Esempio n. 1
0
def make_signature(func):
    """
    Returns a string repr of the arg list of a func call, with any defaults

    Examples
    --------

    >>> def f(a,b,c=2) :
    >>>     return a*b*c
    >>> print(_make_signature(f))
    a,b,c=2
    """
    spec = signature(func)
    if spec.defaults is None:
        n_wo_defaults = len(spec.args)
        defaults = ('', ) * n_wo_defaults
    else:
        n_wo_defaults = len(spec.args) - len(spec.defaults)
        defaults = ('', ) * n_wo_defaults + spec.defaults
    args = []
    for i, (var, default) in enumerate(zip(spec.args, defaults)):
        args.append(var if default == '' else var + '=' + repr(default))
    if spec.varargs:
        args.append('*' + spec.varargs)
    if spec.keywords:
        args.append('**' + spec.keywords)
    return args, spec.args
Esempio n. 2
0
def make_signature(func):
    """
    Returns a string repr of the arg list of a func call, with any defaults

    Examples
    --------

    >>> def f(a,b,c=2) :
    >>>     return a*b*c
    >>> print(_make_signature(f))
    a,b,c=2
    """
    spec = signature(func)
    if spec.defaults is None:
        n_wo_defaults = len(spec.args)
        defaults = ('',) * n_wo_defaults
    else:
        n_wo_defaults = len(spec.args) - len(spec.defaults)
        defaults = ('',) * n_wo_defaults + spec.defaults
    args = []
    for i, (var, default) in enumerate(zip(spec.args, defaults)):
        args.append(var if default == '' else var + '=' + repr(default))
    if spec.varargs:
        args.append('*' + spec.varargs)
    if spec.keywords:
        args.append('**' + spec.keywords)
    return args, spec.args
Esempio n. 3
0
def make_signature(func):
    """
    Returns a tuple containing the paramenter list with defaults
    and parameter list.

    Examples
    --------
    >>> def f(a, b, c=2):
    >>>     return a * b * c
    >>> print(make_signature(f))
    (['a', 'b', 'c=2'], ['a', 'b', 'c'])
    """

    spec = signature(func)
    if spec.defaults is None:
        n_wo_defaults = len(spec.args)
        defaults = ('',) * n_wo_defaults
    else:
        n_wo_defaults = len(spec.args) - len(spec.defaults)
        defaults = ('',) * n_wo_defaults + tuple(spec.defaults)
    args = []
    for var, default in zip(spec.args, defaults):
        args.append(var if default == '' else var + '=' + repr(default))
    if spec.varargs:
        args.append('*' + spec.varargs)
    if spec.keywords:
        args.append('**' + spec.keywords)
    return args, spec.args
Esempio n. 4
0
def make_signature(func):
    """
    Returns a tuple containing the paramenter list with defaults
    and parameter list.

    Examples
    --------
    >>> def f(a, b, c=2):
    >>>     return a * b * c
    >>> print(make_signature(f))
    (['a', 'b', 'c=2'], ['a', 'b', 'c'])
    """

    spec = signature(func)
    if spec.defaults is None:
        n_wo_defaults = len(spec.args)
        defaults = ('', ) * n_wo_defaults
    else:
        n_wo_defaults = len(spec.args) - len(spec.defaults)
        defaults = ('', ) * n_wo_defaults + tuple(spec.defaults)
    args = []
    for var, default in zip(spec.args, defaults):
        args.append(var if default == '' else var + '=' + repr(default))
    if spec.varargs:
        args.append('*' + spec.varargs)
    if spec.keywords:
        args.append('**' + spec.keywords)
    return args, spec.args
    def _check_stat_op(self, name, alternate, string_series_,
                       check_objects=False, check_allna=False):

        with pd.option_context('use_bottleneck', False):
            f = getattr(Series, name)

            # add some NaNs
            string_series_[5:15] = np.NaN

            # mean, idxmax, idxmin, min, and max are valid for dates
            if name not in ['max', 'min', 'mean']:
                ds = Series(pd.date_range('1/1/2001', periods=10))
                with pytest.raises(TypeError):
                    f(ds)

            # skipna or no
            assert pd.notna(f(string_series_))
            assert pd.isna(f(string_series_, skipna=False))

            # check the result is correct
            nona = string_series_.dropna()
            tm.assert_almost_equal(f(nona), alternate(nona.values))
            tm.assert_almost_equal(f(string_series_), alternate(nona.values))

            allna = string_series_ * np.nan

            if check_allna:
                assert np.isnan(f(allna))

            # dtype=object with None, it works!
            s = Series([1, 2, 3, None, 5])
            f(s)

            # GH#2888
            items = [0]
            items.extend(lrange(2 ** 40, 2 ** 40 + 1000))
            s = Series(items, dtype='int64')
            tm.assert_almost_equal(float(f(s)), float(alternate(s.values)))

            # check date range
            if check_objects:
                s = Series(pd.bdate_range('1/1/2000', periods=10))
                res = f(s)
                exp = alternate(s)
                assert res == exp

            # check on string data
            if name not in ['sum', 'min', 'max']:
                with pytest.raises(TypeError):
                    f(Series(list('abc')))

            # Invalid axis.
            with pytest.raises(ValueError):
                f(string_series_, axis=1)

            # Unimplemented numeric_only parameter.
            if 'numeric_only' in compat.signature(f).args:
                with pytest.raises(NotImplementedError, match=name):
                    f(string_series_, numeric_only=True)
Esempio n. 6
0
    def get_result(self):
        """ compute the results """

        # dispatch to agg
        if is_list_like(self.f) or is_dict_like(self.f):
            return self.obj.aggregate(self.f,
                                      axis=self.axis,
                                      *self.args,
                                      **self.kwds)

        # all empty
        if len(self.columns) == 0 and len(self.index) == 0:
            return self.apply_empty_result()

        # string dispatch
        if isinstance(self.f, str):
            # Support for `frame.transform('method')`
            # Some methods (shift, etc.) require the axis argument, others
            # don't, so inspect and insert if necessary.
            func = getattr(self.obj, self.f)
            sig = compat.signature(func)
            if 'axis' in sig.args:
                self.kwds['axis'] = self.axis
            return func(*self.args, **self.kwds)

        # ufunc
        elif isinstance(self.f, np.ufunc):
            with np.errstate(all='ignore'):
                results = self.obj._data.apply('apply', func=self.f)
            return self.obj._constructor(data=results,
                                         index=self.index,
                                         columns=self.columns,
                                         copy=False)

        # broadcasting
        if self.result_type == 'broadcast':
            return self.apply_broadcast()

        # one axis empty
        elif not all(self.obj.shape):
            return self.apply_empty_result()

        # raw
        elif self.raw and not self.obj._is_mixed_type:
            return self.apply_raw()

        return self.apply_standard()
Esempio n. 7
0
    def get_result(self):
        """ compute the results """

        # dispatch to agg
        if is_list_like(self.f) or is_dict_like(self.f):
            return self.obj.aggregate(self.f, axis=self.axis,
                                      *self.args, **self.kwds)

        # all empty
        if len(self.columns) == 0 and len(self.index) == 0:
            return self.apply_empty_result()

        # string dispatch
        if isinstance(self.f, compat.string_types):
            # Support for `frame.transform('method')`
            # Some methods (shift, etc.) require the axis argument, others
            # don't, so inspect and insert if necessary.
            func = getattr(self.obj, self.f)
            sig = compat.signature(func)
            if 'axis' in sig.args:
                self.kwds['axis'] = self.axis
            return func(*self.args, **self.kwds)

        # ufunc
        elif isinstance(self.f, np.ufunc):
            with np.errstate(all='ignore'):
                results = self.f(self.values)
            return self.obj._constructor(data=results, index=self.index,
                                         columns=self.columns, copy=False)

        # broadcasting
        if self.result_type == 'broadcast':
            return self.apply_broadcast()

        # one axis empty
        elif not all(self.obj.shape):
            return self.apply_empty_result()

        # raw
        elif self.raw and not self.obj._is_mixed_type:
            return self.apply_raw()

        return self.apply_standard()
Esempio n. 8
0
 def signature_parameters(self):
     if inspect.isclass(self.obj):
         if hasattr(self.obj, '_accessors') and (self.name.split('.')[-1]
                                                 in self.obj._accessors):
             # accessor classes have a signature but don't want to show this
             return tuple()
     try:
         sig = signature(self.obj)
     except (TypeError, ValueError):
         # Some objects, mainly in C extensions do not support introspection
         # of the signature
         return tuple()
     params = sig.args
     if sig.varargs:
         params.append("*" + sig.varargs)
     if sig.keywords:
         params.append("**" + sig.keywords)
     params = tuple(params)
     if params and params[0] in ('self', 'cls'):
         return params[1:]
     return params
Esempio n. 9
0
 def signature_parameters(self):
     if inspect.isclass(self.obj):
         if hasattr(self.obj, '_accessors') and (
                 self.name.split('.')[-1] in
                 self.obj._accessors):
             # accessor classes have a signature but don't want to show this
             return tuple()
     try:
         sig = signature(self.obj)
     except (TypeError, ValueError):
         # Some objects, mainly in C extensions do not support introspection
         # of the signature
         return tuple()
     params = sig.args
     if sig.varargs:
         params.append("*" + sig.varargs)
     if sig.keywords:
         params.append("**" + sig.keywords)
     params = tuple(params)
     if params and params[0] in ('self', 'cls'):
         return params[1:]
     return params