, lazy=True) dev_batch_sampler = paddle.io.BatchSampler(dev_ds, batch_size=args.batch_size, shuffle=False) dev_data_loader = DataLoader(dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) num_classes = 1 if train_ds.label_list == None else len( train_ds.label_list) # model = model_class.from_pretrained( # args.model_name_or_path, num_classes=num_classes) model = BertForPretraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) num_training_steps = args.max_steps if args.max_steps > 0 else ( len(train_data_loader) * args.num_train_epochs) warmup = args.warmup_steps if args.warmup_steps > 0 else args.warmup_proportion lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, warmup) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, beta1=0.9, beta2=0.999, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params) loss_fct = paddle.nn.loss.CrossEntropyLoss( ) if train_ds.label_list else paddle.nn.loss.MSELoss() metric = metric_class() if args.use_amp: scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss) # load converted model and run once to compare model.eval() param_names = list(model.state_dict().keys()) import pickle with open(args.params_pd_path, "rb") as f: np_params = pickle.load(f) model.set_state_dict(dict(zip(param_names, np_params))) paddle.save(model.state_dict(), "%s.pdparams" % args.model_name_or_path) for data in train_data_loader(): print(model(*data[:-1])) exit(0) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): global_step += 1 input_ids, segment_ids, labels = batch with paddle.amp.auto_cast( args.use_amp, custom_white_list=["layer_norm", "softmax", "gelu"]): logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) if args.use_amp: scaler.scale(loss).backward() scaler.minimize(optimizer, loss) else: loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_grad() if global_step % args.logging_steps == 0: print( "global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s" % (global_step, num_training_steps, epoch, step, paddle.distributed.get_rank(), loss, optimizer.get_lr(), args.logging_steps / (time.time() - tic_train))) tic_train = time.time() if global_step % args.save_steps == 0 or global_step == num_training_steps: tic_eval = time.time() if args.task_name == "mnli": evaluate(model, loss_fct, metric, dev_data_loader_matched) evaluate(model, loss_fct, metric, dev_data_loader_mismatched) print("eval done total : %s s" % (time.time() - tic_eval)) else: evaluate(model, loss_fct, metric, dev_data_loader) print("eval done total : %s s" % (time.time() - tic_eval)) if paddle.distributed.get_rank() == 0: output_dir = os.path.join( args.output_dir, "%s_ft_model_%d.pdparams" % (args.task_name, global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Need better way to get inner model of DataParallel model_to_save = model._layers if isinstance( model, paddle.DataParallel) else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir)