Esempio n. 1
0
class TestSeriesFlexArithmetic:
    @pytest.mark.parametrize(
        "ts",
        [
            (lambda x: x, lambda x: x * 2, False),
            (lambda x: x, lambda x: x[::2], False),
            (lambda x: x, lambda x: 5, True),
            (lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(),
             True),
        ],
    )
    @pytest.mark.parametrize(
        "opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"])
    def test_flex_method_equivalence(self, opname, ts):
        # check that Series.{opname} behaves like Series.__{opname}__,
        tser = tm.makeTimeSeries().rename("ts")

        series = ts[0](tser)
        other = ts[1](tser)
        check_reverse = ts[2]

        op = getattr(Series, opname)
        alt = getattr(operator, opname)

        result = op(series, other)
        expected = alt(series, other)
        tm.assert_almost_equal(result, expected)
        if check_reverse:
            rop = getattr(Series, "r" + opname)
            result = rop(series, other)
            expected = alt(other, series)
            tm.assert_almost_equal(result, expected)
Esempio n. 2
0
    def test_op_method(self):
        def check(series, other, check_reverse=False):
            simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow']
            if not compat.PY3:
                simple_ops.append('div')

            for opname in simple_ops:
                op = getattr(Series, opname)

                if op == 'div':
                    alt = operator.truediv
                else:
                    alt = getattr(operator, opname)

                result = op(series, other)
                expected = alt(series, other)
                tm.assert_almost_equal(result, expected)
                if check_reverse:
                    rop = getattr(Series, "r" + opname)
                    result = rop(series, other)
                    expected = alt(other, series)
                    tm.assert_almost_equal(result, expected)

        check(self.ts, self.ts * 2)
        check(self.ts, self.ts[::2])
        check(self.ts, 5, check_reverse=True)
        check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True)
Esempio n. 3
0
    def test_op_method(self):
        def check(series, other, check_reverse=False):
            simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow']
            if not compat.PY3:
                simple_ops.append('div')

            for opname in simple_ops:
                op = getattr(Series, opname)

                if op == 'div':
                    alt = operator.truediv
                else:
                    alt = getattr(operator, opname)

                result = op(series, other)
                expected = alt(series, other)
                tm.assert_almost_equal(result, expected)
                if check_reverse:
                    rop = getattr(Series, "r" + opname)
                    result = rop(series, other)
                    expected = alt(other, series)
                    tm.assert_almost_equal(result, expected)

        check(self.ts, self.ts * 2)
        check(self.ts, self.ts[::2])
        check(self.ts, 5, check_reverse=True)
        check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True)
Esempio n. 4
0
class TestSeriesFlexArithmetic:
    @pytest.mark.parametrize('ts', [
        (lambda x: x, lambda x: x * 2, False),
        (lambda x: x, lambda x: x[::2], False),
        (lambda x: x, lambda x: 5, True),
        (lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(), True)
    ])
    @pytest.mark.parametrize(
        'opname', ['add', 'sub', 'mul', 'floordiv', 'truediv', 'div', 'pow'])
    def test_flex_method_equivalence(self, opname, ts):
        # check that Series.{opname} behaves like Series.__{opname}__,
        tser = tm.makeTimeSeries().rename('ts')

        series = ts[0](tser)
        other = ts[1](tser)
        check_reverse = ts[2]

        if opname == 'div':
            pytest.skip('div test only for Py3')

        op = getattr(Series, opname)

        if op == 'div':
            alt = operator.truediv
        else:
            alt = getattr(operator, opname)

        result = op(series, other)
        expected = alt(series, other)
        tm.assert_almost_equal(result, expected)
        if check_reverse:
            rop = getattr(Series, "r" + opname)
            result = rop(series, other)
            expected = alt(other, series)
            tm.assert_almost_equal(result, expected)
Esempio n. 5
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries(),
                tm.makeTimeSeries(),
                tm.makePeriodSeries()
        ]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [
                tm.makeTimeDataFrame(),
                tm.makePeriodFrame(),
                tm.makeMixedDataFrame()
        ]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)
Esempio n. 6
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel(), tm.makePeriodPanel(),
                      tm.add_nans(tm.makePanel())]:
                result = isna_f(p)
                expected = p.apply(isna_f)
                tm.assert_panel_equal(result, expected)
Esempio n. 7
0
    def test_squeeze(self):
        # noop
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            empty_panel = Panel({'six': empty_frame})

        [tm.assert_series_equal(empty_series, higher_dim.squeeze())
         for higher_dim in [empty_series, empty_frame, empty_panel]]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        pytest.raises(ValueError, df.squeeze, axis=2)
        pytest.raises(ValueError, df.squeeze, axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Esempio n. 8
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    # series
    for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
              tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
        assert(isinstance(isnull(s), Series))

    # frame
    for df in [tm.makeTimeDataFrame(),tm.makePeriodFrame(),tm.makeMixedDataFrame()]:
        result = isnull(df)
        expected = df.apply(isnull)
        tm.assert_frame_equal(result, expected)

    # panel
    for p in [ tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel()) ]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel_equal(result, expected)

    # panel 4d
    for p in [ tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D()) ]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel4d_equal(result, expected)
Esempio n. 9
0
    def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(
                    p.transpose(2, 0, 1).transpose(1, 2, 0), p)
                tm.assert_raises_regex(TypeError,
                                       msg,
                                       p.transpose,
                                       2,
                                       0,
                                       1,
                                       axes=(2, 0, 1))
Esempio n. 10
0
    def test_numpy_transpose(self):
        msg = "the 'axes' parameter is not supported"

        s = tm.makeFloatSeries()
        tm.assert_series_equal(
            np.transpose(s), s)
        tm.assert_raises_regex(ValueError, msg,
                               np.transpose, s, axes=1)

        df = tm.makeTimeDataFrame()
        tm.assert_frame_equal(np.transpose(
            np.transpose(df)), df)
        tm.assert_raises_regex(ValueError, msg,
                               np.transpose, df, axes=1)

        with catch_warnings(record=True):
            p = tm.makePanel()
            tm.assert_panel_equal(np.transpose(
                np.transpose(p, axes=(2, 0, 1)),
                axes=(1, 2, 0)), p)

        with catch_warnings(record=True):
            p4d = tm.makePanel4D()
            tm.assert_panel4d_equal(np.transpose(
                np.transpose(p4d, axes=(2, 0, 3, 1)),
                axes=(1, 3, 0, 2)), p4d)
Esempio n. 11
0
    def test_squeeze(self):
        # noop
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)
        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.squeeze(), p)
        with catch_warnings(record=True):
            for p4d in [tm.makePanel4D()]:
                tm.assert_panel4d_equal(p4d.squeeze(), p4d)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        with catch_warnings(record=True):
            p = tm.makePanel().reindex(items=['ItemA'])
            tm.assert_frame_equal(p.squeeze(), p['ItemA'])

            p = tm.makePanel().reindex(items=['ItemA'], minor_axis=['A'])
            tm.assert_series_equal(p.squeeze(), p.loc['ItemA', :, 'A'])

        with catch_warnings(record=True):
            p4d = tm.makePanel4D().reindex(labels=['label1'])
            tm.assert_panel_equal(p4d.squeeze(), p4d['label1'])

        with catch_warnings(record=True):
            p4d = tm.makePanel4D().reindex(labels=['label1'], items=['ItemA'])
            tm.assert_frame_equal(p4d.squeeze(), p4d.loc['label1', 'ItemA'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            empty_panel = Panel({'six': empty_frame})

        [
            tm.assert_series_equal(empty_series, higher_dim.squeeze())
            for higher_dim in [empty_series, empty_frame, empty_panel]
        ]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        pytest.raises(ValueError, df.squeeze, axis=2)
        pytest.raises(ValueError, df.squeeze, axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Esempio n. 12
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            for p in [tm.makePanel(), tm.makePeriodPanel(),
                      tm.add_nans(tm.makePanel())]:
                result = isna_f(p)
                expected = p.apply(isna_f)
                tm.assert_panel_equal(result, expected)
Esempio n. 13
0
    def test_squeeze(self):
        # noop
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)
        for p in [tm.makePanel()]:
            tm.assert_panel_equal(p.squeeze(), p)
        for p4d in [tm.makePanel4D()]:
            tm.assert_panel4d_equal(p4d.squeeze(), p4d)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        p = tm.makePanel().reindex(items=['ItemA'])
        tm.assert_frame_equal(p.squeeze(), p['ItemA'])

        p = tm.makePanel().reindex(items=['ItemA'], minor_axis=['A'])
        tm.assert_series_equal(p.squeeze(), p.ix['ItemA', :, 'A'])

        p4d = tm.makePanel4D().reindex(labels=['label1'])
        tm.assert_panel_equal(p4d.squeeze(), p4d['label1'])

        p4d = tm.makePanel4D().reindex(labels=['label1'], items=['ItemA'])
        tm.assert_frame_equal(p4d.squeeze(), p4d.ix['label1', 'ItemA'])
Esempio n. 14
0
    def test_isnull(self):
        self.assertFalse(isnull(1.))
        self.assertTrue(isnull(None))
        self.assertTrue(isnull(np.NaN))
        self.assertTrue(float('nan'))
        self.assertFalse(isnull(np.inf))
        self.assertFalse(isnull(-np.inf))

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isnull(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isnull(df)
            expected = df.apply(isnull)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            for p in [tm.makePanel(), tm.makePeriodPanel(),
                      tm.add_nans(tm.makePanel())]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel_equal(result, expected)

        # panel 4d
        with catch_warnings(record=True):
            for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel4d_equal(result, expected)
Esempio n. 15
0
    def test_take_invalid_kwargs(self):
        indices = [-3, 2, 0, 1]
        s = tm.makeFloatSeries()
        df = tm.makeTimeDataFrame()

        with catch_warnings(record=True):
            p = tm.makePanel()

        for obj in (s, df, p):
            msg = r"take\(\) got an unexpected keyword argument 'foo'"
            tm.assert_raises_regex(TypeError, msg, obj.take, indices, foo=2)

            msg = "the 'out' parameter is not supported"
            tm.assert_raises_regex(ValueError,
                                   msg,
                                   obj.take,
                                   indices,
                                   out=indices)

            msg = "the 'mode' parameter is not supported"
            tm.assert_raises_regex(ValueError,
                                   msg,
                                   obj.take,
                                   indices,
                                   mode='clip')
Esempio n. 16
0
def test_notnull():
    assert notnull(1.)
    assert not notnull(None)
    assert not notnull(np.NaN)

    with cf.option_context("mode.use_inf_as_null", False):
        assert notnull(np.inf)
        assert notnull(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notnull(arr)
        assert result.all()

    with cf.option_context("mode.use_inf_as_null", True):
        assert not notnull(np.inf)
        assert not notnull(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notnull(arr)
        assert result.sum() == 2

    with cf.option_context("mode.use_inf_as_null", False):
        for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
                  tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
            assert(isinstance(isnull(s), Series))
Esempio n. 17
0
 def test_transpose(self):
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
               tm.makeObjectSeries()]:
         # calls implementation in pandas/core/base.py
         tm.assert_series_equal(s.transpose(), s)
     for df in [tm.makeTimeDataFrame()]:
         tm.assert_frame_equal(df.transpose().transpose(), df)
Esempio n. 18
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    # series
    for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
              tm.makeObjectSeries(), tm.makeTimeSeries(),
              tm.makePeriodSeries()]:
        assert (isinstance(isnull(s), Series))

    # frame
    for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
               tm.makeMixedDataFrame()]:
        result = isnull(df)
        expected = df.apply(isnull)
        tm.assert_frame_equal(result, expected)

    # panel
    for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())
              ]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel_equal(result, expected)

    # panel 4d
    for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]:
        result = isnull(p)
        expected = p.apply(isnull)
        tm.assert_panel4d_equal(result, expected)
Esempio n. 19
0
 def test_transpose(self):
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
               tm.makeObjectSeries()]:
         # calls implementation in pandas/core/base.py
         tm.assert_series_equal(s.transpose(), s)
     for df in [tm.makeTimeDataFrame()]:
         tm.assert_frame_equal(df.transpose().transpose(), df)
Esempio n. 20
0
    def test_isnull(self):
        self.assertFalse(isnull(1.))
        self.assertTrue(isnull(None))
        self.assertTrue(isnull(np.NaN))
        self.assertTrue(float('nan'))
        self.assertFalse(isnull(np.inf))
        self.assertFalse(isnull(-np.inf))

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            self.assertIsInstance(isnull(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isnull(df)
            expected = df.apply(isnull)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            for p in [tm.makePanel(), tm.makePeriodPanel(),
                      tm.add_nans(tm.makePanel())]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel_equal(result, expected)

        # panel 4d
        with catch_warnings(record=True):
            for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]:
                result = isnull(p)
                expected = p.apply(isnull)
                tm.assert_panel4d_equal(result, expected)
Esempio n. 21
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.0)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float("nan")
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # type
        assert not isna_f(type(pd.Series(dtype=object)))
        assert not isna_f(type(pd.Series(dtype=np.float64)))
        assert not isna_f(type(pd.DataFrame()))

        # series
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries(),
                tm.makeTimeSeries(),
                tm.makePeriodSeries(),
        ]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [
                tm.makeTimeDataFrame(),
                tm.makePeriodFrame(),
                tm.makeMixedDataFrame(),
        ]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)
Esempio n. 22
0
    def test_squeeze(self):
        # noop
        for s in [ tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries() ]:
            tm.assert_series_equal(s.squeeze(),s)
        for df in [ tm.makeTimeDataFrame() ]:
            tm.assert_frame_equal(df.squeeze(),df)
        for p in [ tm.makePanel() ]:
            tm.assert_panel_equal(p.squeeze(),p)
        for p4d in [ tm.makePanel4D() ]:
            tm.assert_panel4d_equal(p4d.squeeze(),p4d)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(),df['A'])

        p = tm.makePanel().reindex(items=['ItemA'])
        tm.assert_frame_equal(p.squeeze(),p['ItemA'])

        p = tm.makePanel().reindex(items=['ItemA'],minor_axis=['A'])
        tm.assert_series_equal(p.squeeze(),p.ix['ItemA',:,'A'])

        p4d = tm.makePanel4D().reindex(labels=['label1'])
        tm.assert_panel_equal(p4d.squeeze(),p4d['label1'])

        p4d = tm.makePanel4D().reindex(labels=['label1'],items=['ItemA'])
        tm.assert_frame_equal(p4d.squeeze(),p4d.ix['label1','ItemA'])
Esempio n. 23
0
    def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices), dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected)
Esempio n. 24
0
def test_notnull():
    assert notnull(1.)
    assert not notnull(None)
    assert not notnull(np.NaN)

    with cf.option_context("mode.use_inf_as_null", False):
        assert notnull(np.inf)
        assert notnull(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notnull(arr)
        assert result.all()

    with cf.option_context("mode.use_inf_as_null", True):
        assert not notnull(np.inf)
        assert not notnull(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notnull(arr)
        assert result.sum() == 2

    with cf.option_context("mode.use_inf_as_null", False):
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert (isinstance(isnull(s), Series))
Esempio n. 25
0
    def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices),
                              dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected)
Esempio n. 26
0
    def test_squeeze(self):
        # noop
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=["A"])
        tm.assert_series_equal(df.squeeze(), df["A"])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name="five", dtype=np.float64)
        empty_frame = DataFrame([empty_series])
        tm.assert_series_equal(empty_series, empty_series.squeeze())
        tm.assert_series_equal(empty_series, empty_frame.squeeze())

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        msg = "No axis named 2 for object type <class 'pandas.core.frame.DataFrame'>"
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis=2)
        msg = "No axis named x for object type <class 'pandas.core.frame.DataFrame'>"
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis="x")

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Esempio n. 27
0
    def test_squeeze(self):
        # noop
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)
        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.squeeze(), p)
        with catch_warnings(record=True):
            for p4d in [tm.makePanel4D()]:
                tm.assert_panel4d_equal(p4d.squeeze(), p4d)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        with catch_warnings(record=True):
            p = tm.makePanel().reindex(items=['ItemA'])
            tm.assert_frame_equal(p.squeeze(), p['ItemA'])

            p = tm.makePanel().reindex(items=['ItemA'], minor_axis=['A'])
            tm.assert_series_equal(p.squeeze(), p.loc['ItemA', :, 'A'])

        with catch_warnings(record=True):
            p4d = tm.makePanel4D().reindex(labels=['label1'])
            tm.assert_panel_equal(p4d.squeeze(), p4d['label1'])

        with catch_warnings(record=True):
            p4d = tm.makePanel4D().reindex(labels=['label1'], items=['ItemA'])
            tm.assert_frame_equal(p4d.squeeze(), p4d.loc['label1', 'ItemA'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            empty_panel = Panel({'six': empty_frame})

        [tm.assert_series_equal(empty_series, higher_dim.squeeze())
         for higher_dim in [empty_series, empty_frame, empty_panel]]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        pytest.raises(ValueError, df.squeeze, axis=2)
        pytest.raises(ValueError, df.squeeze, axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Esempio n. 28
0
 def test_take(self):
     indices = [1, 5, -2, 6, 3, -1]
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
               tm.makeObjectSeries()]:
         out = s.take(indices)
         expected = Series(data=s.values.take(indices),
                           index=s.index.take(indices), dtype=s.dtype)
         tm.assert_series_equal(out, expected)
     for df in [tm.makeTimeDataFrame()]:
         out = df.take(indices)
         expected = DataFrame(data=df.values.take(indices, axis=0),
                              index=df.index.take(indices),
                              columns=df.columns)
         tm.assert_frame_equal(out, expected)
Esempio n. 29
0
    def test_numpy_transpose(self):
        msg = "the 'axes' parameter is not supported"

        s = tm.makeFloatSeries()
        tm.assert_series_equal(np.transpose(s), s)

        with pytest.raises(ValueError, match=msg):
            np.transpose(s, axes=1)

        df = tm.makeTimeDataFrame()
        tm.assert_frame_equal(np.transpose(np.transpose(df)), df)

        with pytest.raises(ValueError, match=msg):
            np.transpose(df, axes=1)
Esempio n. 30
0
    def test_numpy_transpose(self):
        msg = "the 'axes' parameter is not supported"

        s = tm.makeFloatSeries()
        tm.assert_series_equal(np.transpose(s), s)

        with pytest.raises(ValueError, match=msg):
            np.transpose(s, axes=1)

        df = tm.makeTimeDataFrame()
        tm.assert_frame_equal(np.transpose(np.transpose(df)), df)

        with pytest.raises(ValueError, match=msg):
            np.transpose(df, axes=1)
Esempio n. 31
0
 def test_take(self):
     indices = [1, 5, -2, 6, 3, -1]
     for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
               tm.makeObjectSeries()]:
         out = s.take(indices)
         expected = Series(data=s.values.take(indices),
                           index=s.index.take(indices), dtype=s.dtype)
         tm.assert_series_equal(out, expected)
     for df in [tm.makeTimeDataFrame()]:
         out = df.take(indices)
         expected = DataFrame(data=df.values.take(indices, axis=0),
                              index=df.index.take(indices),
                              columns=df.columns)
         tm.assert_frame_equal(out, expected)
Esempio n. 32
0
    def test_numpy_transpose(self):
        msg = "the 'axes' parameter is not supported"

        s = tm.makeFloatSeries()
        tm.assert_series_equal(np.transpose(s), s)
        tm.assert_raises_regex(ValueError, msg, np.transpose, s, axes=1)

        df = tm.makeTimeDataFrame()
        tm.assert_frame_equal(np.transpose(np.transpose(df)), df)
        tm.assert_raises_regex(ValueError, msg, np.transpose, df, axes=1)

        with catch_warnings(record=True):
            p = tm.makePanel()
            tm.assert_panel_equal(
                np.transpose(np.transpose(p, axes=(2, 0, 1)), axes=(1, 2, 0)),
                p)
Esempio n. 33
0
    def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.transpose(2, 0, 1)
                                      .transpose(1, 2, 0), p)
                tm.assert_raises_regex(TypeError, msg, p.transpose,
                                       2, 0, 1, axes=(2, 0, 1))
Esempio n. 34
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
              tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
        assert(isinstance(isnull(s), np.ndarray))

    # call on DataFrame
    df = DataFrame(np.random.randn(10, 5))
    df['foo'] = 'bar'
    result = isnull(df)
    expected = result.apply(isnull)
    tm.assert_frame_equal(result, expected)
Esempio n. 35
0
    def test_take_invalid_kwargs(self):
        indices = [-3, 2, 0, 1]
        s = tm.makeFloatSeries()
        df = tm.makeTimeDataFrame()

        for obj in (s, df):
            msg = r"take\(\) got an unexpected keyword argument 'foo'"
            with pytest.raises(TypeError, match=msg):
                obj.take(indices, foo=2)

            msg = "the 'out' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, out=indices)

            msg = "the 'mode' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, mode='clip')
Esempio n. 36
0
def test_isnull():
    assert not isnull(1.)
    assert isnull(None)
    assert isnull(np.NaN)
    assert not isnull(np.inf)
    assert not isnull(-np.inf)

    for s in [tm.makeFloatSeries(),tm.makeStringSeries(),
              tm.makeObjectSeries(),tm.makeTimeSeries(),tm.makePeriodSeries()]:
            assert(isinstance(isnull(s), Series))

    # call on DataFrame
    df = DataFrame(np.random.randn(10, 5))
    df['foo'] = 'bar'
    result = isnull(df)
    expected = result.apply(isnull)
    tm.assert_frame_equal(result, expected)
Esempio n. 37
0
    def test_squeeze(self):
        # noop
        for s in [
                tm.makeFloatSeries(),
                tm.makeStringSeries(),
                tm.makeObjectSeries()
        ]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            empty_panel = Panel({'six': empty_frame})

        [
            tm.assert_series_equal(empty_series, higher_dim.squeeze())
            for higher_dim in [empty_series, empty_frame, empty_panel]
        ]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        msg = ("No axis named 2 for object type <class"
               " 'pandas.core.frame.DataFrame'>")
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis=2)
        msg = ("No axis named x for object type <class"
               " 'pandas.core.frame.DataFrame'>")
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Esempio n. 38
0
    def test_take_invalid_kwargs(self):
        indices = [-3, 2, 0, 1]
        s = tm.makeFloatSeries()
        df = tm.makeTimeDataFrame()

        for obj in (s, df):
            msg = r"take\(\) got an unexpected keyword argument 'foo'"
            with pytest.raises(TypeError, match=msg):
                obj.take(indices, foo=2)

            msg = "the 'out' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, out=indices)

            msg = "the 'mode' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, mode="clip")
Esempio n. 39
0
    def test_take_invalid_kwargs(self):
        indices = [-3, 2, 0, 1]
        s = tm.makeFloatSeries()
        df = tm.makeTimeDataFrame()

        with catch_warnings(record=True):
            p = tm.makePanel()

        for obj in (s, df, p):
            msg = r"take\(\) got an unexpected keyword argument 'foo'"
            tm.assert_raises_regex(TypeError, msg, obj.take,
                                   indices, foo=2)

            msg = "the 'out' parameter is not supported"
            tm.assert_raises_regex(ValueError, msg, obj.take,
                                   indices, out=indices)

            msg = "the 'mode' parameter is not supported"
            tm.assert_raises_regex(ValueError, msg, obj.take,
                                   indices, mode='clip')
Esempio n. 40
0
    def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)
Esempio n. 41
0
    def test_take_invalid_kwargs(self):
        indices = [-3, 2, 0, 1]
        s = tm.makeFloatSeries()
        df = tm.makeTimeDataFrame()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            p = tm.makePanel()

        for obj in (s, df, p):
            msg = r"take\(\) got an unexpected keyword argument 'foo'"
            with pytest.raises(TypeError, match=msg):
                obj.take(indices, foo=2)

            msg = "the 'out' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, out=indices)

            msg = "the 'mode' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, mode='clip')
Esempio n. 42
0
    def test_numpy_transpose(self):
        msg = "the 'axes' parameter is not supported"

        s = tm.makeFloatSeries()
        tm.assert_series_equal(np.transpose(s), s)

        with pytest.raises(ValueError, match=msg):
            np.transpose(s, axes=1)

        df = tm.makeTimeDataFrame()
        tm.assert_frame_equal(np.transpose(np.transpose(df)), df)

        with pytest.raises(ValueError, match=msg):
            np.transpose(df, axes=1)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            p = tm.makePanel()
            tm.assert_panel_equal(
                np.transpose(np.transpose(p, axes=(2, 0, 1)), axes=(1, 2, 0)),
                p)
Esempio n. 43
0
    def test_take_invalid_kwargs(self):
        indices = [-3, 2, 0, 1]
        s = tm.makeFloatSeries()
        df = tm.makeTimeDataFrame()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            p = tm.makePanel()

        for obj in (s, df, p):
            msg = r"take\(\) got an unexpected keyword argument 'foo'"
            with pytest.raises(TypeError, match=msg):
                obj.take(indices, foo=2)

            msg = "the 'out' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, out=indices)

            msg = "the 'mode' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                obj.take(indices, mode='clip')
Esempio n. 44
0
    def test_numpy_transpose(self):
        msg = "the 'axes' parameter is not supported"

        s = tm.makeFloatSeries()
        tm.assert_series_equal(np.transpose(s), s)

        with pytest.raises(ValueError, match=msg):
            np.transpose(s, axes=1)

        df = tm.makeTimeDataFrame()
        tm.assert_frame_equal(np.transpose(np.transpose(df)), df)

        with pytest.raises(ValueError, match=msg):
            np.transpose(df, axes=1)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            p = tm.makePanel()
            tm.assert_panel_equal(np.transpose(
                np.transpose(p, axes=(2, 0, 1)),
                axes=(1, 2, 0)), p)
Esempio n. 45
0
    def test_squeeze(self):
        # noop
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            tm.assert_series_equal(s.squeeze(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.squeeze(), df)

        # squeezing
        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(df.squeeze(), df['A'])

        # don't fail with 0 length dimensions GH11229 & GH8999
        empty_series = Series([], name='five')
        empty_frame = DataFrame([empty_series])

        [tm.assert_series_equal(empty_series, higher_dim.squeeze())
         for higher_dim in [empty_series, empty_frame]]

        # axis argument
        df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
        assert df.shape == (1, 1)
        tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis='index'), df.iloc[0])
        tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
        tm.assert_series_equal(df.squeeze(axis='columns'), df.iloc[:, 0])
        assert df.squeeze() == df.iloc[0, 0]
        msg = ("No axis named 2 for object type <class"
               " 'pandas.core.frame.DataFrame'>")
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis=2)
        msg = ("No axis named x for object type <class"
               " 'pandas.core.frame.DataFrame'>")
        with pytest.raises(ValueError, match=msg):
            df.squeeze(axis='x')

        df = tm.makeTimeDataFrame(3)
        tm.assert_frame_equal(df.squeeze(axis=0), df)
Esempio n. 46
0
import pandas.util.testing as pd_samples
from pandas.testing import assert_frame_equal, assert_series_equal

import pytest

from pandasbikeshed.fancyfilter import me

ex_df = pd_samples.makeDataFrame()
ex_df.iloc[0, :] = 0
ex_df.iloc[1, :] = np.nan
ex_df.iloc[2, :] = np.inf

ex_df2 = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['c', 'b', 'a']})
ex_df2.set_index('B', inplace=True)

ex_series = pd_samples.makeFloatSeries('test')


def test_nullindexing():
    assert_frame_equal(ex_df[me], ex_df)
    assert_series_equal(ex_series[me], ex_series)


@pytest.mark.parametrize('fancy,traditional', [
    (ex_df[me.A < 0], ex_df[ex_df.A < 0]),
    (ex_df[me.A <= 0], ex_df[ex_df.A <= 0]),
    (ex_df[me.A == 0], ex_df[ex_df.A == 0]),
    (ex_df[me.A != 0], ex_df[ex_df.A != 0]),
    (ex_df[me.A >= 0], ex_df[ex_df.A >= 0]),
    (ex_df[me.A > 0], ex_df[ex_df.A > 0]),
])
Esempio n. 47
0
    def test_numpy_squeeze(self):
        s = tm.makeFloatSeries()
        tm.assert_series_equal(np.squeeze(s), s)

        df = tm.makeTimeDataFrame().reindex(columns=["A"])
        tm.assert_series_equal(np.squeeze(df), df["A"])
Esempio n. 48
0
    def test_numpy_squeeze(self):
        s = tm.makeFloatSeries()
        tm.assert_series_equal(np.squeeze(s), s)

        df = tm.makeTimeDataFrame().reindex(columns=['A'])
        tm.assert_series_equal(np.squeeze(df), df['A'])
Esempio n. 49
0
class TestSeriesOperators(TestData):
    @pytest.mark.parametrize(
        'ts',
        [
            (lambda x: x, lambda x: x * 2, False),
            (lambda x: x, lambda x: x[::2], False),
            (lambda x: x, lambda x: 5, True),
            (lambda x: tm.makeFloatSeries(),
             lambda x: tm.makeFloatSeries(),
             True)
        ])
    @pytest.mark.parametrize('opname', ['add', 'sub', 'mul', 'floordiv',
                                        'truediv', 'div', 'pow'])
    def test_op_method(self, opname, ts):
        # check that Series.{opname} behaves like Series.__{opname}__,
        tser = tm.makeTimeSeries().rename('ts')

        series = ts[0](tser)
        other = ts[1](tser)
        check_reverse = ts[2]

        if opname == 'div' and compat.PY3:
            pytest.skip('div test only for Py3')

        op = getattr(Series, opname)

        if op == 'div':
            alt = operator.truediv
        else:
            alt = getattr(operator, opname)

        result = op(series, other)
        expected = alt(series, other)
        assert_almost_equal(result, expected)
        if check_reverse:
            rop = getattr(Series, "r" + opname)
            result = rop(series, other)
            expected = alt(other, series)
            assert_almost_equal(result, expected)

    def test_operators_empty_int_corner(self):
        s1 = Series([], [], dtype=np.int32)
        s2 = Series({'x': 0.})
        assert_series_equal(s1 * s2, Series([np.nan], index=['x']))

    def test_ops_datetimelike_align(self):
        # GH 7500
        # datetimelike ops need to align
        dt = Series(date_range('2012-1-1', periods=3, freq='D'))
        dt.iloc[2] = np.nan
        dt2 = dt[::-1]

        expected = Series([timedelta(0), timedelta(0), pd.NaT])
        # name is reset
        result = dt2 - dt
        assert_series_equal(result, expected)

        expected = Series(expected, name=0)
        result = (dt2.to_frame() - dt.to_frame())[0]
        assert_series_equal(result, expected)

    def test_operators_corner(self):
        series = self.ts

        empty = Series([], index=Index([]))

        result = series + empty
        assert np.isnan(result).all()

        result = empty + Series([], index=Index([]))
        assert len(result) == 0

        # TODO: this returned NotImplemented earlier, what to do?
        # deltas = Series([timedelta(1)] * 5, index=np.arange(5))
        # sub_deltas = deltas[::2]
        # deltas5 = deltas * 5
        # deltas = deltas + sub_deltas

        # float + int
        int_ts = self.ts.astype(int)[:-5]
        added = self.ts + int_ts
        expected = Series(self.ts.values[:-5] + int_ts.values,
                          index=self.ts.index[:-5], name='ts')
        tm.assert_series_equal(added[:-5], expected)

    pairings = []
    for op in ['add', 'sub', 'mul', 'pow', 'truediv', 'floordiv']:
        fv = 0
        lop = getattr(Series, op)
        lequiv = getattr(operator, op)
        rop = getattr(Series, 'r' + op)
        # bind op at definition time...
        requiv = lambda x, y, op=op: getattr(operator, op)(y, x)
        pairings.append((lop, lequiv, fv))
        pairings.append((rop, requiv, fv))
    if compat.PY3:
        pairings.append((Series.div, operator.truediv, 1))
        pairings.append((Series.rdiv, lambda x, y: operator.truediv(y, x), 1))
    else:
        pairings.append((Series.div, operator.div, 1))
        pairings.append((Series.rdiv, lambda x, y: operator.div(y, x), 1))

    @pytest.mark.parametrize('op, equiv_op, fv', pairings)
    def test_operators_combine(self, op, equiv_op, fv):
        def _check_fill(meth, op, a, b, fill_value=0):
            exp_index = a.index.union(b.index)
            a = a.reindex(exp_index)
            b = b.reindex(exp_index)

            amask = isna(a)
            bmask = isna(b)

            exp_values = []
            for i in range(len(exp_index)):
                with np.errstate(all='ignore'):
                    if amask[i]:
                        if bmask[i]:
                            exp_values.append(nan)
                            continue
                        exp_values.append(op(fill_value, b[i]))
                    elif bmask[i]:
                        if amask[i]:
                            exp_values.append(nan)
                            continue
                        exp_values.append(op(a[i], fill_value))
                    else:
                        exp_values.append(op(a[i], b[i]))

            result = meth(a, b, fill_value=fill_value)
            expected = Series(exp_values, exp_index)
            assert_series_equal(result, expected)

        a = Series([nan, 1., 2., 3., nan], index=np.arange(5))
        b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6))

        result = op(a, b)
        exp = equiv_op(a, b)
        assert_series_equal(result, exp)
        _check_fill(op, equiv_op, a, b, fill_value=fv)
        # should accept axis=0 or axis='rows'
        op(a, b, axis=0)

    def test_operators_na_handling(self):
        from decimal import Decimal
        from datetime import date
        s = Series([Decimal('1.3'), Decimal('2.3')],
                   index=[date(2012, 1, 1), date(2012, 1, 2)])

        result = s + s.shift(1)
        result2 = s.shift(1) + s
        assert isna(result[0])
        assert isna(result2[0])

    def test_op_duplicate_index(self):
        # GH14227
        s1 = Series([1, 2], index=[1, 1])
        s2 = Series([10, 10], index=[1, 2])
        result = s1 + s2
        expected = pd.Series([11, 12, np.nan], index=[1, 1, 2])
        assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "test_input,error_type",
        [
            (pd.Series([]), ValueError),

            # For strings, or any Series with dtype 'O'
            (pd.Series(['foo', 'bar', 'baz']), TypeError),
            (pd.Series([(1,), (2,)]), TypeError),

            # For mixed data types
            (
                pd.Series(['foo', 'foo', 'bar', 'bar', None, np.nan, 'baz']),
                TypeError
            ),
        ]
    )
    def test_assert_idxminmax_raises(self, test_input, error_type):
        """
        Cases where ``Series.argmax`` and related should raise an exception
        """
        with pytest.raises(error_type):
            test_input.idxmin()
        with pytest.raises(error_type):
            test_input.idxmin(skipna=False)
        with pytest.raises(error_type):
            test_input.idxmax()
        with pytest.raises(error_type):
            test_input.idxmax(skipna=False)

    def test_idxminmax_with_inf(self):
        # For numeric data with NA and Inf (GH #13595)
        s = pd.Series([0, -np.inf, np.inf, np.nan])

        assert s.idxmin() == 1
        assert np.isnan(s.idxmin(skipna=False))

        assert s.idxmax() == 2
        assert np.isnan(s.idxmax(skipna=False))

        # Using old-style behavior that treats floating point nan, -inf, and
        # +inf as missing
        with pd.option_context('mode.use_inf_as_na', True):
            assert s.idxmin() == 0
            assert np.isnan(s.idxmin(skipna=False))
            assert s.idxmax() == 0
            np.isnan(s.idxmax(skipna=False))
Esempio n. 50
0
class TestSeriesOperators(TestData):
    @pytest.mark.parametrize('ts', [
        (lambda x: x, lambda x: x * 2, False),
        (lambda x: x, lambda x: x[::2], False),
        (lambda x: x, lambda x: 5, True),
        (lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(), True)
    ])
    @pytest.mark.parametrize(
        'opname', ['add', 'sub', 'mul', 'floordiv', 'truediv', 'div', 'pow'])
    def test_op_method(self, opname, ts):
        # check that Series.{opname} behaves like Series.__{opname}__,
        tser = tm.makeTimeSeries().rename('ts')

        series = ts[0](tser)
        other = ts[1](tser)
        check_reverse = ts[2]

        if opname == 'div' and compat.PY3:
            pytest.skip('div test only for Py3')

        op = getattr(Series, opname)

        if op == 'div':
            alt = operator.truediv
        else:
            alt = getattr(operator, opname)

        result = op(series, other)
        expected = alt(series, other)
        assert_almost_equal(result, expected)
        if check_reverse:
            rop = getattr(Series, "r" + opname)
            result = rop(series, other)
            expected = alt(other, series)
            assert_almost_equal(result, expected)

    def test_neg(self):
        assert_series_equal(-self.series, -1 * self.series)

    def test_invert(self):
        assert_series_equal(-(self.series < 0), ~(self.series < 0))

    def test_operators_empty_int_corner(self):
        s1 = Series([], [], dtype=np.int32)
        s2 = Series({'x': 0.})
        assert_series_equal(s1 * s2, Series([np.nan], index=['x']))

    def test_ops_datetimelike_align(self):
        # GH 7500
        # datetimelike ops need to align
        dt = Series(date_range('2012-1-1', periods=3, freq='D'))
        dt.iloc[2] = np.nan
        dt2 = dt[::-1]

        expected = Series([timedelta(0), timedelta(0), pd.NaT])
        # name is reset
        result = dt2 - dt
        assert_series_equal(result, expected)

        expected = Series(expected, name=0)
        result = (dt2.to_frame() - dt.to_frame())[0]
        assert_series_equal(result, expected)

    @pytest.mark.parametrize('op', [
        operator.and_, operator.or_, operator.xor,
        pytest.param(ops.rand_,
                     marks=pytest.mark.xfail(reason="GH#22092 Index "
                                             "implementation returns "
                                             "Index",
                                             raises=AssertionError,
                                             strict=True)),
        pytest.param(ops.ror_,
                     marks=pytest.mark.xfail(reason="GH#22092 Index "
                                             "implementation raises",
                                             raises=ValueError,
                                             strict=True)),
        pytest.param(ops.rxor,
                     marks=pytest.mark.xfail(reason="GH#22092 Index "
                                             "implementation raises",
                                             raises=TypeError,
                                             strict=True))
    ])
    def test_bool_ops_with_index(self, op):
        # GH#22092, GH#19792
        ser = Series([True, True, False, False])
        idx1 = Index([True, False, True, False])
        idx2 = Index([1, 0, 1, 0])

        expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))])

        result = op(ser, idx1)
        assert_series_equal(result, expected)

        expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))],
                          dtype=bool)

        result = op(ser, idx2)
        assert_series_equal(result, expected)

    def test_operators_bitwise(self):
        # GH 9016: support bitwise op for integer types
        index = list('bca')

        s_tft = Series([True, False, True], index=index)
        s_fff = Series([False, False, False], index=index)
        s_tff = Series([True, False, False], index=index)
        s_empty = Series([])

        # TODO: unused
        # s_0101 = Series([0, 1, 0, 1])

        s_0123 = Series(range(4), dtype='int64')
        s_3333 = Series([3] * 4)
        s_4444 = Series([4] * 4)

        res = s_tft & s_empty
        expected = s_fff
        assert_series_equal(res, expected)

        res = s_tft | s_empty
        expected = s_tft
        assert_series_equal(res, expected)

        res = s_0123 & s_3333
        expected = Series(range(4), dtype='int64')
        assert_series_equal(res, expected)

        res = s_0123 | s_4444
        expected = Series(range(4, 8), dtype='int64')
        assert_series_equal(res, expected)

        s_a0b1c0 = Series([1], list('b'))

        res = s_tft & s_a0b1c0
        expected = s_tff.reindex(list('abc'))
        assert_series_equal(res, expected)

        res = s_tft | s_a0b1c0
        expected = s_tft.reindex(list('abc'))
        assert_series_equal(res, expected)

        n0 = 0
        res = s_tft & n0
        expected = s_fff
        assert_series_equal(res, expected)

        res = s_0123 & n0
        expected = Series([0] * 4)
        assert_series_equal(res, expected)

        n1 = 1
        res = s_tft & n1
        expected = s_tft
        assert_series_equal(res, expected)

        res = s_0123 & n1
        expected = Series([0, 1, 0, 1])
        assert_series_equal(res, expected)

        s_1111 = Series([1] * 4, dtype='int8')
        res = s_0123 & s_1111
        expected = Series([0, 1, 0, 1], dtype='int64')
        assert_series_equal(res, expected)

        res = s_0123.astype(np.int16) | s_1111.astype(np.int32)
        expected = Series([1, 1, 3, 3], dtype='int32')
        assert_series_equal(res, expected)

        with pytest.raises(TypeError):
            s_1111 & 'a'
        with pytest.raises(TypeError):
            s_1111 & ['a', 'b', 'c', 'd']
        with pytest.raises(TypeError):
            s_0123 & np.NaN
        with pytest.raises(TypeError):
            s_0123 & 3.14
        with pytest.raises(TypeError):
            s_0123 & [0.1, 4, 3.14, 2]

        # s_0123 will be all false now because of reindexing like s_tft
        if compat.PY3:
            # unable to sort incompatible object via .union.
            exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3])
            with tm.assert_produces_warning(RuntimeWarning):
                assert_series_equal(s_tft & s_0123, exp)
        else:
            exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c'])
            assert_series_equal(s_tft & s_0123, exp)

        # s_tft will be all false now because of reindexing like s_0123
        if compat.PY3:
            # unable to sort incompatible object via .union.
            exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a'])
            with tm.assert_produces_warning(RuntimeWarning):
                assert_series_equal(s_0123 & s_tft, exp)
        else:
            exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c'])
            assert_series_equal(s_0123 & s_tft, exp)

        assert_series_equal(s_0123 & False, Series([False] * 4))
        assert_series_equal(s_0123 ^ False, Series([False, True, True, True]))
        assert_series_equal(s_0123 & [False], Series([False] * 4))
        assert_series_equal(s_0123 & (False), Series([False] * 4))
        assert_series_equal(s_0123 & Series([False, np.NaN, False, False]),
                            Series([False] * 4))

        s_ftft = Series([False, True, False, True])
        assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft)

        s_abNd = Series(['a', 'b', np.NaN, 'd'])
        res = s_0123 & s_abNd
        expected = s_ftft
        assert_series_equal(res, expected)

    def test_scalar_na_cmp_corners(self):
        s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10])

        def tester(a, b):
            return a & b

        with pytest.raises(TypeError):
            s & datetime(2005, 1, 1)

        s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)])
        s[::2] = np.nan

        expected = Series(True, index=s.index)
        expected[::2] = False
        result = s & list(s)
        assert_series_equal(result, expected)

        d = DataFrame({'A': s})
        # TODO: Fix this exception - needs to be fixed! (see GH5035)
        # (previously this was a TypeError because series returned
        # NotImplemented

        # this is an alignment issue; these are equivalent
        # https://github.com/pandas-dev/pandas/issues/5284

        pytest.raises(ValueError, lambda: d.__and__(s, axis='columns'))
        pytest.raises(ValueError, tester, s, d)

        # this is wrong as its not a boolean result
        # result = d.__and__(s,axis='index')

    def test_operators_corner(self):
        series = self.ts

        empty = Series([], index=Index([]))

        result = series + empty
        assert np.isnan(result).all()

        result = empty + Series([], index=Index([]))
        assert len(result) == 0

        # TODO: this returned NotImplemented earlier, what to do?
        # deltas = Series([timedelta(1)] * 5, index=np.arange(5))
        # sub_deltas = deltas[::2]
        # deltas5 = deltas * 5
        # deltas = deltas + sub_deltas

        # float + int
        int_ts = self.ts.astype(int)[:-5]
        added = self.ts + int_ts
        expected = Series(self.ts.values[:-5] + int_ts.values,
                          index=self.ts.index[:-5],
                          name='ts')
        tm.assert_series_equal(added[:-5], expected)

    pairings = []
    for op in ['add', 'sub', 'mul', 'pow', 'truediv', 'floordiv']:
        fv = 0
        lop = getattr(Series, op)
        lequiv = getattr(operator, op)
        rop = getattr(Series, 'r' + op)
        # bind op at definition time...
        requiv = lambda x, y, op=op: getattr(operator, op)(y, x)
        pairings.append((lop, lequiv, fv))
        pairings.append((rop, requiv, fv))
    if compat.PY3:
        pairings.append((Series.div, operator.truediv, 1))
        pairings.append((Series.rdiv, lambda x, y: operator.truediv(y, x), 1))
    else:
        pairings.append((Series.div, operator.div, 1))
        pairings.append((Series.rdiv, lambda x, y: operator.div(y, x), 1))

    @pytest.mark.parametrize('op, equiv_op, fv', pairings)
    def test_operators_combine(self, op, equiv_op, fv):
        def _check_fill(meth, op, a, b, fill_value=0):
            exp_index = a.index.union(b.index)
            a = a.reindex(exp_index)
            b = b.reindex(exp_index)

            amask = isna(a)
            bmask = isna(b)

            exp_values = []
            for i in range(len(exp_index)):
                with np.errstate(all='ignore'):
                    if amask[i]:
                        if bmask[i]:
                            exp_values.append(nan)
                            continue
                        exp_values.append(op(fill_value, b[i]))
                    elif bmask[i]:
                        if amask[i]:
                            exp_values.append(nan)
                            continue
                        exp_values.append(op(a[i], fill_value))
                    else:
                        exp_values.append(op(a[i], b[i]))

            result = meth(a, b, fill_value=fill_value)
            expected = Series(exp_values, exp_index)
            assert_series_equal(result, expected)

        a = Series([nan, 1., 2., 3., nan], index=np.arange(5))
        b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6))

        result = op(a, b)
        exp = equiv_op(a, b)
        assert_series_equal(result, exp)
        _check_fill(op, equiv_op, a, b, fill_value=fv)
        # should accept axis=0 or axis='rows'
        op(a, b, axis=0)

    def test_operators_na_handling(self):
        from decimal import Decimal
        from datetime import date
        s = Series([Decimal('1.3'), Decimal('2.3')],
                   index=[date(2012, 1, 1), date(2012, 1, 2)])

        result = s + s.shift(1)
        result2 = s.shift(1) + s
        assert isna(result[0])
        assert isna(result2[0])

    def test_op_duplicate_index(self):
        # GH14227
        s1 = Series([1, 2], index=[1, 1])
        s2 = Series([10, 10], index=[1, 2])
        result = s1 + s2
        expected = pd.Series([11, 12, np.nan], index=[1, 1, 2])
        assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "test_input,error_type",
        [
            (pd.Series([]), ValueError),

            # For strings, or any Series with dtype 'O'
            (pd.Series(['foo', 'bar', 'baz']), TypeError),
            (pd.Series([(1, ), (2, )]), TypeError),

            # For mixed data types
            (pd.Series(['foo', 'foo', 'bar', 'bar', None, np.nan, 'baz'
                        ]), TypeError),
        ])
    def test_assert_idxminmax_raises(self, test_input, error_type):
        """
        Cases where ``Series.argmax`` and related should raise an exception
        """
        with pytest.raises(error_type):
            test_input.idxmin()
        with pytest.raises(error_type):
            test_input.idxmin(skipna=False)
        with pytest.raises(error_type):
            test_input.idxmax()
        with pytest.raises(error_type):
            test_input.idxmax(skipna=False)

    def test_idxminmax_with_inf(self):
        # For numeric data with NA and Inf (GH #13595)
        s = pd.Series([0, -np.inf, np.inf, np.nan])

        assert s.idxmin() == 1
        assert np.isnan(s.idxmin(skipna=False))

        assert s.idxmax() == 2
        assert np.isnan(s.idxmax(skipna=False))

        # Using old-style behavior that treats floating point nan, -inf, and
        # +inf as missing
        with pd.option_context('mode.use_inf_as_na', True):
            assert s.idxmin() == 0
            assert np.isnan(s.idxmin(skipna=False))
            assert s.idxmax() == 0
            np.isnan(s.idxmax(skipna=False))
Esempio n. 51
0
		np.zeros(10)
		pd.Series(np.arange(4,9)) # using the numpy function
		pd.Series(np.linspace(0,9,5)) # allows to specify the number of values to be created btw boundaries

		pd.Series(np.random.normal(size=5))
		np.random.randint(50,101,10)


		a = np.array([4] * 16)
		a[1::] = [42] * 15
		a[1:8:2] = 16


		import pandas.util.testing as tm
		tm.N, tm.K = 5,3
		tm.makeFloatSeries(), tm.makeBoolIndex(), tm.makeCategoricalIndex()
		tm.makeCustomIndex(nentries=4,nlevels=2), tm.makeFloatIndex(), tm.makeIntIndex()
		tm.makeMultiIndex(), tm.makeRangeIndex(), tm.makeIntervalIndex()

		# All possible combinations (Permutations)
			from itertools import permutations 
			my_list = [1,2,3]
			perm = list(permutations(my_list))

				#(1, 2, 3)
				#(1, 3, 2)
				#(2, 1, 3)
				#(2, 3, 1)
				#(3, 1, 2)
				#(3, 2, 1)