Esempio n. 1
0
 def test_simple(self):
     np.random.seed(123)
     x = np.random.randn(3)
     df = pd.DataFrame({"A1970": {0: "a",
                                  1: "b",
                                  2: "c"},
                        "A1980": {0: "d",
                                  1: "e",
                                  2: "f"},
                        "B1970": {0: 2.5,
                                  1: 1.2,
                                  2: .7},
                        "B1980": {0: 3.2,
                                  1: 1.3,
                                  2: .1},
                        "X": dict(zip(
                            range(3), x))})
     df["id"] = df.index
     exp_data = {"X": x.tolist() + x.tolist(),
                 "A": ['a', 'b', 'c', 'd', 'e', 'f'],
                 "B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1],
                 "year": [1970, 1970, 1970, 1980, 1980, 1980],
                 "id": [0, 1, 2, 0, 1, 2]}
     exp_frame = DataFrame(exp_data)
     exp_frame = exp_frame.set_index(['id', 'year'])[["X", "A", "B"]]
     long_frame = wide_to_long(df, ["A", "B"], i="id", j="year")
     tm.assert_frame_equal(long_frame, exp_frame)
Esempio n. 2
0
 def test_num_string_disambiguation(self):
     # Test that we can disambiguate number value_vars from
     # string value_vars
     df = pd.DataFrame({
         'A11': ['a11', 'a22', 'a33'],
         'A12': ['a21', 'a22', 'a23'],
         'B11': ['b11', 'b12', 'b13'],
         'B12': ['b21', 'b22', 'b23'],
         'BB11': [1, 2, 3],
         'BB12': [4, 5, 6],
         'Arating': [91, 92, 93],
         'Arating_old': [91, 92, 93]
     })
     df['id'] = df.index
     exp_frame = pd.DataFrame({
         'Arating': [91, 92, 93, 91, 92, 93],
         'Arating_old': [91, 92, 93, 91, 92, 93],
         'A': ['a11', 'a22', 'a33', 'a21', 'a22', 'a23'],
         'B': ['b11', 'b12', 'b13', 'b21', 'b22', 'b23'],
         'BB': [1, 2, 3, 4, 5, 6],
         'id': [0, 1, 2, 0, 1, 2],
         'year': ['11', '11', '11', '12', '12', '12']})
     exp_frame = exp_frame.set_index(['id', 'year'])[
         ['Arating', 'Arating_old', 'A', 'B', 'BB']]
     long_frame = wide_to_long(df, ['A', 'B', 'BB'], i='id', j='year')
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 3
0
 def test_character_overlap(self):
     # Test we handle overlapping characters in both id_vars and value_vars
     df = pd.DataFrame({
         'A11': ['a11', 'a22', 'a33'],
         'A12': ['a21', 'a22', 'a23'],
         'B11': ['b11', 'b12', 'b13'],
         'B12': ['b21', 'b22', 'b23'],
         'BB11': [1, 2, 3],
         'BB12': [4, 5, 6],
         'BBBX': [91, 92, 93],
         'BBBZ': [91, 92, 93]
     })
     df['id'] = df.index
     exp_frame = pd.DataFrame({
         'BBBX': [91, 92, 93, 91, 92, 93],
         'BBBZ': [91, 92, 93, 91, 92, 93],
         'A': ['a11', 'a22', 'a33', 'a21', 'a22', 'a23'],
         'B': ['b11', 'b12', 'b13', 'b21', 'b22', 'b23'],
         'BB': [1, 2, 3, 4, 5, 6],
         'id': [0, 1, 2, 0, 1, 2],
         'year': ['11', '11', '11', '12', '12', '12']})
     exp_frame = exp_frame.set_index(['id', 'year'])[
         ['BBBX', 'BBBZ', 'A', 'B', 'BB']]
     long_frame = wide_to_long(df, ['A', 'B', 'BB'], i='id', j='year')
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 4
0
 def test_simple(self):
     np.random.seed(123)
     x = np.random.randn(3)
     df = pd.DataFrame({"A1970": {0: "a",
                                  1: "b",
                                  2: "c"},
                        "A1980": {0: "d",
                                  1: "e",
                                  2: "f"},
                        "B1970": {0: 2.5,
                                  1: 1.2,
                                  2: .7},
                        "B1980": {0: 3.2,
                                  1: 1.3,
                                  2: .1},
                        "X": dict(zip(
                            range(3), x))})
     df["id"] = df.index
     exp_data = {"X": x.tolist() + x.tolist(),
                 "A": ['a', 'b', 'c', 'd', 'e', 'f'],
                 "B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1],
                 "year": [1970, 1970, 1970, 1980, 1980, 1980],
                 "id": [0, 1, 2, 0, 1, 2]}
     exp_frame = DataFrame(exp_data)
     exp_frame = exp_frame.set_index(['id', 'year'])[["X", "A", "B"]]
     long_frame = wide_to_long(df, ["A", "B"], i="id", j="year")
     tm.assert_frame_equal(long_frame, exp_frame)
Esempio n. 5
0
 def test_character_overlap(self):
     # Test we handle overlapping characters in both id_vars and value_vars
     df = pd.DataFrame({
         'A11': ['a11', 'a22', 'a33'],
         'A12': ['a21', 'a22', 'a23'],
         'B11': ['b11', 'b12', 'b13'],
         'B12': ['b21', 'b22', 'b23'],
         'BB11': [1, 2, 3],
         'BB12': [4, 5, 6],
         'BBBX': [91, 92, 93],
         'BBBZ': [91, 92, 93]
     })
     df['id'] = df.index
     exp_frame = pd.DataFrame({
         'BBBX': [91, 92, 93, 91, 92, 93],
         'BBBZ': [91, 92, 93, 91, 92, 93],
         'A': ['a11', 'a22', 'a33', 'a21', 'a22', 'a23'],
         'B': ['b11', 'b12', 'b13', 'b21', 'b22', 'b23'],
         'BB': [1, 2, 3, 4, 5, 6],
         'id': [0, 1, 2, 0, 1, 2],
         'year': ['11', '11', '11', '12', '12', '12']
     })
     exp_frame = exp_frame.set_index(['id', 'year'
                                      ])[['BBBX', 'BBBZ', 'A', 'B', 'BB']]
     long_frame = wide_to_long(df, ['A', 'B', 'BB'], i='id', j='year')
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 6
0
 def test_invalid_suffixtype(self):
     # If all stubs names end with a string, but a numeric suffix is
     # assumed,  an empty data frame is returned
     df = pd.DataFrame({
         'Aone': [1.0, 2.0],
         'Atwo': [3.0, 4.0],
         'Bone': [5.0, 6.0],
         'X': ['X1', 'X2']
     })
     df['id'] = df.index
     exp_data = {
         'X': '',
         'Aone': [],
         'Atwo': [],
         'Bone': [],
         'id': [],
         'year': [],
         'A': [],
         'B': []
     }
     exp_frame = pd.DataFrame(exp_data)
     exp_frame = exp_frame.set_index(
         ['id', 'year'])[['X', 'Aone', 'Atwo', 'Bone', 'A', 'B']]
     exp_frame.index.set_levels([[0, 1], []], inplace=True)
     long_frame = wide_to_long(df, ['A', 'B'], i='id', j='year')
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 7
0
 def test_num_string_disambiguation(self):
     # Test that we can disambiguate number value_vars from
     # string value_vars
     df = pd.DataFrame({
         'A11': ['a11', 'a22', 'a33'],
         'A12': ['a21', 'a22', 'a23'],
         'B11': ['b11', 'b12', 'b13'],
         'B12': ['b21', 'b22', 'b23'],
         'BB11': [1, 2, 3],
         'BB12': [4, 5, 6],
         'Arating': [91, 92, 93],
         'Arating_old': [91, 92, 93]
     })
     df['id'] = df.index
     exp_frame = pd.DataFrame({
         'Arating': [91, 92, 93, 91, 92, 93],
         'Arating_old': [91, 92, 93, 91, 92, 93],
         'A': ['a11', 'a22', 'a33', 'a21', 'a22', 'a23'],
         'B': ['b11', 'b12', 'b13', 'b21', 'b22', 'b23'],
         'BB': [1, 2, 3, 4, 5, 6],
         'id': [0, 1, 2, 0, 1, 2],
         'year': ['11', '11', '11', '12', '12', '12']
     })
     exp_frame = exp_frame.set_index(
         ['id', 'year'])[['Arating', 'Arating_old', 'A', 'B', 'BB']]
     long_frame = wide_to_long(df, ['A', 'B', 'BB'], i='id', j='year')
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 8
0
 def test_invalid_separator(self):
     # if an invalid separator is supplied a empty data frame is returned
     sep = 'nope!'
     df = pd.DataFrame({
         'A2010': [1.0, 2.0],
         'A2011': [3.0, 4.0],
         'B2010': [5.0, 6.0],
         'X': ['X1', 'X2']
     })
     df['id'] = df.index
     exp_data = {
         'X': '',
         'A2010': [],
         'A2011': [],
         'B2010': [],
         'id': [],
         'year': [],
         'A': [],
         'B': []
     }
     exp_frame = pd.DataFrame(exp_data)
     exp_frame = exp_frame.set_index(
         ['id', 'year'])[['X', 'A2010', 'A2011', 'B2010', 'A', 'B']]
     exp_frame.index.set_levels([[0, 1], []], inplace=True)
     long_frame = wide_to_long(df, ['A', 'B'], i='id', j='year', sep=sep)
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 9
0
 def test_unbalanced(self):
     # test that we can have a varying amount of time variables
     df = pd.DataFrame({'A2010': [1.0, 2.0],
                        'A2011': [3.0, 4.0],
                        'B2010': [5.0, 6.0],
                        'X': ['X1', 'X2']})
     df['id'] = df.index
     exp_data = {'X': ['X1', 'X1', 'X2', 'X2'],
                 'A': [1.0, 3.0, 2.0, 4.0],
                 'B': [5.0, np.nan, 6.0, np.nan],
                 'id': [0, 0, 1, 1],
                 'year': ['2010', '2011', '2010', '2011']}
     exp_frame = pd.DataFrame(exp_data)
     exp_frame = exp_frame.set_index(['id', 'year'])[["X", "A", "B"]]
     long_frame = wide_to_long(df, ['A', 'B'], i='id', j='year')
     tm.assert_frame_equal(long_frame, exp_frame)
Esempio n. 10
0
 def test_unbalanced(self):
     # test that we can have a varying amount of time variables
     df = pd.DataFrame({'A2010': [1.0, 2.0],
                        'A2011': [3.0, 4.0],
                        'B2010': [5.0, 6.0],
                        'X': ['X1', 'X2']})
     df['id'] = df.index
     exp_data = {'X': ['X1', 'X1', 'X2', 'X2'],
                 'A': [1.0, 3.0, 2.0, 4.0],
                 'B': [5.0, np.nan, 6.0, np.nan],
                 'id': [0, 0, 1, 1],
                 'year': ['2010', '2011', '2010', '2011']}
     exp_frame = pd.DataFrame(exp_data)
     exp_frame = exp_frame.set_index(['id', 'year'])[["X", "A", "B"]]
     long_frame = wide_to_long(df, ['A', 'B'], i='id', j='year')
     tm.assert_frame_equal(long_frame, exp_frame)
Esempio n. 11
0
 def test_multiple_id_columns(self):
     # Taken from http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm
     df = pd.DataFrame({
         'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
         'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
         'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
         'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
     })
     exp_frame = pd.DataFrame({
         'ht': [2.8, 3.4, 2.9, 3.8, 2.2, 2.9, 2.0, 3.2, 1.8,
                2.8, 1.9, 2.4, 2.2, 3.3, 2.3, 3.4, 2.1, 2.9],
         'famid': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3],
         'birth': [1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3],
         'age': ['1', '2', '1', '2', '1', '2', '1', '2', '1',
                 '2', '1', '2', '1', '2', '1', '2', '1', '2']
     })
     exp_frame = exp_frame.set_index(['famid', 'birth', 'age'])[['ht']]
     long_frame = wide_to_long(df, 'ht', i=['famid', 'birth'], j='age')
     tm.assert_frame_equal(long_frame, exp_frame)
Esempio n. 12
0
 def test_multiple_id_columns(self):
     # Taken from http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm
     df = pd.DataFrame({
         'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
         'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
         'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
         'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
     })
     exp_frame = pd.DataFrame({
         'ht': [2.8, 3.4, 2.9, 3.8, 2.2, 2.9, 2.0, 3.2, 1.8,
                2.8, 1.9, 2.4, 2.2, 3.3, 2.3, 3.4, 2.1, 2.9],
         'famid': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3],
         'birth': [1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3],
         'age': ['1', '2', '1', '2', '1', '2', '1', '2', '1',
                 '2', '1', '2', '1', '2', '1', '2', '1', '2']
     })
     exp_frame = exp_frame.set_index(['famid', 'birth', 'age'])[['ht']]
     long_frame = wide_to_long(df, 'ht', i=['famid', 'birth'], j='age')
     tm.assert_frame_equal(long_frame, exp_frame)
Esempio n. 13
0
 def test_invalid_suffixtype(self):
     # If all stubs names end with a string, but a numeric suffix is
     # assumed,  an empty data frame is returned
     df = pd.DataFrame({'Aone': [1.0, 2.0],
                        'Atwo': [3.0, 4.0],
                        'Bone': [5.0, 6.0],
                        'X': ['X1', 'X2']})
     df['id'] = df.index
     exp_data = {'X': '',
                 'Aone': [],
                 'Atwo': [],
                 'Bone': [],
                 'id': [],
                 'year': [],
                 'A': [],
                 'B': []}
     exp_frame = pd.DataFrame(exp_data)
     exp_frame = exp_frame.set_index(['id', 'year'])[[
         'X', 'Aone', 'Atwo', 'Bone', 'A', 'B']]
     exp_frame.index.set_levels([[0, 1], []], inplace=True)
     long_frame = wide_to_long(df, ['A', 'B'], i='id', j='year')
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 14
0
 def test_invalid_separator(self):
     # if an invalid separator is supplied a empty data frame is returned
     sep = 'nope!'
     df = pd.DataFrame({'A2010': [1.0, 2.0],
                        'A2011': [3.0, 4.0],
                        'B2010': [5.0, 6.0],
                        'X': ['X1', 'X2']})
     df['id'] = df.index
     exp_data = {'X': '',
                 'A2010': [],
                 'A2011': [],
                 'B2010': [],
                 'id': [],
                 'year': [],
                 'A': [],
                 'B': []}
     exp_frame = pd.DataFrame(exp_data)
     exp_frame = exp_frame.set_index(['id', 'year'])[[
         'X', 'A2010', 'A2011', 'B2010', 'A', 'B']]
     exp_frame.index.set_levels([[0, 1], []], inplace=True)
     long_frame = wide_to_long(df, ['A', 'B'], i='id', j='year', sep=sep)
     tm.assert_frame_equal(long_frame.sort_index(axis=1),
                           exp_frame.sort_index(axis=1))
Esempio n. 15
0
 def time_wide_to_long_big(self):
     self.df['id'] = self.df.index
     wide_to_long(self.df, list(self.vars), i='id', j='year')
Esempio n. 16
0
 def time_wide_to_long_big(self):
     self.df['id'] = self.df.index
     wide_to_long(self.df, list(self.vars), i='id', j='year')