Esempio n. 1
0
def interval_range(start=None, end=None, periods=None, freq=None,
                   name=None, closed='right'):
    """
    Return a fixed frequency IntervalIndex

    Parameters
    ----------
    start : numeric or datetime-like, default None
        Left bound for generating intervals
    end : numeric or datetime-like, default None
        Right bound for generating intervals
    periods : integer, default None
        Number of periods to generate
    freq : numeric, string, or DateOffset, default None
        The length of each interval. Must be consistent with the type of start
        and end, e.g. 2 for numeric, or '5H' for datetime-like.  Default is 1
        for numeric and 'D' (calendar daily) for datetime-like.
    name : string, default None
        Name of the resulting IntervalIndex
    closed : string, default 'right'
        options are: 'left', 'right', 'both', 'neither'

    Notes
    -----
    Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
    must be specified.

    Returns
    -------
    rng : IntervalIndex

    Examples
    --------
    Numeric ``start`` and  ``end`` is supported.

    >>> pd.interval_range(start=0, end=5)
    IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]]
                  closed='right', dtype='interval[int64]')

    Additionally, datetime-like input is also supported.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
                          end=pd.Timestamp('2017-01-04'))
    IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
                   (2017-01-03, 2017-01-04]]
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``freq`` parameter specifies the frequency between the left and right.
    endpoints of the individual intervals within the ``IntervalIndex``.  For
    numeric ``start`` and ``end``, the frequency must also be numeric.

    >>> pd.interval_range(start=0, periods=4, freq=1.5)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]]
                  closed='right', dtype='interval[float64]')

    Similarly, for datetime-like ``start`` and ``end``, the frequency must be
    convertible to a DateOffset.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
                          periods=3, freq='MS')
    IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
                   (2017-03-01, 2017-04-01]]
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``closed`` parameter specifies which endpoints of the individual
    intervals within the ``IntervalIndex`` are closed.

    >>> pd.interval_range(end=5, periods=4, closed='both')
    IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]]
                  closed='both', dtype='interval[int64]')

    See Also
    --------
    IntervalIndex : an Index of intervals that are all closed on the same side.
    """
    if com._count_not_none(start, end, periods) != 2:
        raise ValueError('Of the three parameters: start, end, and periods, '
                         'exactly two must be specified')

    start = com._maybe_box_datetimelike(start)
    end = com._maybe_box_datetimelike(end)
    endpoint = next(com._not_none(start, end))

    if not _is_valid_endpoint(start):
        msg = 'start must be numeric or datetime-like, got {start}'
        raise ValueError(msg.format(start=start))

    if not _is_valid_endpoint(end):
        msg = 'end must be numeric or datetime-like, got {end}'
        raise ValueError(msg.format(end=end))

    if is_float(periods):
        periods = int(periods)
    elif not is_integer(periods) and periods is not None:
        msg = 'periods must be a number, got {periods}'
        raise TypeError(msg.format(periods=periods))

    freq = freq or (1 if is_number(endpoint) else 'D')
    if not is_number(freq):
        try:
            freq = to_offset(freq)
        except ValueError:
            raise ValueError('freq must be numeric or convertible to '
                             'DateOffset, got {freq}'.format(freq=freq))

    # verify type compatibility
    if not all([_is_type_compatible(start, end),
                _is_type_compatible(start, freq),
                _is_type_compatible(end, freq)]):
        raise TypeError("start, end, freq need to be type compatible")

    if is_number(endpoint):
        if periods is None:
            periods = int((end - start) // freq)

        if start is None:
            start = end - periods * freq

        # force end to be consistent with freq (lower if freq skips over end)
        end = start + periods * freq

        # end + freq for inclusive endpoint
        breaks = np.arange(start, end + freq, freq)
    elif isinstance(endpoint, Timestamp):
        # add one to account for interval endpoints (n breaks = n-1 intervals)
        if periods is not None:
            periods += 1
        breaks = date_range(start=start, end=end, periods=periods, freq=freq)
    else:
        # add one to account for interval endpoints (n breaks = n-1 intervals)
        if periods is not None:
            periods += 1
        breaks = timedelta_range(start=start, end=end, periods=periods,
                                 freq=freq)

    return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
Esempio n. 2
0
    def __init__(self, objs, axis=0, join='outer', join_axes=None,
                 keys=None, levels=None, names=None,
                 ignore_index=False, verify_integrity=False, copy=True):
        if isinstance(objs, (NDFrame, compat.string_types)):
            raise TypeError('first argument must be an iterable of pandas '
                            'objects, you passed an object of type '
                            '"{name}"'.format(name=type(objs).__name__))

        if join == 'outer':
            self.intersect = False
        elif join == 'inner':
            self.intersect = True
        else:  # pragma: no cover
            raise ValueError('Only can inner (intersect) or outer (union) '
                             'join the other axis')

        if isinstance(objs, dict):
            if keys is None:
                keys = sorted(objs)
            objs = [objs[k] for k in keys]
        else:
            objs = list(objs)

        if len(objs) == 0:
            raise ValueError('No objects to concatenate')

        if keys is None:
            objs = list(com._not_none(*objs))
        else:
            # #1649
            clean_keys = []
            clean_objs = []
            for k, v in zip(keys, objs):
                if v is None:
                    continue
                clean_keys.append(k)
                clean_objs.append(v)
            objs = clean_objs
            name = getattr(keys, 'name', None)
            keys = Index(clean_keys, name=name)

        if len(objs) == 0:
            raise ValueError('All objects passed were None')

        # consolidate data & figure out what our result ndim is going to be
        ndims = set()
        for obj in objs:
            if not isinstance(obj, NDFrame):
                msg = ('cannot concatenate object of type "{0}";'
                       ' only pd.Series, pd.DataFrame, and pd.Panel'
                       ' (deprecated) objs are valid'.format(type(obj)))
                raise TypeError(msg)

            # consolidate
            obj._consolidate(inplace=True)
            ndims.add(obj.ndim)

        # get the sample
        # want the higest ndim that we have, and must be non-empty
        # unless all objs are empty
        sample = None
        if len(ndims) > 1:
            max_ndim = max(ndims)
            for obj in objs:
                if obj.ndim == max_ndim and np.sum(obj.shape):
                    sample = obj
                    break

        else:
            # filter out the empties if we have not multi-index possibilities
            # note to keep empty Series as it affect to result columns / name
            non_empties = [obj for obj in objs
                           if sum(obj.shape) > 0 or isinstance(obj, Series)]

            if (len(non_empties) and (keys is None and names is None and
                                      levels is None and
                                      join_axes is None and
                                      not self.intersect)):
                objs = non_empties
                sample = objs[0]

        if sample is None:
            sample = objs[0]
        self.objs = objs

        # Standardize axis parameter to int
        if isinstance(sample, Series):
            axis = DataFrame()._get_axis_number(axis)
        else:
            axis = sample._get_axis_number(axis)

        # Need to flip BlockManager axis in the DataFrame special case
        self._is_frame = isinstance(sample, DataFrame)
        if self._is_frame:
            axis = 1 if axis == 0 else 0

        self._is_series = isinstance(sample, Series)
        if not 0 <= axis <= sample.ndim:
            raise AssertionError("axis must be between 0 and {ndim}, input was"
                                 " {axis}".format(ndim=sample.ndim, axis=axis))

        # if we have mixed ndims, then convert to highest ndim
        # creating column numbers as needed
        if len(ndims) > 1:
            current_column = 0
            max_ndim = sample.ndim
            self.objs, objs = [], self.objs
            for obj in objs:

                ndim = obj.ndim
                if ndim == max_ndim:
                    pass

                elif ndim != max_ndim - 1:
                    raise ValueError("cannot concatenate unaligned mixed "
                                     "dimensional NDFrame objects")

                else:
                    name = getattr(obj, 'name', None)
                    if ignore_index or name is None:
                        name = current_column
                        current_column += 1

                    # doing a row-wise concatenation so need everything
                    # to line up
                    if self._is_frame and axis == 1:
                        name = 0
                    obj = sample._constructor({name: obj})

                self.objs.append(obj)

        # note: this is the BlockManager axis (since DataFrame is transposed)
        self.axis = axis
        self.join_axes = join_axes
        self.keys = keys
        self.names = names or getattr(keys, 'names', None)
        self.levels = levels

        self.ignore_index = ignore_index
        self.verify_integrity = verify_integrity
        self.copy = copy

        self.new_axes = self._get_new_axes()
Esempio n. 3
0
def interval_range(start=None,
                   end=None,
                   periods=None,
                   freq=None,
                   name=None,
                   closed='right'):
    """
    Return a fixed frequency IntervalIndex

    Parameters
    ----------
    start : numeric or datetime-like, default None
        Left bound for generating intervals
    end : numeric or datetime-like, default None
        Right bound for generating intervals
    periods : integer, default None
        Number of periods to generate
    freq : numeric, string, or DateOffset, default None
        The length of each interval. Must be consistent with the type of start
        and end, e.g. 2 for numeric, or '5H' for datetime-like.  Default is 1
        for numeric and 'D' (calendar daily) for datetime-like.
    name : string, default None
        Name of the resulting IntervalIndex
    closed : string, default 'right'
        options are: 'left', 'right', 'both', 'neither'

    Notes
    -----
    Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
    must be specified.

    Returns
    -------
    rng : IntervalIndex

    Examples
    --------
    Numeric ``start`` and  ``end`` is supported.

    >>> pd.interval_range(start=0, end=5)
    IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]]
                  closed='right', dtype='interval[int64]')

    Additionally, datetime-like input is also supported.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
                          end=pd.Timestamp('2017-01-04'))
    IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
                   (2017-01-03, 2017-01-04]]
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``freq`` parameter specifies the frequency between the left and right.
    endpoints of the individual intervals within the ``IntervalIndex``.  For
    numeric ``start`` and ``end``, the frequency must also be numeric.

    >>> pd.interval_range(start=0, periods=4, freq=1.5)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]]
                  closed='right', dtype='interval[float64]')

    Similarly, for datetime-like ``start`` and ``end``, the frequency must be
    convertible to a DateOffset.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
                          periods=3, freq='MS')
    IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
                   (2017-03-01, 2017-04-01]]
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``closed`` parameter specifies which endpoints of the individual
    intervals within the ``IntervalIndex`` are closed.

    >>> pd.interval_range(end=5, periods=4, closed='both')
    IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]]
                  closed='both', dtype='interval[int64]')

    See Also
    --------
    IntervalIndex : an Index of intervals that are all closed on the same side.
    """
    if _count_not_none(start, end, periods) != 2:
        raise ValueError('Of the three parameters: start, end, and periods, '
                         'exactly two must be specified')

    start = _maybe_box_datetimelike(start)
    end = _maybe_box_datetimelike(end)
    endpoint = next(_not_none(start, end))

    if not _is_valid_endpoint(start):
        msg = 'start must be numeric or datetime-like, got {start}'
        raise ValueError(msg.format(start=start))

    if not _is_valid_endpoint(end):
        msg = 'end must be numeric or datetime-like, got {end}'
        raise ValueError(msg.format(end=end))

    if is_float(periods):
        periods = int(periods)
    elif not is_integer(periods) and periods is not None:
        msg = 'periods must be a number, got {periods}'
        raise TypeError(msg.format(periods=periods))

    freq = freq or (1 if is_number(endpoint) else 'D')
    if not is_number(freq):
        try:
            freq = to_offset(freq)
        except ValueError:
            raise ValueError('freq must be numeric or convertible to '
                             'DateOffset, got {freq}'.format(freq=freq))

    # verify type compatibility
    if not all([
            _is_type_compatible(start, end),
            _is_type_compatible(start, freq),
            _is_type_compatible(end, freq)
    ]):
        raise TypeError("start, end, freq need to be type compatible")

    if is_number(endpoint):
        if periods is None:
            periods = int((end - start) // freq)

        if start is None:
            start = end - periods * freq

        # force end to be consistent with freq (lower if freq skips over end)
        end = start + periods * freq

        # end + freq for inclusive endpoint
        breaks = np.arange(start, end + freq, freq)
    elif isinstance(endpoint, Timestamp):
        # add one to account for interval endpoints (n breaks = n-1 intervals)
        if periods is not None:
            periods += 1
        breaks = date_range(start=start, end=end, periods=periods, freq=freq)
    else:
        # add one to account for interval endpoints (n breaks = n-1 intervals)
        if periods is not None:
            periods += 1
        breaks = timedelta_range(start=start,
                                 end=end,
                                 periods=periods,
                                 freq=freq)

    return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
Esempio n. 4
0
def interval_range(start=None,
                   end=None,
                   periods=None,
                   freq=None,
                   name=None,
                   closed='right'):
    """
    Return a fixed frequency IntervalIndex

    Parameters
    ----------
    start : numeric or datetime-like, default None
        Left bound for generating intervals
    end : numeric or datetime-like, default None
        Right bound for generating intervals
    periods : integer, default None
        Number of periods to generate
    freq : numeric, string, or DateOffset, default None
        The length of each interval. Must be consistent with the type of start
        and end, e.g. 2 for numeric, or '5H' for datetime-like.  Default is 1
        for numeric and 'D' for datetime-like.
    name : string, default None
        Name of the resulting IntervalIndex
    closed : {'left', 'right', 'both', 'neither'}, default 'right'
        Whether the intervals are closed on the left-side, right-side, both
        or neither.

    Returns
    -------
    rng : IntervalIndex

    See Also
    --------
    IntervalIndex : An Index of intervals that are all closed on the same side.

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``IntervalIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end``, inclusively.

    To learn more about datetime-like frequency strings, please see `this link
    <http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    Numeric ``start`` and  ``end`` is supported.

    >>> pd.interval_range(start=0, end=5)
    IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
                  closed='right', dtype='interval[int64]')

    Additionally, datetime-like input is also supported.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   end=pd.Timestamp('2017-01-04'))
    IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
                   (2017-01-03, 2017-01-04]],
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``freq`` parameter specifies the frequency between the left and right.
    endpoints of the individual intervals within the ``IntervalIndex``.  For
    numeric ``start`` and ``end``, the frequency must also be numeric.

    >>> pd.interval_range(start=0, periods=4, freq=1.5)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
                  closed='right', dtype='interval[float64]')

    Similarly, for datetime-like ``start`` and ``end``, the frequency must be
    convertible to a DateOffset.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   periods=3, freq='MS')
    IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
                   (2017-03-01, 2017-04-01]],
                  closed='right', dtype='interval[datetime64[ns]]')

    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).

    >>> pd.interval_range(start=0, end=6, periods=4)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
              closed='right',
              dtype='interval[float64]')

    The ``closed`` parameter specifies which endpoints of the individual
    intervals within the ``IntervalIndex`` are closed.

    >>> pd.interval_range(end=5, periods=4, closed='both')
    IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
                  closed='both', dtype='interval[int64]')
    """
    start = com.maybe_box_datetimelike(start)
    end = com.maybe_box_datetimelike(end)
    endpoint = start if start is not None else end

    if freq is None and com._any_none(periods, start, end):
        freq = 1 if is_number(endpoint) else 'D'

    if com.count_not_none(start, end, periods, freq) != 3:
        raise ValueError('Of the four parameters: start, end, periods, and '
                         'freq, exactly three must be specified')

    if not _is_valid_endpoint(start):
        msg = 'start must be numeric or datetime-like, got {start}'
        raise ValueError(msg.format(start=start))
    elif not _is_valid_endpoint(end):
        msg = 'end must be numeric or datetime-like, got {end}'
        raise ValueError(msg.format(end=end))

    if is_float(periods):
        periods = int(periods)
    elif not is_integer(periods) and periods is not None:
        msg = 'periods must be a number, got {periods}'
        raise TypeError(msg.format(periods=periods))

    if freq is not None and not is_number(freq):
        try:
            freq = to_offset(freq)
        except ValueError:
            raise ValueError('freq must be numeric or convertible to '
                             'DateOffset, got {freq}'.format(freq=freq))

    # verify type compatibility
    if not all([
            _is_type_compatible(start, end),
            _is_type_compatible(start, freq),
            _is_type_compatible(end, freq)
    ]):
        raise TypeError("start, end, freq need to be type compatible")

    # +1 to convert interval count to breaks count (n breaks = n-1 intervals)
    if periods is not None:
        periods += 1

    if is_number(endpoint):
        # force consistency between start/end/freq (lower end if freq skips it)
        if com._all_not_none(start, end, freq):
            end -= (end - start) % freq

        # compute the period/start/end if unspecified (at most one)
        if periods is None:
            periods = int((end - start) // freq) + 1
        elif start is None:
            start = end - (periods - 1) * freq
        elif end is None:
            end = start + (periods - 1) * freq

        breaks = np.linspace(start, end, periods)
        if all(is_integer(x) for x in com._not_none(start, end, freq)):
            # np.linspace always produces float output
            breaks = maybe_downcast_to_dtype(breaks, 'int64')
    else:
        # delegate to the appropriate range function
        if isinstance(endpoint, Timestamp):
            range_func = date_range
        else:
            range_func = timedelta_range

        breaks = range_func(start=start, end=end, periods=periods, freq=freq)

    return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
Esempio n. 5
0
    def __init__(
        self,
        objs,
        axis=0,
        join="outer",
        join_axes=None,
        keys=None,
        levels=None,
        names=None,
        ignore_index=False,
        verify_integrity=False,
        copy=True,
        sort=False,
    ):
        if isinstance(objs, (NDFrame, str)):
            raise TypeError(
                "first argument must be an iterable of qq_pandas "
                "objects, you passed an object of type "
                '"{name}"'.format(name=type(objs).__name__)
            )

        if join == "outer":
            self.intersect = False
        elif join == "inner":
            self.intersect = True
        else:  # pragma: no cover
            raise ValueError(
                "Only can inner (intersect) or outer (union) " "join the other axis"
            )

        if isinstance(objs, dict):
            if keys is None:
                keys = com.dict_keys_to_ordered_list(objs)
            objs = [objs[k] for k in keys]
        else:
            objs = list(objs)

        if len(objs) == 0:
            raise ValueError("No objects to concatenate")

        if keys is None:
            objs = list(com._not_none(*objs))
        else:
            # #1649
            clean_keys = []
            clean_objs = []
            for k, v in zip(keys, objs):
                if v is None:
                    continue
                clean_keys.append(k)
                clean_objs.append(v)
            objs = clean_objs
            name = getattr(keys, "name", None)
            keys = Index(clean_keys, name=name)

        if len(objs) == 0:
            raise ValueError("All objects passed were None")

        # consolidate data & figure out what our result ndim is going to be
        ndims = set()
        for obj in objs:
            if not isinstance(obj, (Series, DataFrame)):
                msg = (
                    "cannot concatenate object of type '{}';"
                    " only Series and DataFrame objs are valid".format(type(obj))
                )
                raise TypeError(msg)

            # consolidate
            obj._consolidate(inplace=True)
            ndims.add(obj.ndim)

        # get the sample
        # want the highest ndim that we have, and must be non-empty
        # unless all objs are empty
        sample = None
        if len(ndims) > 1:
            max_ndim = max(ndims)
            for obj in objs:
                if obj.ndim == max_ndim and np.sum(obj.shape):
                    sample = obj
                    break

        else:
            # filter out the empties if we have not multi-index possibilities
            # note to keep empty Series as it affect to result columns / name
            non_empties = [
                obj for obj in objs if sum(obj.shape) > 0 or isinstance(obj, Series)
            ]

            if len(non_empties) and (
                keys is None and names is None and levels is None and not self.intersect
            ):
                objs = non_empties
                sample = objs[0]

        if sample is None:
            sample = objs[0]
        self.objs = objs

        # Standardize axis parameter to int
        if isinstance(sample, Series):
            axis = DataFrame._get_axis_number(axis)
        else:
            axis = sample._get_axis_number(axis)

        # Need to flip BlockManager axis in the DataFrame special case
        self._is_frame = isinstance(sample, DataFrame)
        if self._is_frame:
            axis = 1 if axis == 0 else 0

        self._is_series = isinstance(sample, Series)
        if not 0 <= axis <= sample.ndim:
            raise AssertionError(
                "axis must be between 0 and {ndim}, input was"
                " {axis}".format(ndim=sample.ndim, axis=axis)
            )

        # if we have mixed ndims, then convert to highest ndim
        # creating column numbers as needed
        if len(ndims) > 1:
            current_column = 0
            max_ndim = sample.ndim
            self.objs, objs = [], self.objs
            for obj in objs:

                ndim = obj.ndim
                if ndim == max_ndim:
                    pass

                elif ndim != max_ndim - 1:
                    raise ValueError(
                        "cannot concatenate unaligned mixed "
                        "dimensional NDFrame objects"
                    )

                else:
                    name = getattr(obj, "name", None)
                    if ignore_index or name is None:
                        name = current_column
                        current_column += 1

                    # doing a row-wise concatenation so need everything
                    # to line up
                    if self._is_frame and axis == 1:
                        name = 0
                    obj = sample._constructor({name: obj})

                self.objs.append(obj)

        # note: this is the BlockManager axis (since DataFrame is transposed)
        self.axis = axis
        self.join_axes = join_axes
        self.keys = keys
        self.names = names or getattr(keys, "names", None)
        self.levels = levels
        self.sort = sort

        self.ignore_index = ignore_index
        self.verify_integrity = verify_integrity
        self.copy = copy

        self.new_axes = self._get_new_axes()
Esempio n. 6
0
def interval_range(start=None, end=None, periods=None, freq=None,
                   name=None, closed='right'):
    """
    Return a fixed frequency IntervalIndex

    Parameters
    ----------
    start : numeric or datetime-like, default None
        Left bound for generating intervals
    end : numeric or datetime-like, default None
        Right bound for generating intervals
    periods : integer, default None
        Number of periods to generate
    freq : numeric, string, or DateOffset, default None
        The length of each interval. Must be consistent with the type of start
        and end, e.g. 2 for numeric, or '5H' for datetime-like.  Default is 1
        for numeric and 'D' for datetime-like.
    name : string, default None
        Name of the resulting IntervalIndex
    closed : {'left', 'right', 'both', 'neither'}, default 'right'
        Whether the intervals are closed on the left-side, right-side, both
        or neither.

    Returns
    -------
    rng : IntervalIndex

    See Also
    --------
    IntervalIndex : An Index of intervals that are all closed on the same side.

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``IntervalIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end``, inclusively.

    To learn more about datetime-like frequency strings, please see `this link
    <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.

    Examples
    --------
    Numeric ``start`` and  ``end`` is supported.

    >>> pd.interval_range(start=0, end=5)
    IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
                  closed='right', dtype='interval[int64]')

    Additionally, datetime-like input is also supported.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   end=pd.Timestamp('2017-01-04'))
    IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
                   (2017-01-03, 2017-01-04]],
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``freq`` parameter specifies the frequency between the left and right.
    endpoints of the individual intervals within the ``IntervalIndex``.  For
    numeric ``start`` and ``end``, the frequency must also be numeric.

    >>> pd.interval_range(start=0, periods=4, freq=1.5)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
                  closed='right', dtype='interval[float64]')

    Similarly, for datetime-like ``start`` and ``end``, the frequency must be
    convertible to a DateOffset.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   periods=3, freq='MS')
    IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
                   (2017-03-01, 2017-04-01]],
                  closed='right', dtype='interval[datetime64[ns]]')

    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).

    >>> pd.interval_range(start=0, end=6, periods=4)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
              closed='right',
              dtype='interval[float64]')

    The ``closed`` parameter specifies which endpoints of the individual
    intervals within the ``IntervalIndex`` are closed.

    >>> pd.interval_range(end=5, periods=4, closed='both')
    IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
                  closed='both', dtype='interval[int64]')
    """
    start = com.maybe_box_datetimelike(start)
    end = com.maybe_box_datetimelike(end)
    endpoint = start if start is not None else end

    if freq is None and com._any_none(periods, start, end):
        freq = 1 if is_number(endpoint) else 'D'

    if com.count_not_none(start, end, periods, freq) != 3:
        raise ValueError('Of the four parameters: start, end, periods, and '
                         'freq, exactly three must be specified')

    if not _is_valid_endpoint(start):
        msg = 'start must be numeric or datetime-like, got {start}'
        raise ValueError(msg.format(start=start))
    elif not _is_valid_endpoint(end):
        msg = 'end must be numeric or datetime-like, got {end}'
        raise ValueError(msg.format(end=end))

    if is_float(periods):
        periods = int(periods)
    elif not is_integer(periods) and periods is not None:
        msg = 'periods must be a number, got {periods}'
        raise TypeError(msg.format(periods=periods))

    if freq is not None and not is_number(freq):
        try:
            freq = to_offset(freq)
        except ValueError:
            raise ValueError('freq must be numeric or convertible to '
                             'DateOffset, got {freq}'.format(freq=freq))

    # verify type compatibility
    if not all([_is_type_compatible(start, end),
                _is_type_compatible(start, freq),
                _is_type_compatible(end, freq)]):
        raise TypeError("start, end, freq need to be type compatible")

    # +1 to convert interval count to breaks count (n breaks = n-1 intervals)
    if periods is not None:
        periods += 1

    if is_number(endpoint):
        # force consistency between start/end/freq (lower end if freq skips it)
        if com._all_not_none(start, end, freq):
            end -= (end - start) % freq

        # compute the period/start/end if unspecified (at most one)
        if periods is None:
            periods = int((end - start) // freq) + 1
        elif start is None:
            start = end - (periods - 1) * freq
        elif end is None:
            end = start + (periods - 1) * freq

        breaks = np.linspace(start, end, periods)
        if all(is_integer(x) for x in com._not_none(start, end, freq)):
            # np.linspace always produces float output
            breaks = maybe_downcast_to_dtype(breaks, 'int64')
    else:
        # delegate to the appropriate range function
        if isinstance(endpoint, Timestamp):
            range_func = date_range
        else:
            range_func = timedelta_range

        breaks = range_func(start=start, end=end, periods=periods, freq=freq)

    return IntervalIndex.from_breaks(breaks, name=name, closed=closed)