def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series( ["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render()
def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.render() self.assertTrue('class="foo" data-bar' in result) result = self.df.style.set_table_attributes(attributes).render() self.assertTrue('class="foo" data-bar' in result)
def test_uuid(self): styler = Styler(self.df, uuid="abc123") result = styler.render() self.assertTrue("abc123" in result) styler = self.df.style result = styler.set_uuid("aaa") self.assertTrue(result is styler) self.assertEqual(result.uuid, "aaa")
def test_caption(self): styler = Styler(self.df, caption="foo") result = styler.render() self.assertTrue(all(["caption" in result, "foo" in result])) styler = self.df.style result = styler.set_caption("baz") self.assertTrue(styler is result) self.assertEqual(styler.caption, "baz")
def test_caption(self): styler = Styler(self.df, caption='foo') result = styler.render() self.assertTrue(all(['caption' in result, 'foo' in result])) styler = self.df.style result = styler.set_caption('baz') self.assertTrue(styler is result) self.assertEqual(styler.caption, 'baz')
def test_uuid(self): styler = Styler(self.df, uuid='abc123') result = styler.render() self.assertTrue('abc123' in result) styler = self.df.style result = styler.set_uuid('aaa') self.assertTrue(result is styler) self.assertEqual(result.uuid, 'aaa')
def test_table_styles(self): style = [{"selector": "th", "props": [("foo", "bar")]}] styler = Styler(self.df, table_styles=style) result = " ".join(styler.render().split()) self.assertTrue("th { foo: bar; }" in result) styler = self.df.style result = styler.set_table_styles(style) self.assertTrue(styler is result) self.assertEqual(styler.table_styles, style)
def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) self.assertEqual(s.precision, 10) s = Styler(self.df, precision=2) self.assertEqual(s.precision, 2) s2 = s.set_precision(4) self.assertTrue(s is s2) self.assertEqual(s.precision, 4)
def test_table_styles(self): style = [{'selector': 'th', 'props': [('foo', 'bar')]}] styler = Styler(self.df, table_styles=style) result = ' '.join(styler.render().split()) self.assertTrue('th { foo: bar; }' in result) styler = self.df.style result = styler.set_table_styles(style) self.assertTrue(styler is result) self.assertEqual(styler.table_styles, style)
def configure_properties(self): Styler.__init__(self, self.data) self.applymap(styler_utils.center) self.applymap(lambda x: 'padding: %s' % self.padding) self.set_table_styles(default_table_styles) self.set_properties(**{'border': '1px solid black'}) if self.preset: self.apply_preset() if self.auto_format: self.value_formatter()
def test_nonunique_raises(self): df = pd.DataFrame([[1, 2]], columns=['A', 'A']) with tm.assertRaises(ValueError): df.style with tm.assertRaises(ValueError): Styler(df)
def setUp(self): np.random.seed(24) self.s = DataFrame({'A': np.random.permutation(range(6))}) self.df = DataFrame({'A': [0, 1], 'B': np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo='bar'): return pd.Series(['color: %s' % foo], index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({'A': ['color: red', 'color: blue']}) self.dataframes = [ self.df, pd.DataFrame({'f': [1., 2.], 'o': ['a', 'b'], 'c': pd.Categorical(['a', 'b'])}) ]
def setUp(self): np.random.seed(24) self.s = DataFrame({"A": np.random.permutation(range(6))}) self.df = DataFrame({"A": [0, 1], "B": np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo="bar"): return pd.Series(["color: %s" % foo], index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({"A": ["color: red", "color: blue"]}) self.dataframes = [self.df, pd.DataFrame({"f": [1.0, 2.0], "o": ["a", "b"], "c": pd.Categorical(["a", "b"])})]
def test_from_custom_template(tmpdir): p = tmpdir.mkdir("templates").join("myhtml.tpl") p.write( textwrap.dedent("""\ {% extends "html.tpl" %} {% block table %} <h1>{{ table_title|default("My Table") }}</h1> {{ super() }} {% endblock table %}""")) result = Styler.from_custom_template(str(tmpdir.join('templates')), 'myhtml.tpl') assert issubclass(result, Styler) assert result.env is not Styler.env assert result.template is not Styler.template styler = result(pd.DataFrame({"A": [1, 2]})) assert styler.render()
def apply_styling(self, df): styler = Styler(df) styler = styler.apply(highlight_rsquare, subset=["r_squared"]) return styler
def test_render(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid="AB").apply(style) s.render()
class TestStyler(TestCase): def setUp(self): np.random.seed(24) self.s = DataFrame({"A": np.random.permutation(range(6))}) self.df = DataFrame({"A": [0, 1], "B": np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo="bar"): return pd.Series(["color: %s" % foo], index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({"A": ["color: red", "color: blue"]}) self.dataframes = [self.df, pd.DataFrame({"f": [1.0, 2.0], "o": ["a", "b"], "c": pd.Categorical(["a", "b"])})] def test_init_non_pandas(self): with tm.assertRaises(TypeError): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) self.assertEqual(result.data.ndim, 2) def test_repr_html_ok(self): self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): ["color: red"], (1, 0): ["color: blue"]} self.assertEqual(self.styler.ctx, expected) def test_update_ctx_flatten_multi(self): attrs = DataFrame({"A": ["color: red; foo: bar", "color: blue; foo: baz"]}) self.styler._update_ctx(attrs) expected = {(0, 0): ["color: red", " foo: bar"], (1, 0): ["color: blue", " foo: baz"]} self.assertEqual(self.styler.ctx, expected) def test_update_ctx_flatten_multi_traliing_semi(self): attrs = DataFrame({"A": ["color: red; foo: bar;", "color: blue; foo: baz;"]}) self.styler._update_ctx(attrs) expected = {(0, 0): ["color: red", " foo: bar"], (1, 0): ["color: blue", " foo: baz"]} self.assertEqual(self.styler.ctx, expected) def test_copy(self): s2 = copy.copy(self.styler) self.assertTrue(self.styler is not s2) self.assertTrue(self.styler.ctx is s2.ctx) # shallow self.assertTrue(self.styler._todo is s2._todo) self.styler._update_ctx(self.attrs) self.styler.highlight_max() self.assertEqual(self.styler.ctx, s2.ctx) self.assertEqual(self.styler._todo, s2._todo) def test_deepcopy(self): s2 = copy.deepcopy(self.styler) self.assertTrue(self.styler is not s2) self.assertTrue(self.styler.ctx is not s2.ctx) self.assertTrue(self.styler._todo is not s2._todo) self.styler._update_ctx(self.attrs) self.styler.highlight_max() self.assertNotEqual(self.styler.ctx, s2.ctx) self.assertEqual(s2._todo, []) self.assertNotEqual(self.styler._todo, s2._todo) def test_clear(self): s = self.df.style.highlight_max()._compute() self.assertTrue(len(s.ctx) > 0) self.assertTrue(len(s._todo) > 0) s.clear() self.assertTrue(len(s.ctx) == 0) self.assertTrue(len(s._todo) == 0) def test_render(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid="AB").apply(style) s.render() # it worked? def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid="AB").apply(style) s.render() # it worked? def test_set_properties(self): df = pd.DataFrame({"A": [0, 1]}) result = df.style.set_properties(color="white", size="10px")._compute().ctx # order is deterministic v = ["color: white", "size: 10px"] expected = {(0, 0): v, (1, 0): v} self.assertEqual(result.keys(), expected.keys()) for v1, v2 in zip(result.values(), expected.values()): self.assertEqual(sorted(v1), sorted(v2)) def test_set_properties_subset(self): df = pd.DataFrame({"A": [0, 1]}) result = df.style.set_properties(subset=pd.IndexSlice[0, "A"], color="white")._compute().ctx expected = {(0, 0): ["color: white"]} self.assertEqual(result, expected) def test_empty_index_name_doesnt_display(self): # https://github.com/pydata/pandas/pull/12090#issuecomment-180695902 df = pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.style._translate() expected = [ [ {"class": "blank", "type": "th", "value": ""}, {"class": "col_heading level0 col0", "display_value": "A", "type": "th", "value": "A"}, {"class": "col_heading level0 col1", "display_value": "B", "type": "th", "value": "B"}, {"class": "col_heading level0 col2", "display_value": "C", "type": "th", "value": "C"}, ] ] self.assertEqual(result["head"], expected) def test_index_name(self): # https://github.com/pydata/pandas/issues/11655 df = pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index("A").style._translate() expected = [ [ {"class": "blank", "type": "th", "value": ""}, {"class": "col_heading level0 col0", "type": "th", "value": "B", "display_value": "B"}, {"class": "col_heading level0 col1", "type": "th", "value": "C", "display_value": "C"}, ], [ {"class": "col_heading level2 col0", "type": "th", "value": "A"}, {"class": "blank", "type": "th", "value": ""}, {"class": "blank", "type": "th", "value": ""}, ], ] self.assertEqual(result["head"], expected) def test_multiindex_name(self): # https://github.com/pydata/pandas/issues/11655 df = pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index(["A", "B"]).style._translate() expected = [ [ {"class": "blank", "type": "th", "value": ""}, {"class": "blank", "type": "th", "value": ""}, {"class": "col_heading level0 col0", "type": "th", "value": "C", "display_value": "C"}, ], [ {"class": "col_heading level2 col0", "type": "th", "value": "A"}, {"class": "col_heading level2 col1", "type": "th", "value": "B"}, {"class": "blank", "type": "th", "value": ""}, ], ] self.assertEqual(result["head"], expected) def test_numeric_columns(self): # https://github.com/pydata/pandas/issues/12125 # smoke test for _translate df = pd.DataFrame({0: [1, 2, 3]}) df.style._translate() def test_apply_axis(self): df = pd.DataFrame({"A": [0, 0], "B": [1, 1]}) f = lambda x: ["val: %s" % x.max() for v in x] result = df.style.apply(f, axis=1) self.assertEqual(len(result._todo), 1) self.assertEqual(len(result.ctx), 0) result._compute() expected = {(0, 0): ["val: 1"], (0, 1): ["val: 1"], (1, 0): ["val: 1"], (1, 1): ["val: 1"]} self.assertEqual(result.ctx, expected) result = df.style.apply(f, axis=0) expected = {(0, 0): ["val: 0"], (0, 1): ["val: 1"], (1, 0): ["val: 0"], (1, 1): ["val: 1"]} result._compute() self.assertEqual(result.ctx, expected) result = df.style.apply(f) # default result._compute() self.assertEqual(result.ctx, expected) def test_apply_subset(self): axes = [0, 1] slices = [ pd.IndexSlice[:], pd.IndexSlice[:, ["A"]], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ["A"]], pd.IndexSlice[:2, ["A", "B"]], ] for ax in axes: for slice_ in slices: result = self.df.style.apply(self.h, axis=ax, subset=slice_, foo="baz")._compute().ctx expected = dict( ((r, c), ["color: baz"]) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns ) self.assertEqual(result, expected) def test_applymap_subset(self): def f(x): return "foo: bar" slices = [ pd.IndexSlice[:], pd.IndexSlice[:, ["A"]], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ["A"]], pd.IndexSlice[:2, ["A", "B"]], ] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = dict( ((r, c), ["foo: bar"]) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns ) self.assertEqual(result, expected) def test_empty(self): df = pd.DataFrame({"A": [1, 0]}) s = df.style s.ctx = {(0, 0): ["color: red"], (1, 0): [""]} result = s._translate()["cellstyle"] expected = [ {"props": [["color", " red"]], "selector": "row0_col0"}, {"props": [["", ""]], "selector": "row1_col0"}, ] self.assertEqual(result, expected) def test_bar(self): df = pd.DataFrame({"A": [0, 1, 2]}) result = df.style.bar()._compute().ctx expected = { (0, 0): ["width: 10em", " height: 80%"], (1, 0): [ "width: 10em", " height: 80%", "background: linear-gradient(" "90deg,#d65f5f 50.0%, transparent 0%)", ], (2, 0): [ "width: 10em", " height: 80%", "background: linear-gradient(" "90deg,#d65f5f 100.0%, transparent 0%)", ], } self.assertEqual(result, expected) result = df.style.bar(color="red", width=50)._compute().ctx expected = { (0, 0): ["width: 10em", " height: 80%"], (1, 0): ["width: 10em", " height: 80%", "background: linear-gradient(" "90deg,red 25.0%, transparent 0%)"], (2, 0): ["width: 10em", " height: 80%", "background: linear-gradient(" "90deg,red 50.0%, transparent 0%)"], } self.assertEqual(result, expected) df["C"] = ["a"] * len(df) result = df.style.bar(color="red", width=50)._compute().ctx self.assertEqual(result, expected) df["C"] = df["C"].astype("category") result = df.style.bar(color="red", width=50)._compute().ctx self.assertEqual(result, expected) def test_bar_0points(self): df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.style.bar()._compute().ctx expected = { (0, 0): ["width: 10em", " height: 80%"], (0, 1): ["width: 10em", " height: 80%"], (0, 2): ["width: 10em", " height: 80%"], (1, 0): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 50.0%," " transparent 0%)", ], (1, 1): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 50.0%," " transparent 0%)", ], (1, 2): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 50.0%," " transparent 0%)", ], (2, 0): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 100.0%" ", transparent 0%)", ], (2, 1): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 100.0%" ", transparent 0%)", ], (2, 2): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 100.0%" ", transparent 0%)", ], } self.assertEqual(result, expected) result = df.style.bar(axis=1)._compute().ctx expected = { (0, 0): ["width: 10em", " height: 80%"], (0, 1): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 50.0%," " transparent 0%)", ], (0, 2): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 100.0%" ", transparent 0%)", ], (1, 0): ["width: 10em", " height: 80%"], (1, 1): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 50.0%" ", transparent 0%)", ], (1, 2): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 100.0%" ", transparent 0%)", ], (2, 0): ["width: 10em", " height: 80%"], (2, 1): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 50.0%" ", transparent 0%)", ], (2, 2): [ "width: 10em", " height: 80%", "background: linear-gradient(90deg,#d65f5f 100.0%" ", transparent 0%)", ], } self.assertEqual(result, expected) def test_highlight_null(self, null_color="red"): df = pd.DataFrame({"A": [0, np.nan]}) result = df.style.highlight_null()._compute().ctx expected = {(0, 0): [""], (1, 0): ["background-color: red"]} self.assertEqual(result, expected) def test_nonunique_raises(self): df = pd.DataFrame([[1, 2]], columns=["A", "A"]) with tm.assertRaises(ValueError): df.style with tm.assertRaises(ValueError): Styler(df) def test_caption(self): styler = Styler(self.df, caption="foo") result = styler.render() self.assertTrue(all(["caption" in result, "foo" in result])) styler = self.df.style result = styler.set_caption("baz") self.assertTrue(styler is result) self.assertEqual(styler.caption, "baz") def test_uuid(self): styler = Styler(self.df, uuid="abc123") result = styler.render() self.assertTrue("abc123" in result) styler = self.df.style result = styler.set_uuid("aaa") self.assertTrue(result is styler) self.assertEqual(result.uuid, "aaa") def test_table_styles(self): style = [{"selector": "th", "props": [("foo", "bar")]}] styler = Styler(self.df, table_styles=style) result = " ".join(styler.render().split()) self.assertTrue("th { foo: bar; }" in result) styler = self.df.style result = styler.set_table_styles(style) self.assertTrue(styler is result) self.assertEqual(styler.table_styles, style) def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.render() self.assertTrue('class="foo" data-bar' in result) result = self.df.style.set_table_attributes(attributes).render() self.assertTrue('class="foo" data-bar' in result) def test_precision(self): with pd.option_context("display.precision", 10): s = Styler(self.df) self.assertEqual(s.precision, 10) s = Styler(self.df, precision=2) self.assertEqual(s.precision, 2) s2 = s.set_precision(4) self.assertTrue(s is s2) self.assertEqual(s.precision, 4) def test_apply_none(self): def f(x): return pd.DataFrame(np.where(x == x.max(), "color: red", ""), index=x.index, columns=x.columns) result = pd.DataFrame([[1, 2], [3, 4]]).style.apply(f, axis=None)._compute().ctx self.assertEqual(result[(1, 1)], ["color: red"]) def test_trim(self): result = self.df.style.render() # trim=True self.assertEqual(result.count("#"), 0) result = self.df.style.highlight_max().render() self.assertEqual(result.count("#"), len(self.df.columns)) def test_highlight_max(self): df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) # max(df) = min(-df) for max_ in [True, False]: if max_: attr = "highlight_max" else: df = -df attr = "highlight_min" result = getattr(df.style, attr)()._compute().ctx self.assertEqual(result[(1, 1)], ["background-color: yellow"]) result = getattr(df.style, attr)(color="green")._compute().ctx self.assertEqual(result[(1, 1)], ["background-color: green"]) result = getattr(df.style, attr)(subset="A")._compute().ctx self.assertEqual(result[(1, 0)], ["background-color: yellow"]) result = getattr(df.style, attr)(axis=0)._compute().ctx expected = { (1, 0): ["background-color: yellow"], (1, 1): ["background-color: yellow"], (0, 1): [""], (0, 0): [""], } self.assertEqual(result, expected) result = getattr(df.style, attr)(axis=1)._compute().ctx expected = { (0, 1): ["background-color: yellow"], (1, 1): ["background-color: yellow"], (0, 0): [""], (1, 0): [""], } self.assertEqual(result, expected) # separate since we cant negate the strs df["C"] = ["a", "b"] result = df.style.highlight_max()._compute().ctx expected = {(1, 1): ["background-color: yellow"]} result = df.style.highlight_min()._compute().ctx expected = {(0, 0): ["background-color: yellow"]} def test_export(self): f = lambda x: "color: red" if x > 0 else "color: blue" g = lambda x, y, z: "color: %s" if x > 0 else "color: %s" % z style1 = self.styler style1.applymap(f).applymap(g, y="a", z="b").highlight_max() result = style1.export() style2 = self.df.style style2.use(result) self.assertEqual(style1._todo, style2._todo) style2.render() def test_display_format(self): df = pd.DataFrame(np.random.random(size=(2, 2))) ctx = df.style.format("{:0.1f}")._translate() self.assertTrue(all(["display_value" in c for c in row] for row in ctx["body"])) self.assertTrue(all([len(c["display_value"]) <= 3 for c in row[1:]] for row in ctx["body"])) self.assertTrue(len(ctx["body"][0][1]["display_value"].lstrip("-")) <= 3) def test_display_format_raises(self): df = pd.DataFrame(np.random.randn(2, 2)) with tm.assertRaises(TypeError): df.style.format(5) with tm.assertRaises(TypeError): df.style.format(True) def test_display_subset(self): df = pd.DataFrame([[0.1234, 0.1234], [1.1234, 1.1234]], columns=["a", "b"]) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"}, subset=pd.IndexSlice[0, :])._translate() expected = "0.1" self.assertEqual(ctx["body"][0][1]["display_value"], expected) self.assertEqual(ctx["body"][1][1]["display_value"], "1.1234") self.assertEqual(ctx["body"][0][2]["display_value"], "12.34%") raw_11 = "1.1234" ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() self.assertEqual(ctx["body"][0][1]["display_value"], expected) self.assertEqual(ctx["body"][1][1]["display_value"], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() self.assertEqual(ctx["body"][0][1]["display_value"], expected) self.assertEqual(ctx["body"][1][1]["display_value"], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice["a"])._translate() self.assertEqual(ctx["body"][0][1]["display_value"], expected) self.assertEqual(ctx["body"][0][2]["display_value"], "0.1234") ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, "a"])._translate() self.assertEqual(ctx["body"][0][1]["display_value"], expected) self.assertEqual(ctx["body"][1][1]["display_value"], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[[0, 1], ["a"]])._translate() self.assertEqual(ctx["body"][0][1]["display_value"], expected) self.assertEqual(ctx["body"][1][1]["display_value"], "1.1") self.assertEqual(ctx["body"][0][2]["display_value"], "0.1234") self.assertEqual(ctx["body"][1][2]["display_value"], "1.1234") def test_display_dict(self): df = pd.DataFrame([[0.1234, 0.1234], [1.1234, 1.1234]], columns=["a", "b"]) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"})._translate() self.assertEqual(ctx["body"][0][1]["display_value"], "0.1") self.assertEqual(ctx["body"][0][2]["display_value"], "12.34%") df["c"] = ["aaa", "bbb"] ctx = df.style.format({"a": "{:0.1f}", "c": str.upper})._translate() self.assertEqual(ctx["body"][0][1]["display_value"], "0.1") self.assertEqual(ctx["body"][0][3]["display_value"], "AAA") def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(ValueError): df.style._apply(lambda x: "x", subset=pd.IndexSlice[[0, 1], :]) with tm.assertRaises(ValueError): df.style._apply(lambda x: [""], subset=pd.IndexSlice[[0, 1], :]) with tm.assertRaises(ValueError): df.style._apply(lambda x: ["", "", "", ""]) with tm.assertRaises(ValueError): df.style._apply(lambda x: ["", "", ""], subset=1) with tm.assertRaises(ValueError): df.style._apply(lambda x: ["", "", ""], axis=1) def test_apply_bad_return(self): def f(x): return "" df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(TypeError): df.style._apply(f, axis=None) def test_apply_bad_labels(self): def f(x): return pd.DataFrame(index=[1, 2], columns=["a", "b"]) df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(ValueError): df.style._apply(f, axis=None)
class TestStyler(TestCase): def setUp(self): np.random.seed(24) self.s = DataFrame({'A': np.random.permutation(range(6))}) self.df = DataFrame({'A': [0, 1], 'B': np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo='bar'): return pd.Series(['color: %s' % foo], index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = pd.DataFrame({'A': ['color: red', 'color: blue']}) self.dataframes = [ self.df, pd.DataFrame({'f': [1., 2.], 'o': ['a', 'b'], 'c': pd.Categorical(['a', 'b'])}) ] def test_init_non_pandas(self): with tm.assertRaises(TypeError): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) self.assertEqual(result.data.ndim, 2) def test_repr_html_ok(self): self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): ['color: red'], (1, 0): ['color: blue']} self.assertEqual(self.styler.ctx, expected) def test_update_ctx_flatten_multi(self): attrs = DataFrame({"A": ['color: red; foo: bar', 'color: blue; foo: baz']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} self.assertEqual(self.styler.ctx, expected) def test_update_ctx_flatten_multi_traliing_semi(self): attrs = DataFrame({"A": ['color: red; foo: bar;', 'color: blue; foo: baz;']}) self.styler._update_ctx(attrs) expected = {(0, 0): ['color: red', ' foo: bar'], (1, 0): ['color: blue', ' foo: baz']} self.assertEqual(self.styler.ctx, expected) def test_copy(self): s2 = copy.copy(self.styler) self.assertTrue(self.styler is not s2) self.assertTrue(self.styler.ctx is s2.ctx) # shallow self.assertTrue(self.styler._todo is s2._todo) self.styler._update_ctx(self.attrs) self.styler.highlight_max() self.assertEqual(self.styler.ctx, s2.ctx) self.assertEqual(self.styler._todo, s2._todo) def test_deepcopy(self): s2 = copy.deepcopy(self.styler) self.assertTrue(self.styler is not s2) self.assertTrue(self.styler.ctx is not s2.ctx) self.assertTrue(self.styler._todo is not s2._todo) self.styler._update_ctx(self.attrs) self.styler.highlight_max() self.assertNotEqual(self.styler.ctx, s2.ctx) self.assertEqual(s2._todo, []) self.assertNotEqual(self.styler._todo, s2._todo) def test_clear(self): s = self.df.style.highlight_max()._compute() self.assertTrue(len(s.ctx) > 0) self.assertTrue(len(s._todo) > 0) s.clear() self.assertTrue(len(s.ctx) == 0) self.assertTrue(len(s._todo) == 0) def test_render(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render() # it worked? def test_set_properties(self): df = pd.DataFrame({"A": [0, 1]}) result = df.style.set_properties(color='white', size='10px')._compute().ctx # order is deterministic v = ["color: white", "size: 10px"] expected = {(0, 0): v, (1, 0): v} self.assertEqual(result.keys(), expected.keys()) for v1, v2 in zip(result.values(), expected.values()): self.assertEqual(sorted(v1), sorted(v2)) def test_set_properties_subset(self): df = pd.DataFrame({'A': [0, 1]}) result = df.style.set_properties(subset=pd.IndexSlice[0, 'A'], color='white')._compute().ctx expected = {(0, 0): ['color: white']} self.assertEqual(result, expected) def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'is_visible': True, 'display_value': ''}, {'class': 'col_heading level0 col0', 'display_value': 'A', 'type': 'th', 'value': 'A', 'is_visible': True, 'attributes': ["colspan=1"], }, {'class': 'col_heading level0 col1', 'display_value': 'B', 'type': 'th', 'value': 'B', 'is_visible': True, 'attributes': ["colspan=1"], }, {'class': 'col_heading level0 col2', 'display_value': 'C', 'type': 'th', 'value': 'C', 'is_visible': True, 'attributes': ["colspan=1"], }]] self.assertEqual(result['head'], expected) def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index('A').style._translate() expected = [[{'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'B', 'display_value': 'B', 'is_visible': True, 'attributes': ['colspan=1']}, {'class': 'col_heading level0 col1', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True, 'attributes': ['colspan=1']}], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'blank', 'type': 'th', 'value': ''}, {'class': 'blank', 'type': 'th', 'value': ''}]] self.assertEqual(result['head'], expected) def test_multiindex_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}) result = df.set_index(['A', 'B']).style._translate() expected = [[ {'class': 'blank', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'blank level0', 'type': 'th', 'value': '', 'display_value': '', 'is_visible': True}, {'class': 'col_heading level0 col0', 'type': 'th', 'value': 'C', 'display_value': 'C', 'is_visible': True, 'attributes': ['colspan=1'], }], [{'class': 'index_name level0', 'type': 'th', 'value': 'A'}, {'class': 'index_name level1', 'type': 'th', 'value': 'B'}, {'class': 'blank', 'type': 'th', 'value': ''}]] self.assertEqual(result['head'], expected) def test_numeric_columns(self): # https://github.com/pandas-dev/pandas/issues/12125 # smoke test for _translate df = pd.DataFrame({0: [1, 2, 3]}) df.style._translate() def test_apply_axis(self): df = pd.DataFrame({'A': [0, 0], 'B': [1, 1]}) f = lambda x: ['val: %s' % x.max() for v in x] result = df.style.apply(f, axis=1) self.assertEqual(len(result._todo), 1) self.assertEqual(len(result.ctx), 0) result._compute() expected = {(0, 0): ['val: 1'], (0, 1): ['val: 1'], (1, 0): ['val: 1'], (1, 1): ['val: 1']} self.assertEqual(result.ctx, expected) result = df.style.apply(f, axis=0) expected = {(0, 0): ['val: 0'], (0, 1): ['val: 1'], (1, 0): ['val: 0'], (1, 1): ['val: 1']} result._compute() self.assertEqual(result.ctx, expected) result = df.style.apply(f) # default result._compute() self.assertEqual(result.ctx, expected) def test_apply_subset(self): axes = [0, 1] slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for ax in axes: for slice_ in slices: result = self.df.style.apply(self.h, axis=ax, subset=slice_, foo='baz')._compute().ctx expected = dict(((r, c), ['color: baz']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) self.assertEqual(result, expected) def test_applymap_subset(self): def f(x): return 'foo: bar' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = dict(((r, c), ['foo: bar']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) self.assertEqual(result, expected) def test_empty(self): df = pd.DataFrame({'A': [1, 0]}) s = df.style s.ctx = {(0, 0): ['color: red'], (1, 0): ['']} result = s._translate()['cellstyle'] expected = [{'props': [['color', ' red']], 'selector': 'row0_col0'}, {'props': [['', '']], 'selector': 'row1_col0'}] self.assertEqual(result, expected) def test_bar(self): df = pd.DataFrame({'A': [0, 1, 2]}) result = df.style.bar()._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 50.0%, transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,#d65f5f 100.0%, transparent 0%)'] } self.assertEqual(result, expected) result = df.style.bar(color='red', width=50)._compute().ctx expected = { (0, 0): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 25.0%, transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(' '90deg,red 50.0%, transparent 0%)'] } self.assertEqual(result, expected) df['C'] = ['a'] * len(df) result = df.style.bar(color='red', width=50)._compute().ctx self.assertEqual(result, expected) df['C'] = df['C'].astype('category') result = df.style.bar(color='red', width=50)._compute().ctx self.assertEqual(result, expected) def test_bar_0points(self): df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.style.bar()._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%'], (0, 2): ['width: 10em', ' height: 80%'], (1, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)']} self.assertEqual(result, expected) result = df.style.bar(axis=1)._compute().ctx expected = {(0, 0): ['width: 10em', ' height: 80%'], (0, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%,' ' transparent 0%)'], (0, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (1, 0): ['width: 10em', ' height: 80%'], (1, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 0%)'], (1, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)'], (2, 0): ['width: 10em', ' height: 80%'], (2, 1): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 50.0%' ', transparent 0%)'], (2, 2): ['width: 10em', ' height: 80%', 'background: linear-gradient(90deg,#d65f5f 100.0%' ', transparent 0%)']} self.assertEqual(result, expected) def test_highlight_null(self, null_color='red'): df = pd.DataFrame({'A': [0, np.nan]}) result = df.style.highlight_null()._compute().ctx expected = {(0, 0): [''], (1, 0): ['background-color: red']} self.assertEqual(result, expected) def test_nonunique_raises(self): df = pd.DataFrame([[1, 2]], columns=['A', 'A']) with tm.assertRaises(ValueError): df.style with tm.assertRaises(ValueError): Styler(df) def test_caption(self): styler = Styler(self.df, caption='foo') result = styler.render() self.assertTrue(all(['caption' in result, 'foo' in result])) styler = self.df.style result = styler.set_caption('baz') self.assertTrue(styler is result) self.assertEqual(styler.caption, 'baz') def test_uuid(self): styler = Styler(self.df, uuid='abc123') result = styler.render() self.assertTrue('abc123' in result) styler = self.df.style result = styler.set_uuid('aaa') self.assertTrue(result is styler) self.assertEqual(result.uuid, 'aaa') def test_table_styles(self): style = [{'selector': 'th', 'props': [('foo', 'bar')]}] styler = Styler(self.df, table_styles=style) result = ' '.join(styler.render().split()) self.assertTrue('th { foo: bar; }' in result) styler = self.df.style result = styler.set_table_styles(style) self.assertTrue(styler is result) self.assertEqual(styler.table_styles, style) def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.render() self.assertTrue('class="foo" data-bar' in result) result = self.df.style.set_table_attributes(attributes).render() self.assertTrue('class="foo" data-bar' in result) def test_precision(self): with pd.option_context('display.precision', 10): s = Styler(self.df) self.assertEqual(s.precision, 10) s = Styler(self.df, precision=2) self.assertEqual(s.precision, 2) s2 = s.set_precision(4) self.assertTrue(s is s2) self.assertEqual(s.precision, 4) def test_apply_none(self): def f(x): return pd.DataFrame(np.where(x == x.max(), 'color: red', ''), index=x.index, columns=x.columns) result = (pd.DataFrame([[1, 2], [3, 4]]) .style.apply(f, axis=None)._compute().ctx) self.assertEqual(result[(1, 1)], ['color: red']) def test_trim(self): result = self.df.style.render() # trim=True self.assertEqual(result.count('#'), 0) result = self.df.style.highlight_max().render() self.assertEqual(result.count('#'), len(self.df.columns)) def test_highlight_max(self): df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) # max(df) = min(-df) for max_ in [True, False]: if max_: attr = 'highlight_max' else: df = -df attr = 'highlight_min' result = getattr(df.style, attr)()._compute().ctx self.assertEqual(result[(1, 1)], ['background-color: yellow']) result = getattr(df.style, attr)(color='green')._compute().ctx self.assertEqual(result[(1, 1)], ['background-color: green']) result = getattr(df.style, attr)(subset='A')._compute().ctx self.assertEqual(result[(1, 0)], ['background-color: yellow']) result = getattr(df.style, attr)(axis=0)._compute().ctx expected = {(1, 0): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 1): [''], (0, 0): ['']} self.assertEqual(result, expected) result = getattr(df.style, attr)(axis=1)._compute().ctx expected = {(0, 1): ['background-color: yellow'], (1, 1): ['background-color: yellow'], (0, 0): [''], (1, 0): ['']} self.assertEqual(result, expected) # separate since we cant negate the strs df['C'] = ['a', 'b'] result = df.style.highlight_max()._compute().ctx expected = {(1, 1): ['background-color: yellow']} result = df.style.highlight_min()._compute().ctx expected = {(0, 0): ['background-color: yellow']} def test_export(self): f = lambda x: 'color: red' if x > 0 else 'color: blue' g = lambda x, y, z: 'color: %s' if x > 0 else 'color: %s' % z style1 = self.styler style1.applymap(f)\ .applymap(g, y='a', z='b')\ .highlight_max() result = style1.export() style2 = self.df.style style2.use(result) self.assertEqual(style1._todo, style2._todo) style2.render() def test_display_format(self): df = pd.DataFrame(np.random.random(size=(2, 2))) ctx = df.style.format("{:0.1f}")._translate() self.assertTrue(all(['display_value' in c for c in row] for row in ctx['body'])) self.assertTrue(all([len(c['display_value']) <= 3 for c in row[1:]] for row in ctx['body'])) self.assertTrue( len(ctx['body'][0][1]['display_value'].lstrip('-')) <= 3) def test_display_format_raises(self): df = pd.DataFrame(np.random.randn(2, 2)) with tm.assertRaises(TypeError): df.style.format(5) with tm.assertRaises(TypeError): df.style.format(True) def test_display_subset(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"}, subset=pd.IndexSlice[0, :])._translate() expected = '0.1' self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], '1.1234') self.assertEqual(ctx['body'][0][2]['display_value'], '12.34%') raw_11 = '1.1234' ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, :])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice['a'])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][0][2]['display_value'], '0.1234') ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[0, 'a'])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], raw_11) ctx = df.style.format("{:0.1f}", subset=pd.IndexSlice[[0, 1], ['a']])._translate() self.assertEqual(ctx['body'][0][1]['display_value'], expected) self.assertEqual(ctx['body'][1][1]['display_value'], '1.1') self.assertEqual(ctx['body'][0][2]['display_value'], '0.1234') self.assertEqual(ctx['body'][1][2]['display_value'], '1.1234') def test_display_dict(self): df = pd.DataFrame([[.1234, .1234], [1.1234, 1.1234]], columns=['a', 'b']) ctx = df.style.format({"a": "{:0.1f}", "b": "{0:.2%}"})._translate() self.assertEqual(ctx['body'][0][1]['display_value'], '0.1') self.assertEqual(ctx['body'][0][2]['display_value'], '12.34%') df['c'] = ['aaa', 'bbb'] ctx = df.style.format({"a": "{:0.1f}", "c": str.upper})._translate() self.assertEqual(ctx['body'][0][1]['display_value'], '0.1') self.assertEqual(ctx['body'][0][3]['display_value'], 'AAA') def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(ValueError): df.style._apply(lambda x: 'x', subset=pd.IndexSlice[[0, 1], :]) with tm.assertRaises(ValueError): df.style._apply(lambda x: [''], subset=pd.IndexSlice[[0, 1], :]) with tm.assertRaises(ValueError): df.style._apply(lambda x: ['', '', '', '']) with tm.assertRaises(ValueError): df.style._apply(lambda x: ['', '', ''], subset=1) with tm.assertRaises(ValueError): df.style._apply(lambda x: ['', '', ''], axis=1) def test_apply_bad_return(self): def f(x): return '' df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(TypeError): df.style._apply(f, axis=None) def test_apply_bad_labels(self): def f(x): return pd.DataFrame(index=[1, 2], columns=['a', 'b']) df = pd.DataFrame([[1, 2], [3, 4]]) with tm.assertRaises(ValueError): df.style._apply(f, axis=None) def test_get_level_lengths(self): index = pd.MultiIndex.from_product([['a', 'b'], [0, 1, 2]]) expected = {(0, 0): 3, (0, 3): 3, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_get_level_lengths_un_sorted(self): index = pd.MultiIndex.from_arrays([ [1, 1, 2, 1], ['a', 'b', 'b', 'd'] ]) expected = {(0, 0): 2, (0, 2): 1, (0, 3): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1} result = _get_level_lengths(index) tm.assert_dict_equal(result, expected) def test_mi_sparse(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body_0 = result['body'][0][0] expected_0 = { "value": "a", "display_value": "a", "is_visible": True, "type": "th", "attributes": ["rowspan=2"], "class": "row_heading level0 row0", } tm.assert_dict_equal(body_0, expected_0) body_1 = result['body'][0][1] expected_1 = { "value": 0, "display_value": 0, "is_visible": True, "type": "th", "attributes": ["rowspan=1"], "class": "row_heading level1 row0", } tm.assert_dict_equal(body_1, expected_1) body_10 = result['body'][1][0] expected_10 = { "value": 'a', "display_value": 'a', "is_visible": False, "type": "th", "attributes": ["rowspan=1"], "class": "row_heading level0 row1", } tm.assert_dict_equal(body_10, expected_10) head = result['head'][0] expected = [ {'type': 'th', 'class': 'blank', 'value': '', 'is_visible': True, "display_value": ''}, {'type': 'th', 'class': 'blank level0', 'value': '', 'is_visible': True, 'display_value': ''}, {'attributes': ['colspan=1'], 'class': 'col_heading level0 col0', 'is_visible': True, 'type': 'th', 'value': 'A', 'display_value': 'A'}] self.assertEqual(head, expected) def test_mi_sparse_disabled(self): with pd.option_context('display.multi_sparse', False): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays([['a', 'a'], [0, 1]])) result = df.style._translate() body = result['body'] for row in body: self.assertEqual(row[0]['attributes'], ['rowspan=1']) def test_mi_sparse_index_names(self): df = pd.DataFrame({'A': [1, 2]}, index=pd.MultiIndex.from_arrays( [['a', 'a'], [0, 1]], names=['idx_level_0', 'idx_level_1']) ) result = df.style._translate() head = result['head'][1] expected = [{ 'class': 'index_name level0', 'value': 'idx_level_0', 'type': 'th'}, {'class': 'index_name level1', 'value': 'idx_level_1', 'type': 'th'}, {'class': 'blank', 'value': '', 'type': 'th'}] self.assertEqual(head, expected) def test_mi_sparse_column_names(self): df = pd.DataFrame( np.arange(16).reshape(4, 4), index=pd.MultiIndex.from_arrays( [['a', 'a', 'b', 'a'], [0, 1, 1, 2]], names=['idx_level_0', 'idx_level_1']), columns=pd.MultiIndex.from_arrays( [['C1', 'C1', 'C2', 'C2'], [1, 0, 1, 0]], names=['col_0', 'col_1'] ) ) result = df.style._translate() head = result['head'][1] expected = [ {'class': 'blank', 'value': '', 'display_value': '', 'type': 'th', 'is_visible': True}, {'class': 'index_name level1', 'value': 'col_1', 'display_value': 'col_1', 'is_visible': True, 'type': 'th'}, {'attributes': ['colspan=1'], 'class': 'col_heading level1 col0', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'attributes': ['colspan=1'], 'class': 'col_heading level1 col1', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, {'attributes': ['colspan=1'], 'class': 'col_heading level1 col2', 'display_value': 1, 'is_visible': True, 'type': 'th', 'value': 1}, {'attributes': ['colspan=1'], 'class': 'col_heading level1 col3', 'display_value': 0, 'is_visible': True, 'type': 'th', 'value': 0}, ] self.assertEqual(head, expected)
def test_render_double(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red; border: 1px", "color: blue; border: 2px"], name=x.name) s = Styler(df, uuid='AB').apply(style) s.render()
def test_init_non_pandas(self): with tm.assertRaises(TypeError): Styler([1, 2, 3])
def apply_styling(self, df): styler = Styler(df) styler = styler.apply(self.rsquareHighlighterService.highlight_rsquare, subset=["r_squared"]) return styler
def test_init_series(self): result = Styler(pd.Series([1, 2])) self.assertEqual(result.data.ndim, 2)
def test_render(self): df = pd.DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid='AB').apply(style).apply(style, axis=1) s.render()