Esempio n. 1
0
 def end_aws_connection(self):
     try:
       pr.close_up_shop()
       print("Connection closed")
     except Exception as e:
       print(e)
     return None
Esempio n. 2
0
def rs_data_select(query):
    pr.connect_to_redshift(dbname=DBNAME,
                           host=HOST,
                           port=PORT,
                           user=RS_ID,
                           password=RS_PW)
    df = pr.redshift_to_pandas(query)
    pr.close_up_shop()
    df = df.round(2)
    return df
Esempio n. 3
0
def db_pandas_query(query):
    """
    Read Redshift table into a pandas data frame
    """
    pr.connect_to_redshift(dbname=DB_NAME,
                           host=DB_HOST,
                           port=DB_PORT,
                           user=DB_USER,
                           password=DB_PASSWORD)
    data = pr.redshift_to_pandas(query)
    pr.close_up_shop()
    return data
Esempio n. 4
0
def get_distributions():
    with open('credentials.json') as json_data:
        credentials = json.load(json_data)

    pr.connect_to_redshift(dbname = 'muni',
                        host = 'jonobate.c9xvjgh0xspr.us-east-1.redshift.amazonaws.com',
                        port = '5439',
                        user = credentials['user'],
                        password = credentials['password'])

    df = pr.redshift_to_pandas("""select *,
                                    convert_timezone('US/Pacific', departure_time_hour) as local_departure_time_hour
                                     from distributions_gamma""")
    pr.close_up_shop()

    return df
Esempio n. 5
0
def stops_to_durations():

    connect_to_redshift()

    df = pr.redshift_to_pandas("""select a.* from
        (select data_frame_ref, stop_id from stop_events group by data_frame_ref, stop_id) a
        left join
        (select data_frame_ref, departure_stop_id from trip_durations group by data_frame_ref, departure_stop_id) b
        on a.data_frame_ref = b.data_frame_ref
        	and a.stop_id = b.departure_stop_id
        where b.data_frame_ref is null
        	and b.departure_stop_id is null
            and a.data_frame_ref < trunc(convert_timezone('US/Pacific', GETDATE()))
            order by a.data_frame_ref, a.stop_id;""")

    n_days_dep_stops = df.shape[0]

    for i, row in df.iterrows():
        data_frame_ref = row['data_frame_ref']
        dep_stop_id = row['stop_id']
        print("Processing data_frame_ref {}, departure_stop_id {} ({} of {})".
              format(data_frame_ref, dep_stop_id, (i + 1), n_days_dep_stops))

        pr.exec_commit("""insert into trip_durations
            select a.data_frame_ref,
            	a.trip_id,
            	a.stop_id as departure_stop_id,
            	a.stop_time as departure_time,
            	a.stop_time_unix as departure_time_unix,
            	s.stop_id as arrival_stop_id,
            	s.stop_time as arrival_time,
            	s.stop_time_unix as arrival_time_unix,
            	s.stop_time_unix - a.stop_time_unix as trip_duration,
                date_trunc('hour', a.stop_time) as departure_time_hour
            from
            (select * from stop_events
            where data_frame_ref = '{}'
            and stop_id = {}) a
            join stop_events s
            on a.data_frame_ref = s.data_frame_ref
            and a.trip_id = s.trip_id
            and s.stop_time_unix > a.stop_time_unix""".format(
            data_frame_ref, dep_stop_id))

    pr.close_up_shop()
Esempio n. 6
0
def get_raw(sample_flag):
    with open('credentials.json') as json_data:
        credentials = json.load(json_data)

    pr.connect_to_redshift(dbname = 'muni',
                        host = 'jonobate.c9xvjgh0xspr.us-east-1.redshift.amazonaws.com',
                        port = '5439',
                        user = credentials['user'],
                        password = credentials['password'])

    if sample_flag:
        df = pr.redshift_to_pandas("""select * from vehicle_monitoring limit 1000""")
        df.to_csv('data/vehicle_monitoring_sample.csv', index=False)
    else:
        df = pr.redshift_to_pandas("""select * from vehicle_monitoring""")
        df.to_csv('data/vehicle_monitoring.csv', index=False)
    pr.close_up_shop()
    return df
Esempio n. 7
0
def get_distributions(sample_flag):
    with open('credentials.json') as json_data:
        credentials = json.load(json_data)

    pr.connect_to_redshift(
        dbname='muni',
        host='jonobate.c9xvjgh0xspr.us-east-1.redshift.amazonaws.com',
        port='5439',
        user=credentials['user'],
        password=credentials['password'])

    if sample_flag:
        df = pr.redshift_to_pandas(
            """select departure_time_hour, departure_stop_id, arrival_stop_id, shape, scale, shape*scale as mean
                                        from distributions_gamma limit 1000""")
        df.to_csv('data/distributions_gamma_sample.csv', index=False)
    else:
        df = pr.redshift_to_pandas(
            """select departure_time_hour, departure_stop_id, arrival_stop_id, shape, scale, shape*scale as mean
                                        from distributions_gamma""")
        df.to_csv('data/distributions_gamma.csv', index=False)
    pr.close_up_shop()
    return df
Esempio n. 8
0
def connect_to_s3():
    with open('credentials.json') as json_data:
        credentials = json.load(json_data)

    pr.connect_to_s3(aws_access_key_id = credentials['aws_access_key_id'],
                aws_secret_access_key = credentials['aws_secret_access_key'],
                bucket = 'jonobate-bucket')

if __name__ == '__main__':
    #Get raw data from processing
    connect_to_redshift()
    print('Getting vehicle_monitoring data from Redshift...')
    df = pr.redshift_to_pandas("""select * from vehicle_monitoring
                                where data_frame_ref not in (select distinct data_frame_ref from stop_events)
                                and data_frame_ref < trunc(convert_timezone('US/Pacific', GETDATE()));""")
    pr.close_up_shop()

    #Parse into stop events
    df = raw_to_stops(df)

    #Write results to stop_events
    connect_to_s3()
    connect_to_redshift()
    print('Writing stop_events data to Redshift...')
    pr.pandas_to_redshift(data_frame = df,
                        redshift_table_name = 'stop_events',
                        append = True)

    #Get stop events for processing
    print('Getting stop_events data from Redshift...')
    df = pr.redshift_to_pandas("""select * from stop_events
Esempio n. 9
0
def raw_to_stops():
    connect_to_redshift()
    connect_to_s3()

    #Load stop data
    df_stop_times = pd.read_csv('gtfs/stop_times.txt')

    print('Getting vehicle_monitoring data from Redshift...')
    df = pr.redshift_to_pandas("""select data_frame_ref
                                from vehicle_monitoring
                                where data_frame_ref not in (select distinct data_frame_ref from stop_events)
                                and data_frame_ref < trunc(convert_timezone('US/Pacific', GETDATE()))
                                group by data_frame_ref""")

    n_days = df.shape[0]

    for i, row in df.iterrows():
        data_frame_ref = row['data_frame_ref']
        print("Processing data_frame_ref {} ({} of {})".format(
            data_frame_ref, (i + 1), n_days))

        df_cur = pr.redshift_to_pandas("""select * from vehicle_monitoring
                                where data_frame_ref = '{}';""".format(
            data_frame_ref))

        #Only bother with this if we actually have data...
        if df_cur.shape[0] == 0:
            print("No data for {}, skipping...".format(data_frame_ref))
        else:
            #Convert datetimes
            df_cur['recorded_time'] = pd.to_datetime(df_cur['recorded_time'])
            df_cur['valid_until_time'] = pd.to_datetime(
                df_cur['valid_until_time'])
            df_cur['data_frame_ref'] = pd.to_datetime(df_cur['data_frame_ref'])
            df_cur['expected_arrival_time'] = pd.to_datetime(
                df_cur['expected_arrival_time'])
            df_cur['expected_departure_time'] = pd.to_datetime(
                df_cur['expected_departure_time'])

            #Sort values, reset index
            df_cur = df_cur.sort_values(
                ['data_frame_ref', 'journey_ref', 'recorded_time'])
            df_cur = df_cur.reset_index(drop=True)
            df_cur['join_index'] = df_cur.index.astype(int)

            #Create offset dataframe
            df_next = df_cur[[
                'data_frame_ref', 'journey_ref', 'recorded_time',
                'stop_point_ref', 'stop_point_name'
            ]]
            df_next = df_next.add_suffix('_next')
            df_next['join_index'] = df_next.index
            df_next['join_index'] = df_next['join_index'].astype(int) - 1

            #Join data to offset data
            df_stops = df_cur.merge(df_next, on='join_index')

            #Filter to stop events
            df_stops = df_stops[
                (df_stops['data_frame_ref'] == df_stops['data_frame_ref_next'])
                & (df_stops['journey_ref'] == df_stops['journey_ref_next'])
                & (df_stops['stop_point_ref'] !=
                   df_stops['stop_point_ref_next'])]

            #Add in stop time column
            df_stops['stop_time'] = df_stops['recorded_time'] + (
                df_stops['recorded_time_next'] - df_stops['recorded_time']) / 2

            #Drop uneeded columns
            df_stops = df_stops[[
                'data_frame_ref', 'journey_ref', 'stop_point_ref', 'stop_time'
            ]]

            #Create output dataframe
            df_final = pd.DataFrame(columns=[
                'data_frame_ref', 'trip_id', 'stop_id', 'stop_time',
                'stop_time_unix'
            ])

            n_trips = len(df_stops['journey_ref'].unique())

            #For each trip on that day...
            for j, trip_id in enumerate(df_stops['journey_ref'].unique()):
                print(" Processing trip_id {} ({} of {})".format(
                    trip_id, (j + 1), n_trips))

                #Get actual data for this trip. Rename columns to match stop data.
                df_stops_actual = df_stops[df_stops['journey_ref'] ==
                                           trip_id].rename(
                                               index=str,
                                               columns={
                                                   "journey_ref": "trip_id",
                                                   "stop_point_ref": "stop_id"
                                               })

                #Get stop data for this trip
                df_stops_all = df_stop_times[df_stop_times['trip_id'] ==
                                             trip_id]

                #Fix to deal with the fact that that stop_ids are in a slightly different format
                df_stops_all['stop_id'] = (
                    '1' + df_stops_all['stop_id'].astype(str)).astype(int)

                #Merge dataframes todether
                df_merged = df_stops_all.merge(df_stops_actual,
                                               on=['trip_id', 'stop_id'],
                                               how='left')

                #Create unix time column
                df_merged['stop_time_unix'] = (
                    df_merged['stop_time'] -
                    pd.Timestamp("1970-01-01")) // pd.Timedelta('1s')

                #Interpolate timestamps for missing stop events
                df_merged['stop_time_unix'] = df_merged[
                    'stop_time_unix'].interpolate(limit_area='inside')

                #Convert back to actual timestamps
                df_merged['stop_time'] = pd.to_datetime(
                    df_merged['stop_time_unix'], origin='unix', unit='s')

                #Fill missing data_frame_refs
                df_merged['data_frame_ref'] = df_merged[
                    'data_frame_ref'].fillna(data_frame_ref)

                #Drop uneeeded columns
                df_merged = df_merged[[
                    'data_frame_ref', 'trip_id', 'stop_id', 'stop_time',
                    'stop_time_unix'
                ]]

                #Remove NaNs (occurs if we are missing data at the start or end of a journey)
                df_merged = df_merged.dropna(subset=['stop_time'])

                #Add to final data frame
                df_final = pd.concat([df_final, df_merged])

            #Only bother with this if we actually have stop events...
            if df_final.shape[0] == 0:
                print("No stop events for {}, skipping...".format(
                    data_frame_ref))
            else:
                pr.pandas_to_redshift(data_frame=df_final,
                                      redshift_table_name='stop_events',
                                      append=True)

    pr.close_up_shop()
Esempio n. 10
0
def durs_to_dists():

    connect_to_redshift()
    connect_to_s3()

    #Note: this processes data not already in distributions. Assumes we do one hour at a time, no subdividing of hours.
    df = pr.redshift_to_pandas("""select a.* from
        (select data_frame_ref, departure_time_hour from trip_durations group by data_frame_ref, departure_time_hour) a
        left join
        (select data_frame_ref, departure_time_hour from distributions_gamma group by data_frame_ref, departure_time_hour) b
        on a.data_frame_ref = b.data_frame_ref
        	and a.departure_time_hour = b.departure_time_hour
        where b.data_frame_ref is null
        	and b.departure_time_hour is null
            and a.data_frame_ref < trunc(convert_timezone('US/Pacific', GETDATE()))
            order by a.data_frame_ref, a.departure_time_hour;""")

    #Randomize order, so we can get some samples from everywhere...
    df = df.sample(frac=1).reset_index(drop=True)

    n_days_hours = df.shape[0]

    #For each day and departure stop:
    for i, row in df.iterrows():
        data_frame_ref = row['data_frame_ref']
        departure_time_hour = row['departure_time_hour']
        print(
            "Processing data_frame_ref {}, departure_time_hour {} ({} of {})".
            format(data_frame_ref, departure_time_hour, (i + 1), n_days_hours))

        #Calculate base timestamps for this day
        minutes = pd.DataFrame(np.arange(0, 60), columns=['minute'])
        minutes['key'] = 0

        df_hour = pr.redshift_to_pandas("""select *,
                                            date_trunc('min', departure_time) as departure_time_minute
                                            from trip_durations
                                            where data_frame_ref = '{}'
                                            and departure_time_hour = '{}' """.
                                        format(data_frame_ref,
                                               departure_time_hour))

        results = []

        n_dep_stops = len(df_hour['departure_stop_id'].unique())

        #For each arrival stop:
        for j, departure_stop_id in enumerate(
                df_hour['departure_stop_id'].unique()):
            print("Processing departure_stop_id {} ({} of {})".format(
                departure_stop_id, (j + 1), n_dep_stops))

            #For each departure stop:
            for k, arrival_stop_id in enumerate(
                    df_hour[df_hour['departure_stop_id'] ==
                            departure_stop_id]['arrival_stop_id'].unique()):

                #Select data
                df_dist = df_hour[
                    (df_hour['departure_stop_id'] == departure_stop_id)
                    & (df_hour['arrival_stop_id'] == arrival_stop_id)]

                #Create date array
                date = pd.DataFrame([departure_time_hour],
                                    columns=['departure_time_hour'])
                date['key'] = 0

                #Create base array
                base = date.merge(minutes)
                base['departure_time_minute'] = base[
                    'departure_time_hour'] + pd.to_timedelta(base.minute,
                                                             unit='m')
                base = base[['departure_time_minute']]
                base['departure_time_minute_unix'] = (
                    base['departure_time_minute'] -
                    pd.Timestamp("1970-01-01")) // pd.Timedelta('1s')

                df_dist = base.merge(df_dist,
                                     on='departure_time_minute',
                                     how='left')
                df_dist = df_dist.fillna(method='bfill')
                df_dist['total_journey_time'] = df_dist[
                    'arrival_time_unix'] - df_dist['departure_time_minute_unix']
                df_dist = df_dist.dropna(subset=['total_journey_time'])

                data = df_dist['total_journey_time']

                try:
                    # fit dist to data
                    params = st.gamma.fit(data, floc=True)

                    y, x = np.histogram(data)
                    x = (x + np.roll(x, -1))[:-1] / 2.0

                    # Separate parts of parameters
                    arg = params[:-2]
                    loc = params[-2]
                    scale = params[-1]

                    # Calculate fitted PDF and error with fit in distribution
                    pdf = st.gamma.pdf(x, loc=loc, scale=scale, *arg)
                    sse = np.sum(np.power(y - pdf, 2.0))

                    results.append([
                        data_frame_ref, departure_time_hour, departure_stop_id,
                        arrival_stop_id, arg[0], scale, sse
                    ])
                except Exception as e:
                    print(e)
                    continue
        #Only bother with this if we actually have stop events...
        if len(results) == 0:
            print(
                "No distributions for data_frame_ref {}, departure_time_hour {}, skipping..."
                .format(data_frame_ref, departure_time_hour))
        else:
            print("Writing distributions to Redshift...")
            df_results = pd.DataFrame(results,
                                      columns=[
                                          'data_frame_ref',
                                          'departure_time_hour',
                                          'departure_stop_id',
                                          'arrival_stop_id', 'shape', 'scale',
                                          'sse'
                                      ])
            pr.pandas_to_redshift(data_frame=df_results,
                                  redshift_table_name='distributions_gamma',
                                  append=True)

    pr.close_up_shop()