Esempio n. 1
0
def ta_volume_as_time(df: _t.PatchedPandas, volume="Volume"):
    if df.ndim > 1:
        res = df.copy()
        res.index = df[volume].cumsum()
        return res
    else:
        return _pd.Series(df.index, index=df.cumsum())
Esempio n. 2
0
def ta_z_norm(df: Typing.PatchedPandas,
              period=200,
              ddof=1,
              demean=True,
              lag=0):
    # (value - mean) / std
    s = df.rolling(period).std(ddof=ddof)
    a = (df - df.rolling(period).mean().shift(lag)) if demean else df
    return (a / s / 4).rename(df.name)
Esempio n. 3
0
def ta_z_norm(df: Typing.PatchedPandas, period=200, ddof=1, demean=True, lag=0):
    if has_indexed_columns(df):
        return pd.DataFrame(
            {col: ta_z_norm(df[col], period, ddof, demean) for col in df.columns},
            index=df.index
        )

    # (value - mean) / std
    s = df.rolling(period).std(ddof=ddof)
    a = (df - df.rolling(period).mean().shift(lag)) if demean else df
    return (a / s / 4).rename(df.name)
Esempio n. 4
0
def ta_ncdf_compress(df: Typing.PatchedPandas, period=200, lower_percentile=25, upper_percentile=75) -> Typing.PatchedPandas:
    if has_indexed_columns(df):
        return pd.DataFrame(
            {col: ta_ncdf_compress(df[col], period, lower_percentile, upper_percentile) for col in df.columns},
            index=df.index
        )

    f50 = df.rolling(period).mean().rename("f50")
    fup = df.rolling(period).apply(lambda x: np.percentile(x, upper_percentile)).rename("fup")
    flo = df.rolling(period).apply(lambda x: np.percentile(x, lower_percentile)).rename("flo")

    return pd.Series(norm.cdf(0.5 * (df - f50) / (fup - flo)) - 0.5, index=df.index, name=df.name)
def ta_ewma_covariance(df: Typing.PatchedPandas,
                       convert_to='returns',
                       alpha=0.97):
    data = df.copy()

    if convert_to == 'returns':
        data = df.pct_change()
    if convert_to == 'log-returns':
        data = _np.log(df) - _np.log(df.shift(1))

    data.columns = data.columns.to_list()
    return data.ewm(com=alpha).cov()
Esempio n. 6
0
def ta_ncdf_compress(df: Typing.PatchedPandas,
                     period=200,
                     lower_percentile=25,
                     upper_percentile=75) -> Typing.PatchedPandas:
    f50 = df.rolling(period).mean().rename("f50")
    fup = df.rolling(period).apply(
        lambda x: np.percentile(x, upper_percentile)).rename("fup")
    flo = df.rolling(period).apply(
        lambda x: np.percentile(x, lower_percentile)).rename("flo")

    return pd.Series(norm.cdf(0.5 * (df - f50) / (fup - flo)) - 0.5,
                     index=df.index,
                     name=df.name)
Esempio n. 7
0
def ta_backtest(signal: Typing.PatchedDataFrame,
                prices: Typing.PatchedPandas,
                action: Callable[[pd.Series], Tuple[int, float]],
                slippage: Callable[[float], float] = lambda _: 0):
    if has_indexed_columns(signal):
        assert len(signal.columns) == len(
            prices.columns), "Signal and Prices need the same shape!"
        res = pd.DataFrame({},
                           index=signal.index,
                           columns=pd.MultiIndex.from_product([[], []]))

        for i in range(len(signal.columns)):
            df = ta_backtest(signal[signal.columns[i]],
                             prices[prices.columns[i]], action, slippage)

            top_level_name = ",".join(prices.columns[i]) if isinstance(
                prices.columns[i], tuple) else prices.columns[i]
            df.columns = pd.MultiIndex.from_product([[top_level_name],
                                                     df.columns.to_list()])
            res = res.join(df)

        return res

    assert isinstance(prices, pd.Series), "prices need to be a series!"
    trades = StreamingTransactionLog()

    def trade_log_action(row):
        direction_amount = action(row)
        if isinstance(direction_amount, tuple):
            trades.perform_action(*direction_amount)
        else:
            trades.rebalance(float(direction_amount))

    signal.to_frame().apply(trade_log_action, axis=1, raw=True)
    return trades.evaluate(prices.rename("price"), slippage)
Esempio n. 8
0
def ta_week(po: _t.PatchedPandas):
    if not isinstance(po.index, _pd.DatetimeIndex):
        df = po.copy()
        df.index = _pd.to_datetime(df.index)
    else:
        df = po

    return (df.index.week / 52.0).to_series(index=po.index, name="week")
Esempio n. 9
0
def ta_sinusoidial_week_day(po: _t.PatchedPandas):
    if not isinstance(po.index, _pd.DatetimeIndex):
        df = po.copy()
        df.index = _pd.to_datetime(df.index)
    else:
        df = po

    return _np.sin(2 * _np.pi * (df.index.dayofweek / 6.0)).to_series(
        index=po.index, name="dow")
Esempio n. 10
0
def ta_sinusoidal_week(po: _t.PatchedPandas):
    if not isinstance(po.index, _pd.DatetimeIndex):
        df = po.copy()
        df.index = _pd.to_datetime(df.index)
    else:
        df = po

    return _np.sin(2 * _np.pi *
                   (df.index.isocalendar().week / 52.0)).rename("week")
def ta_inverse_gasf(df: Typing.PatchedPandas):
    if has_indexed_columns(df):
        # todo implement recursion
        pass

    def gaf_decode(x):
        values = x._.values
        values = values.reshape(values.shape[1:])
        return _np.sqrt(((_np.diag(values) + 1) / 2)).tolist()

    return df.to_frame().apply(gaf_decode, axis=1, result_type='expand')
Esempio n. 12
0
def ta_mean_returns(df: Typing.PatchedPandas, period=20) -> _PANDAS:
    return _wcs(f"mean_return_{period}",
                df.pct_change().rolling(period).mean())
Esempio n. 13
0
def ta_performance(df: Typing.PatchedPandas):
    delta = df.pct_change() + 1
    return delta.cumprod()
Esempio n. 14
0
def ta_log_returns(df: Typing.PatchedPandas, period=1):
    current = df
    lagged = df.shift(period)

    return _wcs("log_return", np.log(current) - np.log(lagged))
Esempio n. 15
0
def ta_returns(df: Typing.PatchedPandas, period=1):
    return _wcs("return", df.pct_change(periods=period))
Esempio n. 16
0
def ta_returns(df: Typing.PatchedPandas):
    return _wcs("return", df.pct_change())