def __init__(self, config): """R """ Trainer.__init__(self, config) config['output_path'] = util.get_absolute_path( config['output_path'], config['io']['afs']) self.global_config = config self._metrics = {} self._path_generator = util.PathGenerator({ 'templates': [ {'name': 'xbox_base_done', 'template': config['output_path'] + '/xbox_base_done.txt'}, {'name': 'xbox_delta_done', 'template': config['output_path'] + '/xbox_patch_done.txt'}, {'name': 'xbox_base', 'template': config['output_path'] + '/xbox/{day}/base/'}, {'name': 'xbox_delta', 'template': config['output_path'] + '/xbox/{day}/delta-{pass_id}/'}, {'name': 'batch_model', 'template': config['output_path'] + '/batch_model/{day}/{pass_id}/'} ] }) if 'path_generator' in config: self._path_generator.add_path_template(config['path_generator']) self.regist_context_processor('uninit', self.init) self.regist_context_processor('startup', self.startup) self.regist_context_processor('begin_day', self.begin_day) self.regist_context_processor('train_pass', self.train_pass) self.regist_context_processor('end_day', self.end_day)
def __init__(self, config): """R """ Trainer.__init__(self, config) self.global_config = config self._metrics = {} self.processor_register()
def __init__(self, config=None): Trainer.__init__(self, config) device = envs.get_global_env("train.device", "cpu") if device == 'gpu': self._place = fluid.CUDAPlace(0) self._exe = fluid.Executor(self._place) self.processor_register() self.model = None self.inference_models = [] self.increment_models = []
def __init__(self, config=None): Trainer.__init__(self, config) self.processor_register() self.abs_dir = os.path.dirname(os.path.abspath(__file__)) self.runner_env_name = "runner." + self._context["runner_name"]