Esempio n. 1
0
    def __init__(self,
                 output_size,
                 eps=1e-5,
                 momentum=0.1,
                 cross_replica=False,
                 mybn=False):
        super(bn, self).__init__()
        self.output_size = output_size
        # Prepare gain and bias layers
        self.gain = torch.nn.Parameter(output_size, 1.0)
        self.bias = torch.nn.Parameter(output_size, 0.0)
        # epsilon to avoid dividing by 0
        self.eps = eps
        # Momentum
        self.momentum = momentum
        # Use cross-replica batchnorm?
        self.cross_replica = cross_replica
        # Use my batchnorm?
        self.mybn = mybn

        if self.cross_replica:
            self.bn = SyncBN2d(output_size,
                               eps=self.eps,
                               momentum=self.momentum,
                               affine=False)
        elif mybn:
            self.bn = myBN(output_size, self.eps, self.momentum)
        # Register buffers if neither of the above
        else:
            self.stored_mean = torch.nn.Parameter(torch.zeros(output_size))
            self.stored_var = torch.nn.Parameter(torch.ones(output_size))
Esempio n. 2
0
 def __init__(self,
              num_features,
              eps=1e-5,
              momentum=0.1,
              affine=True,
              track_running_stats=True):
     super(_BatchNormBase, self).__init__()
     self.num_features = num_features
     self.eps = eps
     self.momentum = momentum
     self.affine = affine
     self.track_running_stats = track_running_stats
     if self.affine:
         self.weight = Parameter(torch.Ones(num_features))
         self.bias = Parameter(torch.Zeros(num_features))
     else:
         self.register_parameter('weight', None)
         self.register_parameter('bias', None)
     if self.track_running_stats:
         self.register_buffer('running_mean', torch.zeros(num_features))
         self.register_buffer('running_var', torch.ones(num_features))
         self.register_buffer('num_batches_tracked',
                              torch.tensor(0, dtype=torch.long))
     else:
         self.register_parameter('running_mean', None)
         self.register_parameter('running_var', None)
         self.register_parameter('num_batches_tracked', None)
     self.reset_parameters()
Esempio n. 3
0
 def __init__(self, num_channels, eps=1e-5, momentum=0.1):
     super(myBN, self).__init__()
     # momentum for updating running stats
     self.momentum = momentum
     # epsilon to avoid dividing by 0
     self.eps = eps
     # Momentum
     self.momentum = momentum
     # Register buffers
     self.stored_mean = torch.nn.Parameter(torch.zeros(num_channels))
     self.stored_var = torch.nn.Parameter(torch.ones(num_channels))
     self.accumulation_counter = torch.nn.Parameter(torch.zeros(1))
     # Accumulate running means and vars
     self.accumulate_standing = False
Esempio n. 4
0
 def __init__(self,
              num_svs,
              num_itrs,
              num_outputs,
              transpose=False,
              eps=1e-12):
     # Number of power iterations per step
     self.num_itrs = num_itrs
     # Number of singular values
     self.num_svs = num_svs
     # Transposed?
     self.transpose = transpose
     # Epsilon value for avoiding divide-by-0
     self.eps = eps
     self.register_buffer = dict()
     # Register a singular vector for each sv
     self.name = "%d_%d_%d" % (num_svs, num_itrs, num_outputs)
     for i in range(self.num_svs):
         self.__setattr__('u%d' % i,
                          torch.nn.Parameter(torch.randn(1, num_outputs)))
         self.__setattr__('sv%d' % i, torch.nn.Parameter(torch.ones(1)))
Esempio n. 5
0
def slide(entries, margin=32):
    """Returns a sliding reference window.
    Args:
        entries: a list containing two reference images, x_prev and x_next, 
                 both of which has a shape (1, 3, 256, 256)
    Returns:
        canvas: output slide of shape (num_frames, 3, 256*2, 256+margin)
    """
    _, C, H, W = entries[0].shape
    alphas = get_alphas()
    T = len(alphas)  # number of frames

    canvas = -porch.ones(T, C, H * 2, W + margin)
    merged = porch.cat(entries, dim=2)  # (1, 3, 512, 256)
    for t, alpha in enumerate(alphas):
        top = int(H * (1 - alpha))  # top, bottom for canvas
        bottom = H * 2
        m_top = 0  # top, bottom for merged
        m_bottom = 2 * H - top
        canvas[t, :, top:bottom, :W] = merged[:, :, m_top:m_bottom, :]
    return canvas
Esempio n. 6
0
def translate_using_reference(nets, args, x_src, x_ref, y_ref, filename):
    x_ref.stop_gradient = True
    y_ref.stop_gradient = True
    x_src.stop_gradient = True

    N, C, H, W = x_src.shape
    wb = porch.ones(1, C, H, W)
    x_src_with_wb = porch.cat([wb, x_src], dim=0)

    masks = nets.fan.get_heatmap(x_src) if args.w_hpf > 0 else None
    s_ref = nets.style_encoder(x_ref, y_ref)
    s_ref_list = s_ref.unsqueeze(1).repeat(1, N, 1)
    x_concat = [x_src_with_wb]
    for i, s_ref in enumerate(s_ref_list):
        x_fake = nets.generator(x_src, s_ref, masks=masks)
        x_fake_with_ref = porch.cat([x_ref[i:i + 1], x_fake], dim=0)
        x_concat += [x_fake_with_ref]

    x_concat = porch.cat(x_concat, dim=0)
    save_image(x_concat, N + 1, filename)
    del x_concat
Esempio n. 7
0
    def __init__(
        self,
        output_size,
        input_size,
        which_linear,
        eps=1e-5,
        momentum=0.1,
        cross_replica=False,
        mybn=False,
        norm_style='bn',
    ):
        super(ccbn, self).__init__()
        self.output_size, self.input_size = output_size, input_size
        # Prepare gain and bias layers
        self.gain = which_linear(input_size, output_size)
        self.bias = which_linear(input_size, output_size)
        # epsilon to avoid dividing by 0
        self.eps = eps
        # Momentum
        self.momentum = momentum
        # Use cross-replica batchnorm?
        self.cross_replica = cross_replica
        # Use my batchnorm?
        self.mybn = mybn
        # Norm style?
        self.norm_style = norm_style

        if self.cross_replica:
            self.bn = SyncBN2d(output_size,
                               eps=self.eps,
                               momentum=self.momentum,
                               affine=False)
        elif self.mybn:
            self.bn = myBN(output_size, self.eps, self.momentum)
        elif self.norm_style in ['bn', 'in']:
            self.stored_mean = torch.nn.Parameter(torch.zeros(output_size))
            self.stored_var = torch.nn.Parameter(torch.ones(output_size))
Esempio n. 8
0
        e_feat = None
        if self.gnn_model == "gin":
            x, all_outputs = self.gnn(g, n_feat, e_feat)
        else:
            x, all_outputs = self.gnn(g, n_feat, e_feat), None
            x = self.set2set(g, x)
            x = self.lin_readout(x)
        if self.norm:
            x = F.normalize(x, p=2, dim=-1, eps=1e-5)
        if return_all_outputs:
            return x, all_outputs
        else:
            return x


if __name__ == "__main__":
    model = GraphEncoder(gnn_model="gin")
    print(model)
    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 0, 1, 2], [1, 2, 2, 1])
    g.ndata["pos_directed"] = torch.rand(3, 16)
    g.ndata["pos_undirected"] = torch.rand(3, 16)
    g.ndata["seed"] = torch.zeros(3, dtype=torch.long)
    g.ndata["nfreq"] = torch.ones(3, dtype=torch.long)
    g.edata["efreq"] = torch.ones(4, dtype=torch.long)
    g = dgl.batch([g, g, g])
    y = model(g)
    print(y.shape)
    print(y)