def test_join_multiindex(self): df1 = pdw.DataFrame( {'col1': np.arange(8)}, pdw.MultiIndex.from_product( [np.array([1, 2]), np.array([3, 4]), np.array([5, 6])], ['i1', 'i2', 'i3'])) df2 = pdw.DataFrame( {'col2': np.arange(12)}, pdw.MultiIndex.from_product( [np.array([1, 2, 3]), np.array([3, 5]), np.array([5, 6])], ['i1', 'i2', 'i3'])) result = df1.merge(df2) expected_result = pdw.DataFrame( { 'col1': np.array([0, 1, 4, 5]), 'col2': np.array([0, 1, 4, 5]) }, pdw.MultiIndex( [np.array([1, 2]), np.array([3, 4]), np.array([5, 6])], [ np.array([0, 0, 1, 1]), np.array([0, 0, 0, 0]), np.array([0, 1, 0, 1]) ], ['i1', 'i2', 'i3'])) test_equal_multiindex(expected_result.index, result.index) test_equal_series(expected_result['col1'], result['col1']) test_equal_series(expected_result['col2'], result['col2'])
def test_groupby_multiple_columns_sum(self): df = pdw.DataFrame( { 'col1': np.array([1, 1, 2, 3, 3], dtype=np.int32), 'col2': np.array([3, 4, 5, 5, 6], dtype=np.int64), 'col3': np.array([5., 6., 7., 7., 7.], dtype=np.float32) }, pdw.MultiIndex([ np.array([1, 2, 3], dtype=np.int32), np.array([5., 6., 7.], dtype=np.float32) ], [ np.array([0, 0, 1, 2, 2], dtype=np.int64), np.array([0, 1, 2, 2, 2], dtype=np.int64) ], ['i32', 'f32'])) result = df.groupby(['col1', 'col3']).sum() expected_result = pdw.DataFrame( {'col2': np.array([3, 4, 5, 11], dtype=np.int64)}, pdw.MultiIndex([ np.array([1, 2, 3], dtype=np.int32), np.array([5., 6., 7.], dtype=np.float32) ], [ np.array([0, 0, 1, 2], dtype=np.int64), np.array([0, 1, 2, 2], dtype=np.int64) ], ['col1', 'col3'])) # TODO: test equal 1d index method (both rangeindex and index should work) # assume correct index values but in different order; just check the values levels_result = [ np.sort(level.evaluate()) for level in result.index.levels ] labels_result = [ np.sort(label.evaluate()) for label in result.index.labels ] levels_expected = [ np.sort(level) for level in expected_result.index.levels ] labels_expected = [ np.sort(label) for label in expected_result.index.labels ] np.testing.assert_array_equal(result.index.names, expected_result.index.names) for i in range(2): np.testing.assert_array_equal(levels_result[i], levels_expected[i]) np.testing.assert_array_equal(labels_result[i], labels_expected[i]) # assume correct values but in different order; just check the values np.testing.assert_array_equal( np.sort(expected_result['col2'].evaluate().data), np.sort(result['col2'].evaluate().data))
def setUp(self): data = { 'col1': np.array([1, 2, 3, 4]), 'col2': np.array([5., 6., 7., 8.]) } index = pdw.MultiIndex.from_product( [np.array([1, 2]), np.array([3, 4])], ['a', 'b']) self.df = pdw.DataFrame(data, index)
def test_join_1d_index(self): df1 = pdw.DataFrame({'col1': np.array([1, 2, 3, 4, 5])}, pdw.Index(np.array([1, 3, 4, 5, 6]), np.dtype(np.int64))) df2 = pdw.DataFrame({'col2': np.array([1, 2, 3])}, pdw.Index(np.array([2, 3, 5]), np.dtype(np.int64))) result = df1.merge(df2) expected_result = pdw.DataFrame( { 'col1': np.array([2, 4]), 'col2': np.array([2, 3]) }, pdw.Index(np.array([3, 5]), np.dtype(np.int64))) np.testing.assert_array_equal( evaluate_if_necessary(expected_result.index), evaluate_if_necessary(result.index)) test_equal_series(expected_result['col1'], result['col1']) test_equal_series(expected_result['col2'], result['col2'])
def test_drop_list(self): data = {} index = pdw.MultiIndex.from_product( [np.array([1, 2]), np.array([3, 4])], ['a', 'b']) expected_result = pdw.DataFrame(data, index) result = self.df.drop(['col1', 'col2']) self.assertListEqual(expected_result.data.keys(), result.data.keys()) test_equal_multiindex(expected_result.index, result.index)
def test_element_wise_operation(self): expected_data = { 'col1': np.array([2, 4, 6, 8]), 'col2': np.array([10, 12, 14, 16]) } expected_index = pdw.MultiIndex.from_product( [np.array([1, 2]), np.array([3, 4])], ['a', 'b']) expected_result = pdw.DataFrame(expected_data, expected_index) data = {'col1': np.array([1, 2, 3, 4]), 'col2': np.array([5, 6, 7, 8])} index = pdw.MultiIndex.from_product( [np.array([1, 2]), np.array([3, 4])], ['a', 'b']) result = pdw.DataFrame(data, index) * 2 np.testing.assert_array_equal( evaluate_if_necessary(expected_result['col1']), evaluate_if_necessary(result['col1'])) np.testing.assert_array_equal( evaluate_if_necessary(expected_result['col2']), evaluate_if_necessary(result['col2'])) test_equal_multiindex(expected_result.index, result.index)
def test_drop_str(self): data = {'col2': np.array([5., 6., 7., 8.])} index = pdw.MultiIndex.from_product( [np.array([1, 2]), np.array([3, 4])], ['a', 'b']) expected_result = pdw.DataFrame(data, index) result = self.df.drop('col1') self.assertListEqual(expected_result.data.keys(), result.data.keys()) np.testing.assert_array_equal( evaluate_if_necessary(expected_result['col2']), evaluate_if_necessary(result['col2'])) test_equal_multiindex(expected_result.index, result.index)
def test_groupby_single_column_sum(self): df = pdw.DataFrame( { 'col1': np.array([1, 1, 2, 3, 3], dtype=np.int32), 'col2': np.array([3, 4, 5, 5, 6], dtype=np.int64), 'col3': np.array([5., 6., 7., 7., 7.], dtype=np.float32) }, pdw.MultiIndex([ np.array([1, 2, 3], dtype=np.int32), np.array([5., 6., 7.], dtype=np.float32) ], [ np.array([0, 0, 1, 2, 2], dtype=np.int64), np.array([0, 1, 2, 2, 2], dtype=np.int64) ], ['i32', 'f32'])) result = df.groupby('col1').sum() expected_result = pdw.DataFrame( { 'col2': np.array([7, 5, 11], dtype=np.int64), 'col3': np.array([11., 7., 14.], dtype=np.float32) }, pdw.Index(np.array([1, 2, 3], dtype=np.int32), np.dtype('int32'), 'col1')) # TODO: test equal 1d index method (both rangeindex and index should work) np.testing.assert_array_equal( np.sort(evaluate_if_necessary(expected_result.index)), np.sort(evaluate_if_necessary(result.index))) # assume correct values but in different order; just check the values np.testing.assert_array_equal( np.sort(expected_result['col2'].evaluate().data), np.sort(result['col2'].evaluate().data)) np.testing.assert_array_equal( np.sort(expected_result['col3'].evaluate().data), np.sort(result['col3'].evaluate().data))
def test_agg(self): expected_result = pdw.DataFrame( { 'col1': np.array([1, 4], dtype=np.float64), 'col2': np.array([5, 8], dtype=np.float64) }, pdw.Index(np.array(['min', 'max'], dtype=np.dtype('str')), np.dtype('str'))) result = self.df.agg(['min', 'max']) np.testing.assert_array_equal( evaluate_if_necessary(expected_result.index), evaluate_if_necessary(result.index)) test_equal_series(expected_result['col1'], result['col1']) test_equal_series(expected_result['col2'], result['col2'])
def test_getitem_series(self): data = {'col1': np.array([1, 2]), 'col2': np.array([5., 6.])} index = pdw.MultiIndex( [np.array([1, 2]), np.array([3, 4])], [np.array([0, 0]), np.array([0, 1])], ['a', 'b']) expected_result = pdw.DataFrame(data, index) result = self.df[self.df['col1'] < 3] np.testing.assert_array_equal( evaluate_if_necessary(expected_result['col1']), evaluate_if_necessary(result['col1'])) np.testing.assert_array_equal( evaluate_if_necessary(expected_result['col2']), evaluate_if_necessary(result['col2'])) test_equal_multiindex(expected_result.index, result.index)
def test_reset_index(self): result = self.df.reset_index() expected_result = pdw.DataFrame( { 'col1': np.array([1, 2, 3, 4]), 'col2': np.array([5., 6., 7., 8.]), 'a': np.array([1, 1, 2, 2]), 'b': np.array([3, 4, 3, 4]) }, pdw.RangeIndex(0, 4, 1)) np.testing.assert_array_equal( evaluate_if_necessary(expected_result.index), evaluate_if_necessary(result.index)) test_equal_series(expected_result['col1'], result['col1']) test_equal_series(expected_result['col2'], result['col2']) test_equal_series(expected_result['a'], result['a']) test_equal_series(expected_result['b'], result['b'])
def test_read_netcdf4(self): data = { 'tg': np.array([ -99.99, 10., 10.099999, -99.99, -99.99, 10.2, -99.99, -99.99, -99.99, 10.3, 10.4, 10.5, 10.599999, 10.7, 10.8, 10.9, -99.99, -99.99, -99.99, -99.99, 11., 11., 11., 11., -99.99, -99.99, -99.99, -99.99, 12., 13. ], dtype=np.float32), 'tg_ext': np.array([ -9999, 1000., 1010., -9999, -9999, 1020., -9999, -9999, -9999, 1030., 10401., 10502., 10603., 10704., 10805., 10906., -9999, -9999, -9999, -9999, 11001., 11002., 11003., 11004., -9999, -9999, -9999, -9999, 12005., 13006. ], dtype=np.float32) } index = pdw.MultiIndex.from_product([ np.array([25.5, 26.], dtype=np.float32), np.array([10., 11., 12.], dtype=np.float32), np.array([ str(date(1950, 1, 1)), str(date(1950, 1, 2)), str(date(1950, 1, 3)), str(date(1950, 1, 4)), str(date(1950, 1, 5)) ]) ], ['longitude', 'latitude', 'time']) expected_result = pdw.DataFrame(data, index) result = pdw.read_netcdf4(ParserTests.PATH_EXT) self.assertListEqual(expected_result.data.keys(), result.data.keys()) np.testing.assert_array_equal( expected_result.data['tg'], result.data['tg'].evaluate(verbose=False)) np.testing.assert_array_equal( expected_result.data['tg_ext'], result.data['tg_ext'].evaluate(verbose=False)) test_equal_multiindex(expected_result.index, result.index)
def test_getitem_list(self): data = { 'col1': np.array([1, 2, 3, 4]), 'col2': np.array([5., 6., 7., 8.]) } index = pdw.MultiIndex.from_product( [np.array([1, 2]), np.array([3, 4])], ['a', 'b']) expected_result = pdw.DataFrame(data, index) result = self.df[['col1', 'col2']] np.testing.assert_array_equal( evaluate_if_necessary(expected_result['col1']), evaluate_if_necessary(result['col1'])) np.testing.assert_array_equal( evaluate_if_necessary(expected_result['col2']), evaluate_if_necessary(result['col2'])) test_equal_multiindex(expected_result.index, result.index)
def test_describe(self): # reversed because of dict and not OrderedDict expected_result = pdw.DataFrame( { 'col1': np.array([1, 4, 2.5, 1.29089], np.float64), 'col2': np.array([5, 8, 6.5, 1.29099], np.float64) }, pdw.Index(np.array(['min', 'max', 'mean', 'std'], dtype=np.str), np.dtype(np.str), "Index")) result = self.df.describe(['min', 'max', 'mean', 'std']).evaluate() np.testing.assert_array_equal( evaluate_if_necessary(expected_result.index), evaluate_if_necessary(result.index)) test_equal_series(expected_result['col1'].evaluate(), result['col1'].evaluate()) test_equal_series(expected_result['col2'].evaluate(), result['col2'].evaluate())