def test_read_dta18(self): parsed_118 = self.read_dta(self.dta22_118) parsed_118["Bytes"] = parsed_118["Bytes"].astype('O') expected = DataFrame.from_records( [['Cat', 'Bogota', u'Bogotá', 1, 1.0, u'option b Ünicode', 1.0], ['Dog', 'Boston', u'Uzunköprü', np.nan, np.nan, np.nan, np.nan], ['Plane', 'Rome', u'Tromsø', 0, 0.0, 'option a', 0.0], ['Potato', 'Tokyo', u'Elâzığ', -4, 4.0, 4, 4], ['', '', '', 0, 0.3332999, 'option a', 1/3.] ], columns=['Things', 'Cities', 'Unicode_Cities_Strl', 'Ints', 'Floats', 'Bytes', 'Longs']) expected["Floats"] = expected["Floats"].astype(np.float32) for col in parsed_118.columns: tm.assert_almost_equal(parsed_118[col], expected[col]) rdr = StataReader(self.dta22_118) vl = rdr.variable_labels() vl_expected = {u'Unicode_Cities_Strl': u'Here are some strls with Ünicode chars', u'Longs': u'long data', u'Things': u'Here are some things', u'Bytes': u'byte data', u'Ints': u'int data', u'Cities': u'Here are some cities', u'Floats': u'float data'} tm.assert_dict_equal(vl, vl_expected) self.assertEqual(rdr.data_label, u'This is a Ünicode data label')
def read_stata(self, *args, **kwargs): reader = StataReader(*args, **kwargs) self.df = reader.data() self.variable_labels = reader.variable_labels() self._initialize_variable_labels() self.value_labels = reader.value_labels() # self.data_label = reader.data_label() return self.df
def test_data_method(self): # Minimal testing of legacy data method reader_114 = StataReader(self.dta1_114) with warnings.catch_warnings(record=True) as w: parsed_114_data = reader_114.data() reader_114 = StataReader(self.dta1_114) parsed_114_read = reader_114.read() tm.assert_frame_equal(parsed_114_data, parsed_114_read)
def test_read_dta1(self): reader = StataReader(self.dta1) parsed = reader.data() # Pandas uses np.nan as missing value. Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) for i, col in enumerate(parsed.columns): np.testing.assert_almost_equal( parsed[col], expected[expected.columns[i]] )
def test_read_dta1(self): reader = StataReader(self.dta1) parsed = reader.data() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed, expected)
def _retrieve_data(dtafile): '''retrieve data dictionary from STATA .dta file''' datafile = os.path.basename(dtafile).split('.') if len(datafile) != 2: raise ValueError('dtafile must look like "file.dta"') if datafile[1] != 'dta': raise ValueError('dtafile must have ".dta" extension') base = datafile[0] hdf = os.path.join('.data_cache', '{}.h5'.format(base)) lPickle = os.path.join('.data_cache', '{}_labels.pickle'.format(base)) vPickle = os.path.join('.data_cache', '{}_vlabels.pickle'.format(base)) dTime = os.path.join('.data_cache', '{}_dtime.pickle'.format(base)) if all([os.path.isfile(d) for d in [hdf, lPickle, vPickle, dTime]]): if os.path.getmtime(dtafile) == cPickle.load(open(dTime, 'rb')): from pandas import read_hdf data = read_hdf(hdf, 'data') labels = cPickle.load(open(lPickle, 'rb')) vlabels = cPickle.load(open(vPickle, 'rb')) elif not os.path.isdir('.data_cache'): os.makedirs('.data_cache') try: data except: from pandas.io.stata import StataReader from pandas import HDFStore print "Data is changed or no cached data found" print "Creating data objects from {}".format(dtafile) reader = StataReader(dtafile) data = reader.data(convert_dates=False,convert_categoricals=False) labels = reader.variable_labels() vlabels = reader.value_labels() store = HDFStore(hdf) store['data'] = data cPickle.dump(labels, open(lPickle, 'wb')) cPickle.dump(vlabels, open(vPickle, 'wb')) cPickle.dump(os.path.getmtime(dtafile), open(dTime, 'wb')) store.close() return {'data':data, 'labels':labels, 'vlabels':vlabels}
def test_read_dta1(self): reader_114 = StataReader(self.dta1_114) parsed_114 = reader_114.data() reader_117 = StataReader(self.dta1_117) parsed_117 = reader_117.data() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame( [(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], ) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected["float_miss"] = expected["float_miss"].astype(np.float32) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_117, expected)
from setup_prediction_lag import predict_abc from load_data import extrap, abcd from paths import paths #---------------------------------------------------------------- seed = 1234 aux_draw = 99 #---------------------------------------------------------------- # bring in file with indexes for extrapolation bootstrap reader = StataReader(paths.psid_bsid) psid = reader.data(convert_dates=False, convert_categoricals=False) psid = psid.iloc[:,0:aux_draw] # limit PSID to the number of repetitions you need nlsy = pd.read_csv(paths.nlsy_bsid) # set up extrapolation indexes (there are multiple data sets) extrap_index = pd.concat([psid, nlsy], axis=0, keys=('psid', 'nlsy'), names=('dataset','id')) extrap_source= ['psid' for j in range(0, psid.shape[0])] + ['nlsy' for k in range(0, nlsy.shape[0])] #---------------------------------------------------------------- def boot_predict_aux(extrap, adraw): # prepare indexes of extrapolation data for bootstrap extrap_draw = extrap_index.loc[:, 'draw{}'.format(adraw)] extrap_tuples = list(zip(*[extrap_source,extrap_draw]))
if not os.path.exists(paths.data): os.mkdir(paths.data) '''Load and Cache Datasets ----------------------- Notes: - Ensures no overlap in id - Trims observations with any labor income over $300,000 (U.S., 2014) ''' #-------------------------------------------------------------------- print "Loading PSID" reader = StataReader(paths.psid) psid = reader.read(convert_dates=False, convert_categoricals=False) psid = psid.dropna(subset=['id']).set_index('id') # Trimming inc = psid.filter(regex='^inc_labor[0-9][0-9]') psid = psid.loc[psid.male == 0] psid = psid.loc[psid.black == 1] psid = psid.loc[((inc < inc.quantile(0.90)) | (inc.isnull())).all(axis=1)] # Interpolating plong = pd.wide_to_long(psid[inc.columns].reset_index(), ['inc_labor'], i='id', j='age').sort_index() plong = plong.interpolate(limit=5) pwide = plong.unstack() pwide.columns = pwide.columns.droplevel(0)
def meta_labels(self): """Read the labels for the variables and code values for the variables, using the Stata reader. """ import re import os import struct import pandas as pd from pandas.io.stata import StataReader var_labels = None val_labels = None if not os.path.exists(self.filesystem.path('meta','variable_labels.yaml')): for name, fn in self.sources(): if name.endswith('l'): self.log("Getting labels for {} from {} (This is really slow)".format(name, fn)) reader = StataReader(fn) df = reader.data() # Can't get labels before reading data var_labels = reader.variable_labels() val_labels = reader.value_labels() break self.filesystem.write_yaml(var_labels, 'meta','variable_labels.yaml') self.filesystem.write_yaml(val_labels, 'meta','value_labels.yaml') else: self.log("Skipping extracts; already exist") # The value codes include both the value codes and the imputation codes. The imputation codes # are extracted as positive integers, when they really should be negative. table_values = {} imputation_values = {} if not val_labels: val_labels = self.filesystem.read_yaml('meta','value_labels.yaml') for k,v in val_labels.items(): table_values[k] = {} imputation_values[k] = { -10: 'NO IMPUTATION' } for code, code_val in v.items(): signed_code = struct.unpack('i',struct.pack('I',int(code)))[0] # Convert the unsigned to signed if signed_code < 0: imputation_values[k][signed_code] = code_val else: table_values[k][code] = code_val self.filesystem.write_yaml(table_values, 'meta','table_codes.yaml') self.filesystem.write_yaml(imputation_values, 'meta','imputation_codes.yaml') self.log("{} table variables".format(len(table_values))) self.log("{} imputation variables".format(len(imputation_values))) return True
Desc: This code selects the IPW variables for specific ABC outcomes. We only do this for the pooled sample to increase power. We use a linear probiaility model for this. We select the 3 variables that minimize the BIC. """ import pandas as pd from pandas.io.stata import StataReader import numpy as np import statsmodels.api as sm from patsy import dmatrices import itertools from paths import paths # import data reader = StataReader(paths.abccare) data = reader.read(convert_dates=False, convert_categoricals=False) data = data.set_index('id') data = data.sort_index() data.drop(data.loc[(data.RV==1) & (data.R==0)].index, inplace=True) # bring in outcomes files, and find the ABC-only/CARE-only ones outcomes = pd.read_csv(paths.outcomes, index_col='variable') only_abc = outcomes.loc[outcomes.only_abc == 1].index only_care = outcomes.loc[outcomes.only_care == 1].index bank = pd.read_csv(paths.controls) ipwvars = np.unique(outcomes.loc[~outcomes.ipw_var.isnull(),'ipw_var'].get_values()) # generate the list of all possible models models = itertools.chain.from_iterable([itertools.combinations(bank.loc[:, 'variable'], 3)])
if not os.path.exists(paths.data): os.mkdir(paths.data) '''Load and Cache Datasets ----------------------- Notes: - Ensures no overlap in id - Trims observations with any labor income over $300,000 (U.S., 2014) ''' #-------------------------------------------------------------------- print "Loading CNLSY" reader = StataReader(paths.cnlsy) cnlsy = reader.read(convert_dates=False, convert_categoricals=False) cnlsy = cnlsy.dropna(subset=['id']).set_index('id') # ABC weights wtabc = cnlsy.filter(regex='^wtabc_id[0-9]') # Trimming inc = cnlsy.filter(regex='^inc_labor[0-9][0-9]') cnlsy = cnlsy.loc[((inc < 300000) | (inc.isnull())).all(axis=1)] # Interpolating clong = pd.wide_to_long(cnlsy[inc.columns].reset_index(), ['inc_labor'], i='id', j='age').sort_index() clong = clong.interpolate(limit=1) cwide = clong.unstack()