def run_kg(run_index): # Store data for debugging IS0 = pickle.load(open("enthalpy_N1_R3_Ukcal-mol", 'r')) #IS0 = pickle.load(open("enthalpy_N3_R2_Ukcal-mol", 'r')) # Generate the main object sim = Optimizer() # Assign simulation properties #sim.hyperparameter_objective = MAP sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = "enthalpy_kg.dat" sim.fname_historical = "data_dumps/%d_reduced.history" % run_index print "Waiting on %s to be written..." % sim.fname_historical, while not os.path.exists(sim.fname_historical): time.sleep(30) print " DONE" # Information sources, in order from expensive to cheap sim.IS = [ lambda h, c, s: -1.0 * IS0[' '.join([''.join(h), c, s])], ] sim.costs = [1.0] sim.save_extra_files = True sim.logger_fname = "data_dumps/%d_kg.log" % run_index if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = "data_dumps/%d_kg.dat" % run_index sim.mu_fname = "data_dumps/%d_mu_kg.dat" % run_index sim.sig_fname = "data_dumps/%d_sig_kg.dat" % run_index sim.sample_fname = "data_dumps/%d_sample_kg.dat" % run_index sim.combos_fname = "data_dumps/%d_combos_kg.dat" % run_index sim.hp_fname = "data_dumps/%d_hp_kg.dat" % run_index sim.acquisition_fname = "data_dumps/%d_acq_kg.dat" % run_index sim.historical_nsample = 10 ######################################## sim.n_start = 20 # The number of starting MLE samples sim.reopt = 10 sim.ramp_opt = None sim.parallel = False sim.acquisition = getNextSample_kg # Possible compositions by default sim.A = ["Cs", "MA", "FA"] sim.B = ["Pb"] sim.X = ["Cl", "Br", "I"] sim.solvents = copy.deepcopy(solvents) sim.S = list(set([v["name"] for k, v in sim.solvents.items()])) sim.mixed_halides = True sim.mixed_solvents = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error # Functional forms of our mean and covariance # MEAN: 4 * mu_alpha + mu_zeta # COV: sig_alpha * |X><X| + sig_beta * I_N + sig_zeta + MaternKernel(S, weights, sig_m) SCALE = [2.0, 4.0][int(sim.mixed_halides)] # _1, _2, _3 used as dummy entries sim.mean = lambda _1, Y, theta: np.array( [SCALE * theta.mu_alpha + theta.mu_zeta for _ in Y]) def cov(X, Y, theta): A = theta.sig_alpha * np.dot( np.array(X)[:, 1:-3], np.array(X)[:, 1:-3].T) B = theta.sig_beta * np.diag(np.ones(len(X))) C = theta.sig_zeta D = mk52(np.array(X)[:, -3:-1], [theta.l1, theta.l2], theta.sig_m) return A + B + C + D sim.cov = cov sim.theta.bounds = {} sim.theta.mu_alpha, sim.theta.bounds['mu_alpha'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_alpha, sim.theta.bounds['sig_alpha'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_beta, sim.theta.bounds['sig_beta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.mu_zeta, sim.theta.bounds['mu_zeta'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_zeta, sim.theta.bounds['sig_zeta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_m, sim.theta.bounds['sig_m'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) # NOTE! This is a reserved keyword in misoKG. We will generate a list of the same length # of the information sources, and use this for scaling our IS. # sim.theta.rho, sim.theta.bounds['rho'] = {"[0, 0]": 1}, (1E-1, 5.0) # NOTE! This is a reserved keyword in misoKG. We will generate a list of the same length # of the information sources, and use this for scaling our IS. sim.theta.rho = {"[0, 0]": 1} sim.theta.bounds['rho [0, 0]'] = (1, 1) sim.theta.set_hp_names() sim.primary_rho_opt = False ################################################################################################### # Start simulation sim.run()
def run(run_index, folder="data_dumps", infosources=0, exact_cost=True): # Store data for debugging IS_N5R2 = pickle.load(open("enthalpy_N5_R2_wo_GBL_Ukcal-mol", 'r')) IS_N3R2 = pickle.load(open("enthalpy_N3_R2_Ukcal-mol", 'r')) IS_N1R2 = pickle.load(open("enthalpy_N1_R2_Ukcal-mol", 'r')) IS_N1R3 = pickle.load(open("enthalpy_N1_R3_Ukcal-mol", 'r')) if infosources == 0: IS0 = IS_N1R3 if exact_cost: costs = [6.0] else: costs = [10.0] elif infosources == 1: IS0 = IS_N3R2 if exact_cost: costs = [14.0] else: costs = [10.0] elif infosources == 2: IS0 = IS_N5R2 if exact_cost: costs = [27.0] else: costs = [100.0] elif infosources == 3: IS0 = IS_N5R2 if exact_cost: costs = [27.0] else: costs = [100.0] else: raise Exception("HOW?") # Generate the main object sim = Optimizer() # Assign simulation properties sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = "enthalpy_ei.dat" sim.fname_historical = "%s/%d_reduced.history" % (folder, run_index) print "Waiting on %s to be written..." % sim.fname_historical, while not all([ os.path.exists(sim.fname_historical), os.path.exists("%s/%d.combos" % (folder, run_index)) ]): time.sleep(30) print " DONE" # Information sources, in order from expensive to cheap sim.IS = [ lambda h, c, s: -1.0 * IS0[' '.join([''.join(h), c, s])], ] sim.costs = costs sim.save_extra_files = False sim.logger_fname = "%s/%d_ei.log" % (folder, run_index) if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.historical_nsample = len( pickle.load(open("%s/%d_reduced.history" % (folder, run_index), 'r'))) sim.combinations = [ c for c in pickle.load(open("%s/%d.combos" % (folder, run_index), 'r')) if c.endswith("0") ] ######################################## sim.n_start = 10 # The number of starting MLE samples # sim.reopt = 20 sim.reopt = float("inf") # Don't reopt hyperparams sim.ramp_opt = None sim.parallel = False # Possible compositions by default sim.A = ["Cs", "MA", "FA"] sim.B = ["Pb"] sim.X = ["Cl", "Br", "I"] sim.solvents = copy.deepcopy(solvents) sim.S = list(set([v["name"] for k, v in sim.solvents.items()])) sim.mixed_halides = True sim.mixed_solvents = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error # Functional forms of our mean and covariance # MEAN: 4 * mu_alpha + mu_zeta # COV: sig_alpha * |X><X| + sig_beta * I_N + sig_zeta + MaternKernel(S, weights, sig_m) SCALE = [2.0, 4.0][int(sim.mixed_halides)] # _1, _2, _3 used as dummy entries sim.mean = lambda _1, Y, theta: np.array( [SCALE * theta.mu_alpha + theta.mu_zeta for _ in Y]) def cov(X, Y, theta): A = theta.sig_alpha * np.dot( np.array(X)[:, 1:-3], np.array(X)[:, 1:-3].T) B = theta.sig_beta * np.diag(np.ones(len(X))) C = theta.sig_zeta D = mk52(np.array(X)[:, -3:-1], [theta.l1, theta.l2], theta.sig_m) return A + B + C + D sim.cov = cov sim.theta.bounds = {} sim.theta.mu_alpha, sim.theta.bounds['mu_alpha'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_alpha, sim.theta.bounds['sig_alpha'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_beta, sim.theta.bounds['sig_beta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.mu_zeta, sim.theta.bounds['mu_zeta'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_zeta, sim.theta.bounds['sig_zeta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_m, sim.theta.bounds['sig_m'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) # NOTE! This is a reserved keyword in misoKG. We will generate a list of the same length # of the information sources, and use this for scaling our IS. # sim.theta.rho, sim.theta.bounds['rho'] = {"[0, 0]": 1}, (1E-1, 5.0) # NOTE! This is a reserved keyword in misoKG. We will generate a list of the same length # of the information sources, and use this for scaling our IS. sim.theta.rho = {"[0, 0]": 1} sim.theta.bounds['rho [0, 0]'] = (1, 1) sim.theta.set_hp_names() h, c, s = min([(IS0[k], k) for k in IS0.keys()])[1].split() sim.recommendation_kill_switch = "%sPb%s_%s_0" % (c, h, s) sim.primary_rho_opt = False sim.update_hp_only_with_IS0 = False ################################################################################################### # Start simulation sim.run()
def run_misokg(run_index): # Store data for debugging IS0 = pickle.load(open("enthalpy_N1_R3_Ukcal-mol", 'r')) IS1 = pickle.load(open("enthalpy_N1_R2_Ukcal-mol", 'r')) # Generate the main object sim = Optimizer() # Assign simulation properties #sim.hyperparameter_objective = MAP sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = "enthalpy_misokg.dat" sim.fname_historical = None # Information sources, in order from expensive to cheap sim.IS = [ lambda h, c, s: -1.0 * IS0[' '.join([''.join(h), c, s])], lambda h, c, s: -1.0 * IS1[' '.join([''.join(h), c, s])] ] sim.costs = [1.0, 0.1] sim.logger_fname = "data_dumps/%d_misokg.log" % run_index if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = "data_dumps/%d_misokg.dat" % run_index sim.mu_fname = "data_dumps/%d_mu_misokg.dat" % run_index sim.sig_fname = "data_dumps/%d_sig_misokg.dat" % run_index sim.combos_fname = "data_dumps/%d_combos_misokg.dat" % run_index sim.hp_fname = "data_dumps/%d_hp_misokg.dat" % run_index sim.acquisition_fname = "data_dumps/%d_acq_misokg.dat" % run_index sim.save_extra_files = True ######################################## # Override the possible combinations with the reduced list of IS0 # Because we do this, we should also generate our own historical sample combos_no_IS = [ k[1] + "Pb" + k[0] + "_" + k[2] for k in [key.split() for key in IS0.keys()] ] sim.historical_nsample = 10 choices = np.random.choice(combos_no_IS, sim.historical_nsample, replace=False) tmp_data = pal_strings.alphaToNum(choices, solvents, mixed_halides=True, name_has_IS=False) data = [] for IS in range(len(sim.IS)): for i, d in enumerate(tmp_data): h, c, _, s, _ = pal_strings.parseName(pal_strings.parseNum( d, solvents, mixed_halides=True, num_has_IS=False), name_has_IS=False) c = c[0] data.append([IS] + d + [sim.IS[IS](h, c, s)]) sim.fname_historical = "data_dumps/%d.history" % run_index pickle.dump(data, open(sim.fname_historical, 'w')) simple_data = [d for d in data if d[0] == 0] pickle.dump(simple_data, open("data_dumps/%d_reduced.history" % run_index, 'w')) ######################################## sim.n_start = 10 # The number of starting MLE samples sim.reopt = 20 sim.ramp_opt = None sim.parallel = False # Possible compositions by default sim.A = ["Cs", "MA", "FA"] sim.B = ["Pb"] sim.X = ["Cl", "Br", "I"] sim.solvents = copy.deepcopy(solvents) sim.S = list(set([v["name"] for k, v in sim.solvents.items()])) sim.mixed_halides = True sim.mixed_solvents = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error sim.acquisition = getNextSample_misokg # Functional forms of our mean and covariance # MEAN: 4 * mu_alpha + mu_zeta # COV: sig_alpha * |X><X| + sig_beta * I_N + sig_zeta + MaternKernel(S, weights, sig_m) SCALE = [2.0, 4.0][int(sim.mixed_halides)] # _1, _2, _3 used as dummy entries def mean(X, Y, theta): mu = np.array([SCALE * theta.mu_alpha + theta.mu_zeta for _ in Y]) return mu sim.mean = mean def cov_old(X, Y, theta): A = theta.sig_alpha * np.dot( np.array(X)[:, 1:-3], np.array(X)[:, 1:-3].T) B = theta.sig_beta * np.diag(np.ones(len(X))) C = theta.sig_zeta D = mk52(np.array(X)[:, -3:-1], [theta.l1, theta.l2], theta.sig_m) return theta.rho_matrix(X) * (A + B + C + D) def cov(X0, Y, theta): A = theta.sig_alpha * np.dot( np.array(X0)[:, :-3], np.array(X0)[:, :-3].T) B = theta.sig_beta * np.diag(np.ones(len(X0))) C = theta.sig_zeta D = mk52(np.array(X0)[:, -3:-1], [theta.l1, theta.l2], theta.sig_m) Kx = A + B + C + D Ks = np.array([ np.array( [theta.rho[str(sorted([i, j]))] for j in range(theta.n_IS)]) for i in range(theta.n_IS) ]) if theta.normalize_Ks: Ks = Ks / np.linalg.norm(Ks) e = np.diag(np.array([theta.e1, theta.e2])) Ks = e.dot(Ks.dot(e)) return np.kron(Ks, Kx) sim.cov = cov sim.theta.bounds = {} sim.theta.mu_alpha, sim.theta.bounds['mu_alpha'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_alpha, sim.theta.bounds['sig_alpha'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_beta, sim.theta.bounds['sig_beta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.mu_zeta, sim.theta.bounds['mu_zeta'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_zeta, sim.theta.bounds['sig_zeta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_m, sim.theta.bounds['sig_m'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) sim.theta.e1, sim.theta.bounds['e1'] = None, (1E-1, 1.0) sim.theta.e2, sim.theta.bounds['e2'] = None, (1E-1, 1.0) # # NOTE! This is a reserved keyword in misoKG. We will generate a list of the same length # # of the information sources, and use this for scaling our IS. sim.theta.rho = {"[0, 0]": 1.0, "[0, 1]": 0.96, "[1, 1]": 1.0} sim.theta.bounds['rho [0, 0]'] = (0.1, 1.0) sim.theta.bounds['rho [0, 1]'] = (0.1, 1.0) sim.theta.bounds['rho [1, 1]'] = (0.1, 1.0) sim.theta.set_hp_names() sim.primary_rho_opt = False sim.update_hp_only_with_IS0 = False sim.update_hp_only_with_overlapped = False sim.theta.normalize_L = False sim.theta.normalize_Ks = False # This was a test feature that actually over-wrote rho to be PSD # sim.force_rho_psd = True sim.recommendation_kill_switch = "FAPbBrBrCl_THTO_0" ################################################################################################### # Start simulation sim.run()
def run_misokg(run_index): # Store data for debugging IS0 = pickle.load(open("enthalpy_N1_R3_Ukcal-mol", 'r')) IS1 = pickle.load(open("enthalpy_N1_R2_Ukcal-mol", 'r')) # Generate the main object sim = Optimizer() # Assign simulation properties #sim.hyperparameter_objective = MAP sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = "enthalpy_misokg.dat" sim.fname_historical = None # Information sources, in order from expensive to cheap sim.IS = [ lambda h, c, s: -1.0 * IS0[' '.join([''.join(h), c, s])], lambda h, c, s: -1.0 * IS1[' '.join([''.join(h), c, s])] ] sim.costs = [ 1.0, 0.1, ] sim.logger_fname = "data_dumps/%d_misokg.log" % run_index if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = "data_dumps/%d_misokg.dat" % run_index sim.mu_fname = "data_dumps/%d_mu_misokg.dat" % run_index sim.sig_fname = "data_dumps/%d_sig_misokg.dat" % run_index sim.combos_fname = "data_dumps/%d_combos_misokg.dat" % run_index sim.hp_fname = "data_dumps/%d_hp_misokg.dat" % run_index sim.acquisition_fname = "data_dumps/%d_acq_misokg.dat" % run_index sim.save_extra_files = True ######################################## # Override the possible combinations with the reduced list of IS0 # Because we do this, we should also generate our own historical sample combos_no_IS = [ k[1] + "Pb" + k[0] + "_" + k[2] for k in [key.split() for key in IS0.keys()] ] #sim.historical_nsample = 240 sim.historical_nsample = 10 choices = np.random.choice(combos_no_IS, sim.historical_nsample, replace=False) tmp_data = pal_strings.alphaToNum(choices, solvents, mixed_halides=True, name_has_IS=False) data = [] for IS in range(len(sim.IS)): for i, d in enumerate(tmp_data): h, c, _, s, _ = pal_strings.parseName(pal_strings.parseNum( d, solvents, mixed_halides=True, num_has_IS=False), name_has_IS=False) c = c[0] data.append([IS] + d + [sim.IS[IS](h, c, s)]) sim.fname_historical = "data_dumps/%d.history" % run_index pickle.dump(data, open(sim.fname_historical, 'w')) simple_data = [d for d in data if d[0] == 0] pickle.dump(simple_data, open("data_dumps/%d_reduced.history" % run_index, 'w')) ######################################## sim.n_start = 10 # The number of starting MLE samples sim.reopt = 10 sim.ramp_opt = None sim.parallel = False # Possible compositions by default sim.A = ["Cs", "MA", "FA"] sim.B = ["Pb"] sim.X = ["Cl", "Br", "I"] sim.solvents = copy.deepcopy(solvents) sim.S = list(set([v["name"] for k, v in sim.solvents.items()])) sim.mixed_halides = True sim.mixed_solvents = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error sim.acquisition = getNextSample_misokg # Functional forms of our mean and covariance # MEAN: 4 * mu_alpha + mu_zeta # COV: sig_alpha * |X><X| + sig_beta * I_N + sig_zeta + MaternKernel(S, weights, sig_m) SCALE = [2.0, 4.0][int(sim.mixed_halides)] # _1, _2, _3 used as dummy entries def mean(X, Y, theta): mu = np.array([SCALE * theta.mu_alpha + theta.mu_zeta for _ in Y]) return mu sim.mean = mean def cov_old(X, Y, theta): A = theta.sig_alpha * np.dot( np.array(X)[:, 1:-3], np.array(X)[:, 1:-3].T) B = theta.sig_beta * np.diag(np.ones(len(X))) C = theta.sig_zeta D = mk52(np.array(X)[:, -3:-1], [theta.l1, theta.l2], theta.sig_m) return theta.rho_matrix(X) * (A + B + C + D) def cov_old2(X, Y, theta): A = theta.sig_alpha * np.dot( np.array(X)[:, 1:-3], np.array(X)[:, 1:-3].T) B = theta.sig_beta * np.diag(np.ones(len(X))) C = theta.sig_zeta D = mk52(np.array(X)[:, -3:-1], [theta.l1, theta.l2], theta.sig_m) return theta.rho_matrix(X, use_psd=True) * (A + B + C + D) def cov_new(X, Y, theta): # Get a list of all unique X, removing initial IS identifier X0 = [] for x in X: if not any( [all([a == b for a, b in zip(x[1:], xchk)]) for xchk in X0]): X0.append(x[1:]) A = theta.sig_alpha * np.dot( np.array(X0)[:, :-3], np.array(X0)[:, :-3].T) B = theta.sig_beta * np.diag(np.ones(len(X0))) C = theta.sig_zeta D = mk52(np.array(X0)[:, -3:-1], [theta.l1, theta.l2], theta.sig_m) Kx = A + B + C + D L = np.array([ np.array([ theta.rho[str(sorted([i, j]))] if i >= j else 0.0 for j in range(theta.n_IS) ]) for i in range(theta.n_IS) ]) # Normalize L to stop over-scaling values small L = L / np.linalg.norm(L) # Force it to be positive semi-definite Ks = L.dot(L.T) return np.kron(Ks, Kx) #K = np.kron(Ks, Kx) # Now, we get the sub-covariance matrix for the specified sampled X and Y indices = [] for l in range(theta.n_IS): for i, x in enumerate(X0): test = [l] + list(x) if any( [all([a == b for a, b in zip(test, xchk)]) for xchk in X]): indices.append(l * len(X0) + i) K_local = K[np.ix_(indices, indices)] return K_local sim.cov = cov_new sim.theta.bounds = {} sim.theta.mu_alpha, sim.theta.bounds['mu_alpha'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_alpha, sim.theta.bounds['sig_alpha'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_beta, sim.theta.bounds['sig_beta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.mu_zeta, sim.theta.bounds['mu_zeta'] = None, ( 1E-3, lambda _, Y: max(Y)) sim.theta.sig_zeta, sim.theta.bounds['sig_zeta'] = None, ( 1E-2, lambda _, Y: 10.0 * np.var(Y)) sim.theta.sig_m, sim.theta.bounds['sig_m'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) # # NOTE! This is a reserved keyword in misoKG. We will generate a list of the same length # # of the information sources, and use this for scaling our IS. # sim.theta.rho = {"[0, 0]": 1, "[0, 1]": None, "[1, 1]": 1} # sim.theta.bounds['rho [0, 1]'] = (-1.0, 1.0) # sim.theta.bounds['rho [0, 0]'] = (1, 1) # sim.theta.bounds['rho [1, 1]'] = (1, 1) sim.theta.rho = {"[0, 0]": None, "[0, 1]": None, "[1, 1]": None} sim.theta.bounds['rho [0, 0]'] = (0.1, 1.0) sim.theta.bounds['rho [0, 1]'] = (0.1, 1.0) sim.theta.bounds['rho [1, 1]'] = (0.1, 1.0) sim.theta.set_hp_names() sim.primary_rho_opt = False #sim.update_hp_only_with_IS0 = True sim.update_hp_only_with_overlapped = True ################################################################################################### # Start simulation sim.run()