def class_area_histogram_with_select(record_stats_list, class_map=None, width=500, height=500): """Creates histograms for areas from a list of record_stats.""" # gui # remove the first entry from the class_map, because the background class is not explicit part of the annotaitons unique_labels = sorted(pd.unique(record_stats_list[0]["label"])) for record_stats in record_stats_list[1:]: if not all(pd.unique(sorted(record_stats["label"])) == unique_labels): raise ValueError("All dataframes in the records_stats_list need to have the same set of unique values.") options = pd.unique(record_stats_list[0]["label"]) options.sort() if class_map is not None: options = np.vectorize(class_map.get_id)(options) class_dropdown = pnw.Select(options=options.tolist()) bins_slider = pnw.IntSlider(name="Bins", start=10, end=100, step=5) checkbox_normalized = pnw.Checkbox(name="Normalized", value=False) @pn.depends(class_dropdown.param.value, bins_slider.param.value, checkbox_normalized.param.value) def _draw_histogram(class_label, bins, normalized): nonlocal class_map nonlocal width nonlocal height nonlocal record_stats_list class_label = class_label if class_map is None else class_map.get_name(class_label) return pn.Row(*[draw_area_histogram(record_stats, class_label, class_map, bins, normalized, width, height) for record_stats in record_stats_list]) return pn.Column(class_dropdown, pn.Row(bins_slider, checkbox_normalized), _draw_histogram)
class PanelWithEbandsRobot(BaseRobotPanel): #, metaclass=abc.ABCMeta): """ Mixin class for panels with a robot that owns a list of of |ElectronBands| """ # Widgets to plot ebands. ebands_plotter_mode = pnw.Select( name="Plot Mode", value="gridplot", options=["gridplot", "combiplot", "boxplot", "combiboxplot"]) # "animate", ebands_plotter_btn = pnw.Button(name="Plot", button_type='primary') ebands_df_checkbox = pnw.Checkbox(name='With Ebands DataFrame', value=False) # Widgets to plot edos. edos_plotter_mode = pnw.Select(name="Plot Mode", value="gridplot", options=["gridplot", "combiplot"]) edos_plotter_btn = pnw.Button(name="Plot", button_type='primary') def get_ebands_plotter_widgets(self): return pn.Column(self.ebands_plotter_mode, self.ebands_df_checkbox, self.ebands_plotter_btn) @param.depends("ebands_plotter_btn.clicks") def on_ebands_plotter_btn(self): if self.ebands_plotter_btn.clicks == 0: return ebands_plotter = self.robot.get_ebands_plotter() plot_mode = self.ebands_plotter_mode.value plotfunc = getattr(ebands_plotter, plot_mode, None) if plotfunc is None: raise ValueError("Don't know how to handle plot_mode: %s" % plot_mode) fig = plotfunc(**self.fig_kwargs) col = pn.Column(self._mp(fig), sizing_mode='scale_width') if self.ebands_df_checkbox.value: df = ebands_plotter.get_ebands_frame(with_spglib=True) col.append(self._df(df)) return pn.Row(col, sizing_mode='scale_width') def get_edos_plotter_widgets(self): return pn.Column(self.edos_plotter_mode, self.edos_plotter_btn) @param.depends("edos_plotter_btn.clicks") def on_edos_plotter_btn(self): if self.edos_plotter_btn.clicks == 0: return edos_plotter = self.robot.get_edos_plotter() plot_mode = self.edos_plotter_mode.value plotfunc = getattr(edos_plotter, plot_mode, None) if plotfunc is None: raise ValueError("Don't know how to handle plot_mode: %s" % plot_mode) fig = plotfunc(**self.fig_kwargs) return pn.Row(pn.Column(self._mp(fig)), sizing_mode='scale_width')
def _generate_annotations_tab(self): plot_size = min(floor(self.width / len(self.datasets)), floor(self.height / 2)) link_plots_checkbox = pnw.Checkbox(name="Link plot axis", value=False) @pn.depends(link_plots_checkbox.param.value) def _mixing_plots(link_plots): # mixing of classes mixing_matrix_classes_in_images = [ utils.calculate_mixing_matrix(dataset, self.IMAGE_IDENTIFIER_COL, self.ANNOTATON_LABEL_COL) for dataset in self._get_descriptor_for_all_datasets( self.DESCRIPTOR_DATA) ] class_mixing_matrix_plot = pn.Row( "<b>Class mixing</b>", *heatmap(mixing_matrix_classes_in_images, "row_name", "col_name", "values", link_plots=link_plots, width=plot_size, height=plot_size)) # number of object per image, stacked hist classes_for_objects_per_image_stacked_hist = pn.Row( "<b>Objects per Image</b>", *stacked_hist(self._get_descriptor_for_all_datasets( self.DESCRIPTOR_DATA), self.OBJECTS_PER_IMAGE_COL, self.ANNOTATON_LABEL_COL, "Objects per Image", link_plots=link_plots, width=plot_size, height=plot_size)) return pn.Column(link_plots_checkbox, class_mixing_matrix_plot, classes_for_objects_per_image_stacked_hist) # categorical overview self.categorical_2d_histogram = categorical_2d_histogram_with_gui( self._get_descriptor_for_all_datasets(self.DESCRIPTOR_DATA), category_cols=["label", "num_annotations", "width", "height"], hist_cols=[ "num_annotations", "area", "area_normalized", "area_square_root", "area_square_root_normalized", "bbox_ratio", "bbox_xmin", "bbox_xmax", "bbox_ymin", "bbox_ymax", "bbox_width", "bbox_height", "width", "height" ], height=floor(plot_size * 1.5), width=floor(plot_size * 1.5)) return pn.Column(_mixing_plots, self.categorical_2d_histogram, align="center")
def __init__( self, df, *, feature_aliases=None, describe=True, x_label="timestamp", port=5006, websocket_origin=49179, sample_rate=1.0, plot_width=600, plot_height=400, **params, ): BasePanel.__init__( self, df, feature_aliases=feature_aliases, port=port, websocket_origin=websocket_origin, sample_rate=sample_rate, ) self.plot_width = plot_width self.plot_height = plot_height self.describe = describe self.x_label = x_label tags = sorted(list(df.columns)) tag = tags[0] bounds = self.tag_bounds[tag] # widget objects self.feature = pnw.Select(value=tag, options=tags, name="Ticker") self.description = pnw.Select( value=self.feature_aliases[tag], options=sorted(list(self.feature_aliases.values())), name="Company", ) self.tag_range = pnw.RangeSlider(start=bounds[0], end=bounds[1], value=bounds, name="Feature Range") self.log_scale = pnw.Checkbox( name="Log scale", value=False, ) pm.Parameterized.__init__(self, **params)
def plot_all(data, alp=True, var='h_li'): """ Scatter plot with x=lon, y=lat. Interactivity for missing data and color. """ # Static plot def scatter(data=data, alp=alp, var=var): clean = data[data.loc[:, var] < 1e+38].hvplot.scatter(x='longitude', y='latitude', c=var, s=1, alpha=0.2, cmap='viridis', hover=False) missing = data[data.loc[:, var] > 1e+38].hvplot.scatter( x='longitude', y='latitude', c='red', s=1, alpha=0.2 if alp == True else 0, hover=False) return (clean * missing) # Widgets var = pnw.Select(name='Color', value='h_li', options=list(data.columns)) alp = pnw.Checkbox(value=True, name='Missing data (red)') text = "<br>\n# All ATL06 data for the selected area\nSelect a color variable and whether to show missing data" # Interactive plot @pn.depends(var, alp) def reactive(var, alp): return (scatter(data, alp, var)) # Layout widgets = pn.Column(text, var, alp) image = pn.Row(reactive, widgets) return (image)
def categorical_2d_histogram_with_gui(data: pd.DataFrame, category_cols=None, hist_cols=None, width=500, height=500): """Creates a categorical_2d_histogram for a dataframe, where each option (except width, height and color_mapper) of the categorical_2d_histogram can be set with gui elements. If the input is a list all dataframes need to have the same cols as the first dataframe in the list""" if category_cols is None and isinstance(data, pd.DataFrame): category_cols = data.columns.tolist() elif category_cols is None and isinstance(data, list): category_cols = data[0].columns.tolist() if hist_cols is None and isinstance(data, pd.DataFrame): hist_cols = [col_name for col_name in data.columns if is_numeric_dtype(data[col_name])] elif hist_cols is None and isinstance(data, list): hist_cols = [col_name for col_name in data[0].columns if is_numeric_dtype(data[0][col_name])] x_select = pnw.Select(name="X-Axis", options=hist_cols) y_select = pnw.Select(name="Y-Axis", options=category_cols) axis_selector = pn.Row(x_select, y_select, width=width) x_is_categorical = pnw.Checkbox(name="X is categorical", value=False) x_bins = pnw.IntInput(name="Bins", start=1, end=500, value=10, disabled=False) if isinstance(data, pd.DataFrame): x_range_start=data[x_select.value].min() x_range_end=data[x_select.value].max() x_range_end=x_range_end if x_range_end > x_range_start else x_range_end*1.1 x_range_step=(x_range_end - x_range_start) / 50 elif isinstance(data, list): x_range_start=min(df[x_select.value].min() for df in data) x_range_end=max(df[x_select.value].max() for df in data) x_range_end=x_range_end if x_range_end > x_range_start else x_range_end*1.1 x_range_step=(x_range_end - x_range_start) / 50 x_range = pnw.RangeSlider(name="X-Axis Range", start=x_range_start, end=x_range_end, step=x_range_step, disabled=False) x_axis_configuration = pn.Row(x_range, x_bins, width=width) normalize_rows = pnw.Checkbox(name="Normalize rows", value=False) x_precision = pnw.IntInput(name="Precision", start=0, end=10, value=2, disabled=False) additional_parameters = pn.Row(x_is_categorical, normalize_rows, x_precision, width=width) config_gui = pn.Column(axis_selector, additional_parameters, x_axis_configuration, align="center") @pn.depends(y_select.param.value, x_select.param.value, x_bins.param.value_throttled, x_range.param.value_throttled, x_is_categorical.param.value, normalize_rows.param.value, x_precision.param.value) def _plot(category_col, hist_col, bins, range, x_is_categorical, normalize_rows, precision): if x_is_categorical: x_range.disabled = True x_precision.disabled = True x_bins.disabled = True else: x_range.disabled = False x_precision.disabled = False x_bins.disabled = False if isinstance(data, pd.DataFrame): if data[hist_col].min() != x_range.start or data[hist_col].max() != x_range.end: x_range.start = data[hist_col].min() x_range.end = data[hist_col].max() if data[hist_col].max() > x_range.start else data[hist_col].max()*1.1 x_range.value = (x_range.start, x_range.end) x_range.step = (x_range.end-x_range.start)/50 elif isinstance(data, list): if min(df[hist_col].min() for df in data) != x_range.start or max(df[hist_col].max() for df in data) != x_range.end: x_range.start = min(df[hist_col].min() for df in data) x_range.end = max(df[hist_col].max() for df in data) if max(df[hist_col].max() for df in data) > x_range.start else max(df[hist_col].max() for df in data)*1.1 x_range.value = (x_range.start, x_range.end) x_range.step = (x_range.end-x_range.start)/50 range = x_range.value if isinstance(data, list): plot = pn.Row(*categorical_2d_histogram(data, category_col, hist_col, bins, range, normalize_rows, precision, color_mapper=None, hist_col_is_categorical=x_is_categorical, width=width, height=height)) elif isinstance(data, pd.DataFrame): plot = pn.Row(categorical_2d_histogram(data, category_col, hist_col, bins, range, normalize_rows, precision, color_mapper=None, hist_col_is_categorical=x_is_categorical, width=width, height=height)) return plot return pn.Column(config_gui, _plot)
def map_dash(): """Map dashboard""" # Create the map map_pane = pn.pane.plot.Folium(sizing_mode="scale_both", min_width=800) # Initialize map at Joshua Tree in July unit = 'JOTR' month = 7 coords = get_coords(unit, parks) bnds = get_bounds(unit, boundaries) traffic = get_traffic(unit, traffic_data) visitors = get_visitors(unit, month, publicUse) map_pane.object = makeMap(unit, month, coords, bnds, visitors, traffic) # Create the dropdown menus for month and visitors month_buttons = pnw.RadioButtonGroup(name='Month', options=list(month_dict.keys()), button_type='primary', value='July') traffic_checkbox = pnw.Checkbox(name='Display traffic counters', value=True) park_select = pnw.Select(name='Where do you want to go?', options=list(park_dict.keys()), value='Joshua Tree NP') # Trigger map updates def update_map(event): month = month_dict[month_buttons.value] unit = park_dict[park_select.value] coords = get_coords(unit, parks) bnds = get_bounds(unit, boundaries) traffic = get_traffic(unit, traffic_data) visitors = get_visitors(unit, month, publicUse) map_pane.object = makeMap(unit, month, coords, bnds, visitors, traffic, useTraffic=traffic_checkbox.value) return # Updates month_buttons.param.watch(update_map, 'value') month_buttons.param.trigger('value') park_select.param.watch(update_map, 'value') park_select.param.trigger('value') traffic_checkbox.param.watch(update_map, 'value') traffic_checkbox.param.trigger('value') # Fully return the map app = pn.Column(month_buttons, traffic_checkbox, park_select, map_pane, width_policy='fit') return app #pn.extension() #app = map_dash() #app.servable() #server = app.show(threaded=True)
def __init__(self, plot, tabs): # pylint: disable=redefined-outer-name """Initialize form. :param plot: IsothermPlot instance for validation of results. :param tabs: Panel tabs instance for triggering tab switching. """ self.plot = plot self.tabs = tabs # isotherm metadata self.inp_doi = pw.TextInput(name='Article DOI', placeholder='10.1021/jacs.9b01891') self.inp_doi.param.watch(self.on_change_doi, 'value') self.inp_temperature = pw.TextInput(name='Temperature', placeholder='303') self.inp_adsorbent = pw.AutocompleteInput( name='Adsorbent Material', options=QUANTITIES['adsorbents']['names'], placeholder='Zeolite 5A', case_sensitive=False, **restrict_kwargs) self.inp_isotherm_type = pw.Select( name='Isotherm type', options=['Select'] + QUANTITIES['isotherm_type']['names']) self.inp_measurement_type = pw.Select( name='Measurement type', options=['Select'] + QUANTITIES['measurement_type']['names']) self.inp_pressure_scale = pw.Checkbox( name='Logarithmic pressure scale') self.inp_isotherm_data = pw.TextAreaInput( name='Isotherm Data', height=200, placeholder=config.SINGLE_COMPONENT_EXAMPLE) self.inp_figure_image = pw.FileInput(name='Figure snapshot') # units metadata self.inp_pressure_units = pw.Select( name='Pressure units', options=['Select'] + QUANTITIES['pressure_units']['names']) self.inp_pressure_units.param.watch(self.on_change_pressure_units, 'value') self.inp_saturation_pressure = pw.TextInput( name='Saturation pressure [bar]', disabled=True) self.inp_adsorption_units = pw.AutocompleteInput( name='Adsorption Units', options=QUANTITIES['adsorption_units']['names'], placeholder='mmol/g', case_sensitive=False, **restrict_kwargs) # digitizer info self.inp_source_type = pw.TextInput(name='Source description', placeholder='Figure 1a') self.inp_tabular = pw.Checkbox( name='Tabular Data (i.e., not digitized from a graphical source)') self.inp_digitizer = pw.TextInput(name='Digitized by', placeholder='Your full name') # fill form from JSON upload self.inp_json = pw.FileInput(name='Upload JSON Isotherm') # buttons self.btn_prefill = pn.widgets.Button( name='Prefill (default or from JSON)', button_type='primary') self.btn_prefill.on_click(self.on_click_prefill) self.out_info = bw.PreText( text='Press "Plot" in order to download json.') self.inp_adsorbates = Adsorbates(show_controls=False, ) self.btn_plot = pn.widgets.Button(name='Plot', button_type='primary') self.btn_plot.on_click(self.on_click_plot) for inp in self.required_inputs: inp.css_classes = ['required'] # create layout self.layout = pn.Column( pn.pane.HTML('<h2>Isotherm Digitizer</h2>'), self.inp_digitizer, self.inp_doi, pn.pane.HTML('<hr>'), self.inp_source_type, pn.Row(pn.pane.HTML("""Attach Figure Graphics"""), self.inp_figure_image), self.inp_measurement_type, self.inp_adsorbent, self.inp_adsorbates.column, self.inp_temperature, self.inp_isotherm_type, pn.Row(self.inp_pressure_units, self.inp_saturation_pressure), self.inp_pressure_scale, self.inp_adsorption_units, pn.pane.HTML("""We recommend the <b><a href='https://apps.automeris.io/wpd/' target="_blank">WebPlotDigitizer</a></b> for data extraction."""), self.inp_isotherm_data, self.inp_tabular, pn.Row(self.btn_plot, self.btn_prefill, self.inp_json), self.out_info, )
import panel.widgets as pnw import datetime import pandas as pd import us.states as uss pn.extension() pn.config.sizing_mode = "stretch_width" stats_w = pnw.DataFrame(pd.DataFrame(), name='stats') counties_w = pnw.DataFrame(pd.DataFrame(), name='counties') sort_cols = [ 'Confirmed', 'Deaths', 'Active', 'county', 'pop2019', 'fraction_confirmed', 'death_rate' ] state_w = pnw.Select(name='state', options=uss.states(), value='Alabama', disabled=False) sortby_w = pnw.Select(name='sort on column', options=sort_cols, value='fraction_confirmed', disabled=False) ascending_w = pnw.Checkbox(name='Sort Ascending', value=False, disabled=False) date_w = pnw.DatePicker(name='date', value=datetime.date.today() - datetime.timedelta(1), disabled=False)
def bam_viewer(bam_file, ref_file, gff_file=None, width=1000, height=200, color='gray'): """Bam viewer widget. Args: bam_file: sorted bam file ref_file: reference sequence in fasta format gff_file: optional genomic features file """ slider = pnw.IntSlider(name='location',start=1,end=10000,value=500,step=500,width=300) main_pane = pn.pane.Bokeh(height=100) cov_pane = pn.pane.Bokeh(height=60) loc_pane = pn.pane.Str(50,width=250,style={'margin': '4pt'}) feat_pane = pn.pane.Bokeh(height=60) ref_pane = pn.pane.Bokeh(height=60) xzoom_slider = pnw.IntSlider(name='x zoom',start=50,end=8000,value=1000,step=10,width=100) yzoom_slider = pnw.IntSlider(name='y zoom',start=10,end=100,value=20,step=5,width=100)#,orientation='vertical') panleft_btn = pnw.Button(name='<',width=50,button_type='primary') panright_btn = pnw.Button(name='>',width=50,button_type='primary') chroms_select = pnw.Select(name='Chromosome', options=[], width=250) colorby = pnw.Select(name='Color by', options=['quality','pair orientation','read strand'], width=180) search_pane = pnw.TextInput(name='search',width=200) trans_option = pnw.Checkbox(name='show translation') debug_pane = pn.pane.Markdown() def pan_right(event): plot = main_pane.object plot.x_range start = slider.value loc = slider.value+100 slider.value=loc update(event) return def pan_left(event): loc = slider.value-100 if loc<1: return slider.value=loc update(event) return def update_features(): """Load features""" if gff_file is None: return ext = os.path.splitext(gff_file)[1] if ext in ['.gff','.gff3']: feats = utils.gff_to_features(gff_file) elif ext in ['.gb','.gbff']: feats = utils.genbank_to_features(gff_file) p = feat_pane.object = plotters.plot_features(feats, plot_width=width, plot_height=100) return p def search_features(event): """Find a feature""" term = search_pane.value feats = utils.gff_to_features(gff_file) df = utils.features_to_dataframe(feats) df['gene'] = df.gene.fillna('') f = df[df.gene.str.contains(term)].iloc[0] debug_pane.object = str(f.start) slider.value = int(f.start) update(event) return def update_ref(filename, start, end): """Update reference sequence""" if filename == None: return seqlen = utils.get_fasta_length(filename) slider.end = seqlen refseq = Fasta(filename) chroms = list(refseq.keys()) chroms_select.options = chroms key = chroms[0] seq = refseq[key][int(start):int(end)].seq ref_pane.object = plotters.plot_sequence(seq, plot_height=50,fontsize='9pt',xaxis=False) return def update(event): """Update viewers on widget change""" xzoom = xzoom_slider.value yzoom = yzoom_slider.value start = slider.value N = xzoom/2 end = start+N chrom = utils.get_chrom(bam_file) loc_pane.object = '%s:%s-%s' %(chrom,start,int(end)) cov = utils.get_coverage(bam_file,chrom,start,end) cov_pane.object = plotters.plot_coverage(cov,plot_width=width) main_pane.object = plotters.plot_bam_alignment(bam_file,chrom,start,end,height=yzoom,plot_width=width,plot_height=height) update_ref(ref_file, start, end) if feature_plot: feature_plot.x_range.start = start feature_plot.x_range.end = end debug_pane.object = '' return slider.param.watch(update, 'value') xzoom_slider.param.watch(update, 'value') yzoom_slider.param.watch(update, 'value') panright_btn.param.watch(pan_right, 'clicks') panleft_btn.param.watch(pan_left, 'clicks') search_pane.param.watch(search_features, 'value') feature_plot = update_features() #initialise slider slider.param.trigger('value') #menus = pn.Row(bam_input, ref_input, gff_input) top = pn.Row(slider,xzoom_slider,yzoom_slider,panleft_btn,panright_btn,loc_pane) bottom = pn.Row(chroms_select, search_pane,colorby,trans_option) app = pn.Column(top,cov_pane,main_pane,ref_pane,feat_pane,bottom,debug_pane) return app
def _update_widgets_panel(self): self._default_component[self.component_type] = self.component component = None controls = None if self.component is pn.pane.HoloViews: component = pn.pane.HoloViews(_create_hvplot()) if self.component is pn.pane.ECharts: # Issue https://github.com/holoviz/panel/issues/1817 component = pn.pane.ECharts(_create_echarts_plot(), min_height=400, min_width=200, sizing_mode="stretch_both") if self.component is pnw.Ace: py_code = inspect.getsource(_create_hvplot) component = pnw.Ace( value=py_code, sizing_mode="stretch_width", language="python", height=400, theme=self._ace_theme, ) elif self.component is pnw.AutocompleteInput: component = pnw.AutocompleteInput( name="Autocomplete Input", options=["Biology", "Chemistry", "Physics"], placeholder="Write something here", ) elif self.component is pnw.Button: component = pnw.Button(name="Click me", button_type="primary") elif self.component is pnw.CheckBoxGroup: component = pnw.CheckBoxGroup( name="Checkbox Group", value=["Apple", "Pear"], options=["Apple", "Banana", "Pear", "Strawberry"], inline=True, ) elif self.component is pnw.CheckButtonGroup: component = pnw.CheckButtonGroup( name="Check Button Group", value=["Apple", "Pear"], options=["Apple", "Banana", "Pear", "Strawberry"], button_type="success", ) elif self.component is pnw.Checkbox: component = pnw.Checkbox(name="Checkbox") elif self.component is pnw.ColorPicker: component = pnw.ColorPicker(name="Color Picker", value="#DF3874") elif self.component is pnw.CrossSelector: component = pnw.CrossSelector( name="Fruits", value=["Apple", "Pear"], options=["Apple", "Banana", "Pear", "Strawberry"], height=300, ) elif self.component is pnw.DataFrame: component = self.component(name="Hello") component.value = get_dataframe() component.formatters = get_default_formatters(component.value) controls = pn.Spacer() elif self.component is pnw.DatePicker: component = pnw.DatePicker(name="Date Picker") # Issue: https://github.com/holoviz/panel/issues/1810 # component.start = date(2020, 1, 20) # component.end = date(2020, 2, 20) # component.value = date(2020, 2, 18) elif self.component is pnw.DateRangeSlider: component = self.component(name="Hello") component.start = date(2020, 1, 20) component.end = date(2020, 2, 20) component.value = (date(2020, 2, 18), date(2020, 2, 20)) elif self.component is pnw.DateSlider: component = self.component(name="Hello") component.start = date(2020, 1, 20) component.end = date(2020, 2, 20) component.value = date(2020, 2, 18) elif self.component is pnw.DatetimeInput: component = self.component(name="Hello") component.value = datetime(2020, 2, 18, 1, 2, 3) elif self.component is pnw.DatetimeRangeInput: component = self.component( name="Hello", start=datetime(2020, 1, 20), end=datetime(2020, 2, 20), value=(datetime(2020, 2, 18), datetime(2020, 2, 20)), ) elif self.component is pnw.DiscretePlayer: component = pnw.DiscretePlayer( name="Discrete Player", options=[2, 4, 8, 16, 32, 64, 128], value=32, loop_policy="loop", ) elif self.component is pnw.DiscreteSlider: component = pnw.DiscreteSlider(name="Discrete Slider", options=[2, 4, 8, 16, 32, 64, 128], value=32) elif self.component is pnw.FileDownload: component = pnw.FileDownload(file="README.md", filename="README.md") elif self.component is pnw.FileInput: component = pnw.FileInput(accept=".csv,.json") elif self.component is pnw.FileSelector: component = pnw.FileSelector(name="Hello", max_height=400) elif self.component is pnw.FloatInput: component = pnw.FloatInput(name="FloatInput", value=5.0, step=1e-1, start=0, end=1000) elif self.component is pnw.FloatSlider: component = pnw.FloatSlider(name="Float Slider", start=0, end=3.141, step=0.01, value=1.57) elif self.component is pnw.IntInput: component = pnw.IntInput(name="IntInput", value=5, step=2, start=0, end=1000) elif self.component is pnw.IntRangeSlider: component = pnw.IntRangeSlider(name="Integer Range Slider", start=0, end=100, value=(8, 40), step=2) elif self.component is pnw.IntSlider: component = pnw.IntSlider(name="Integer Slider", start=0, end=20, step=2, value=4) elif self.component is pnw.LiteralInput: component = pnw.LiteralInput(name="Literal Input (dict)", value={"key": [1, 2, 3]}, type=dict) elif self.component is pnw.MenuButton: menu_items = [ ("Option A", "a"), ("Option B", "b"), ("Option C", "c"), None, ("Help", "help"), ] component = pnw.MenuButton(name="Dropdown", items=menu_items, button_type="primary") elif self.component is pnw.MultiChoice: component = pnw.MultiChoice( name="MultiSelect", value=["Apple", "Pear"], options=["Apple", "Banana", "Pear", "Strawberry"], ) elif self.component is pnw.MultiSelect: component = pnw.MultiSelect( name="MultiSelect", value=["Apple", "Pear"], options=["Apple", "Banana", "Pear", "Strawberry"], size=8, ) elif self.component is pnw.PasswordInput: component = pnw.PasswordInput(name="Password Input", placeholder="Enter a string here...") elif self.component is pnw.Player: component = pnw.Player(name="Player", start=0, end=100, value=32, loop_policy="loop") elif self.component is pnw.Progress: component = pnw.Progress(name="Progress", value=20, width=200) elif self.component is pnw.RadioBoxGroup: component = pnw.RadioBoxGroup( name="RadioBoxGroup", options=["Biology", "Chemistry", "Physics"], inline=True) elif self.component is pnw.RadioButtonGroup: component = pnw.RadioButtonGroup( name="Radio Button Group", options=["Biology", "Chemistry", "Physics"], button_type="success", ) elif self.component is pnw.RangeSlider: component = pnw.RangeSlider( name="Range Slider", start=0, end=math.pi, value=(math.pi / 4.0, math.pi / 2.0), step=0.01, ) elif self.component is pnw.Select: component = pnw.Select(name="Select", options=["Biology", "Chemistry", "Physics"]) elif self.component is pnw.StaticText: component = pnw.StaticText(name="Static Text", value="A string") elif self.component is pnw.TextAreaInput: component = pnw.input.TextAreaInput( name="Text Area Input", placeholder="Enter a string here...") elif self.component is pnw.TextInput: component = pnw.TextInput(name="Text Input", placeholder="Enter a string here...") elif self.component == pnw.Toggle: component = pnw.Toggle(name="Toggle", button_type="success") elif self.component == pnw.VideoStream: component = pnw.VideoStream(name="Video Stream", sizing_mode="stretch_width", height=300) if not component: component = self.component(name="Hello") if not controls: controls = component.controls() controls.margin = 0 self._component_panel[:] = [ pn.pane.Markdown("## " + component.__class__.name + " " + self.component_type), component, pn.layout.Divider(), pn.pane.Markdown("## Parameters"), controls, ]
class FlowPanel(AbipyParameterized): """ """ verbose = pn.widgets.IntSlider(start=0, end=10, step=1, value=0) engine = pn.widgets.Select(value="fdp", options=[ 'dot', 'neato', 'twopi', 'circo', 'fdp', 'sfdp', 'patchwork', 'osage' ]) dirtree = pn.widgets.Checkbox(name='Dirtree', value=False) graphviz_btn = pn.widgets.Button(name="Show graph", button_type='primary') status_btn = pn.widgets.Button(name="Show status", button_type='primary') history_btn = pn.widgets.Button(name="Show history", button_type='primary') debug_btn = pn.widgets.Button(name="Debug", button_type='primary') events_btn = pn.widgets.Button(name="Events", button_type='primary') corrections_btn = pn.widgets.Button(name="Corrections", button_type='primary') handlers_btn = pn.widgets.Button(name="Handlers", button_type='primary') vars_text = pn.widgets.TextInput( name='Abivars', placeholder='Enter list of variables separated by comma') vars_btn = pn.widgets.Button(name="Show Variables", button_type='primary') dims_btn = pn.widgets.Button(name="Show Dimensions", button_type='primary') structures_btn = pn.widgets.Button(name="Show Structures", button_type='primary') structures_io_checkbox = pn.widgets.CheckBoxGroup( name='Input/Output Structure', value=['output'], options=['input', 'output'], inline=True) # Widgets to plot ebands. ebands_btn = pn.widgets.Button(name="Show Ebands", button_type='primary') ebands_plotter_mode = pnw.Select( name="Plot Mode", value="gridplot", options=["gridplot", "combiplot", "boxplot", "combiboxplot"]) # "animate", ebands_plotter_btn = pnw.Button(name="Plot", button_type='primary') ebands_df_checkbox = pnw.Checkbox(name='With Ebands DataFrame', value=False) ebands_ksamp_checkbox = pn.widgets.CheckBoxGroup( name='Input/Output Structure', value=["with_path", "with_ibz"], options=['with_path', 'with_ibz'], inline=True) #TODO: Implement widget for selected_nids(flow, options), #radio_group = pn.widgets.RadioButtonGroup( # name='Radio Button Group', options=['Biology', 'Chemistry', 'Physics'], button_type='success') def __init__(self, flow, **params): super().__init__(**params) self.flow = flow @param.depends('status_btn.clicks') def on_status_btn(self): if self.status_btn.clicks == 0: return stream = StringIO() self.flow.show_status(stream=stream, verbose=self.verbose.value) return pn.Row(bkw.PreText(text=stream.getvalue())) @param.depends('history_btn.clicks') def on_history_btn(self): if self.history_btn.clicks == 0: return stream = StringIO() #flow.show_history(status=options.task_status, nids=selected_nids(flow, options), # full_history=options.full_history, metadata=options.metadata) self.flow.show_history(stream=stream) return pn.Row(bkw.PreText(text=stream.getvalue())) @param.depends('graphviz_btn.clicks') def on_graphviz_btn(self): """ """ if self.graphviz_btn.clicks == 0: return node = self.flow if self.dirtree.value: graph = node.get_graphviz_dirtree(engine=self.engine.value) else: graph = node.get_graphviz(engine=self.engine.value) return pn.Column(graph) @param.depends('debug_btn.clicks') def on_debug_btn(self): if self.debug_btn.clicks == 0: return #TODO https://github.com/ralphbean/ansi2html ? stream = StringIO() #flow.debug(status=options.task_status, nids=selected_nids(flow, options)) self.flow.debug(stream=stream) return pn.Row(bkw.PreText(text=stream.getvalue())) @param.depends('events_btn.clicks') def on_events_btn(self): if self.events_btn.clicks == 0: return stream = StringIO() self.flow.show_events(stream=stream) #flow.show_events(status=options.task_status, nids=selected_nids(flow, options)) return pn.Row(bkw.PreText(text=stream.getvalue())) @param.depends('corrections_btn.clicks') def on_corrections_btn(self): if self.corrections_btn.clicks == 0: return stream = StringIO() self.flow.show_corrections(stream=stream) #flow.show_corrections(status=options.task_status, nids=selected_nids(flow, options)) return pn.Row(bkw.PreText(text=stream.getvalue())) @param.depends('handlers_btn.clicks') def on_handlers_btn(self): #if self.handlers_btn.clicks == 0: return stream = StringIO() #if options.doc: # flowtk.autodoc_event_handlers() #else: #show_events(self, status=None, nids=None, stream=sys.stdout): self.flow.show_event_handlers(verbose=self.verbose.value, stream=stream) return pn.Row(bkw.PreText(text=stream.getvalue())) @param.depends('vars_btn.clicks') def on_vars_btn(self): if self.vars_btn.clicks == 0: return if not self.vars_text.value: return varnames = [s.strip() for s in self.vars_text.value.split(",")] df = self.flow.compare_abivars( varnames=varnames, # nids=selected_nids(flow, options), printout=False, with_colors=False) return pn.Row(self._df(df)) @param.depends('dims_btn.clicks') def on_dims_btn(self): if self.dims_btn.clicks == 0: return df = self.flow.get_dims_dataframe( # nids=selected_nids(flow, options), printout=False, with_colors=False) return pn.Row(self._df(df), sizing_mode="scale_width") @param.depends('structures_btn.clicks') def on_structures_btn(self): if self.structures_btn.clicks == 0: return what = "" if "input" in self.structures_io_checkbox.value: what += "i" if "output" in self.structures_io_checkbox.value: what += "o" dfs = self.flow.compare_structures( nids=None, # select_nids(flow, options), what=what, verbose=self.verbose.value, with_spglib=False, printout=False, with_colors=False) return pn.Row(self._df(dfs.lattice), sizing_mode="scale_width") @param.depends('ebands_plotter_btn.clicks') def on_ebands_btn(self): if self.ebands_plotter_btn.clicks == 0: return df, ebands_plotter = self.flow.compare_ebands( nids=None, # select_nids(flow, options), with_path="with_path" in self.ebands_ksamp_checkbox.value, with_ibz="with_ibz" in self.ebands_ksamp_checkbox.value, verbose=self.verbose.value, with_spglib=False) if ebands_plotter is None: return plot_mode = self.ebands_plotter_mode.value plotfunc = getattr(ebands_plotter, plot_mode, None) if plotfunc is None: raise ValueError("Don't know how to handle plot_mode: %s" % plot_mode) fig = plotfunc(**self.fig_kwargs) col = pn.Column(self._mp(fig)) if self.ebands_df_checkbox.value: col.append(self._df(df)) return pn.Row(col) #, sizing_mode='scale_width') def get_panel(self): """Return tabs with widgets to interact with the flow.""" tabs = pn.Tabs() app = tabs.append #row = pn.Row(bkw.PreText(text=self.ddb.to_string(verbose=self.verbose.value), sizing_mode="scale_both")) app(("Status", pn.Row(self.status_btn, self.on_status_btn))) app(("History", pn.Row(self.history_btn, self.on_history_btn))) app(("Events", pn.Row(self.events_btn, self.on_events_btn))) app(("Corrections", pn.Row(self.corrections_btn, self.on_corrections_btn))) app(("Handlers", pn.Row(self.handlers_btn, self.on_handlers_btn))) app(("Structures", pn.Row( pn.Column(self.structures_io_checkbox, self.structures_btn), self.on_structures_btn))) ws = pn.Column(self.ebands_plotter_mode, self.ebands_ksamp_checkbox, self.ebands_df_checkbox, self.ebands_plotter_btn) app(("Ebands", pn.Row(ws, self.on_ebands_btn))) app(("Abivars", pn.Row(pn.Column(self.vars_text, self.vars_btn), self.on_vars_btn))) app(("Dims", pn.Row(pn.Column(self.dims_btn), self.on_dims_btn))) app(("Debug", pn.Row(self.debug_btn, self.on_debug_btn))) app(("Graphviz", pn.Row(pn.Column(self.engine, self.dirtree, self.graphviz_btn), self.on_graphviz_btn))) return tabs
def predictions_dashboard(path): """Dashboard for viewing results from epitopepredict runs.""" #folder_input = pn.widgets.TextInput(name='path', value='../zaire_test', width=400,width_policy='fit') #reload_btn = pn.widgets.Button(name='reload',width=100,button_type='primary') names = web.get_file_lists(path) if names is None: return preds = web.get_predictors(path, name=names[0]) print(preds) seqname = pnw.Select(name='name', value=names[0], options=names) cutoff_slider = pnw.FloatSlider(name='cutoff', value=.95, start=.75, end=.99, step=0.01) cutoff_method = pnw.Select(name='cutoff method', value='default', options=['default', 'rank']) n_select = pnw.FloatSlider(name='n', value=1, start=1, end=8, step=1) plot_select = pnw.Select(name='plot view', value='tracks', options=['tracks', 'sequence']) table_select = pnw.Select(name='table view', value='promiscuous', options=['promiscuous', 'binders']) colorseq_box = pnw.Checkbox(name='color sequences', value=False) header = pn.pane.Markdown('__total sequences: %s__' % len(names), css_classes=['main']) tables = pn.Tabs(width=900) plot = pn.pane.Bokeh(width=800) debug = pn.pane.Markdown('test', style={ 'font-size': '10pt', 'background-color': 'yellow' }) summary_plot = pn.pane.Bokeh() summary_table_tabs = pn.Tabs() recalc_button = pnw.Button(name='recalculate', width=200) def update_banner(): """Update the banner""" fullpath = os.path.abspath(path) banner = pn.Row( pn.pane.Markdown( '<h4>epitopepredict: %s</h4> [help](%s) version %s' % (fullpath, helppage, __version__), css_classes=['divheader'], sizing_mode='stretch_width')) return banner def update_header(target, event): names = web.get_file_lists(event.new) target.object = "_total sequences: %s_" % str(len(names)) return def callback_getpath(event): path = os.path.getcwd() folder.value = path def update_plot(preds, name, cutoff, n, kind): """Plot data view""" if kind == 'tracks': p = plotting.bokeh_plot_tracks(preds, name=name, cutoff=cutoff, n=n, width=1000, title=name) plot.object = p elif kind == 'sequence': p = plotting.bokeh_plot_sequence(preds, name=name, cutoff=cutoff, n=n, width=1000, title=name, color_sequence=colorseq_box.value) plot.object = p return p def update_tables(preds, name, n): """Tabular views of results""" P = preds[0] view = table_select.value tables.clear() for P in preds: if view == 'promiscuous': df = P.promiscuous_binders(n=n, name=name) else: df = P.get_binders(name=name) res = df.to_html(classes="tinytable sortable") div = '<div class="scrollingArea">%s</div>' % res tables.append((P.name, div)) #tables.append((P.name,pn.pane.HTML('<p>hddsadsadsasda</p>',width=700))) return def update(event): """Update all elements""" name = seqname.value n = n_select.value cutoff = cutoff_slider.value kind = plot_select.value debug.object = name preds = web.get_predictors(path, name=name) update_plot(preds, name=name, cutoff=cutoff, n=n, kind=kind) update_tables(preds, name, n) return def update_summary(path): """Summary info for folder""" data = web.get_summary_tables(path) df = pd.concat(data, sort=True).reset_index() #plot = plotting.bokeh_summary_plot(df) #summary_plot.object = plot summary_table_tabs.clear() a = web.aggregate_summary(data) div = web.get_scrollable_table(a) summary_table_tabs.append(('all', div)) names = list(data.keys()) for n in names: df = data[n] res = df.to_html(classes="tinytable sortable") div = '<div class="scrollingArea">%s</div>' % res summary_table_tabs.append((n, div)) return @pn.depends(seqname.param.value, n_select.param.value) def download_link(name, n): if preds is None: return df = preds[0].promiscuous_binders(n=n, name=name) df.to_csv() return pn.Pane(HTML('<a>download</a>'), width=700) info = pn.pane.Markdown(web.get_readme()) banner = update_banner() update_summary(path) #reload_btn.param.watch(load_predictors, 'clicks') #reload_btn.param.trigger() seqname.param.watch(update, 'value') cutoff_slider.param.watch(update, 'value') n_select.param.watch(update, 'value') table_select.param.watch(update, 'value') plot_select.param.watch(update, 'value') seqname.param.trigger('options', 'value') top = pn.Row(header) #,download_link) left = pn.Column(plot, tables, margin=10, sizing_mode='stretch_width') right = pn.Column(seqname, cutoff_slider, cutoff_method, n_select, plot_select, table_select, colorseq_box, css_classes=['widget-box'], width=200) center = pn.Row(left, right) #bottom = pn.Row(table) main = pn.Column(top, center) summarypane = pn.Column(recalc_button, (pn.Row(summary_table_tabs))) tabs = pn.Tabs(('summary', summarypane), ('sequence', main), ('about', info)) #tabs.append() app = pn.Column(banner, tabs, sizing_mode='stretch_width') return app
class PanelWithElectronBands(AbipyParameterized): #, metaclass=abc.ABCMeta): # Bands plot with_gaps = pnw.Checkbox(name='Show gaps') #ebands_ylims #ebands_e0 # e0: Option used to define the zero of energy in the band structure plot. Possible values: # - `fermie`: shift all eigenvalues to have zero energy at the Fermi energy (`self.fermie`). # - Number e.g e0=0.5: shift all eigenvalues to have zero energy at 0.5 eV # - None: Don't shift energies, equivalent to e0=0 set_fermie_to_vbm = pnw.Checkbox(name="Set Fermie to VBM") plot_ebands_btn = pnw.Button(name="Plot e-bands", button_type='primary') # DOS plot. edos_method = pnw.Select(name="e-DOS method", options=["gaussian", "tetra"]) edos_step = pnw.Spinner(name='e-DOS step (eV)', value=0.1, step=0.05, start=1e-6, end=None) edos_width = pnw.Spinner(name='e-DOS Gaussian broadening (eV)', value=0.2, step=0.05, start=1e-6, end=None) plot_edos_btn = pnw.Button(name="Plot e-DOS", button_type='primary') # Fermi surface plot. fs_viewer = pnw.Select(name="FS viewer", options=["matplotlib", "xcrysden"]) plot_fermi_surface_btn = pnw.Button(name="Plot Fermi surface", button_type='primary') #@abc.abstractproperty #def ebands(self): # """Returns the |ElectronBands| object.""" def get_plot_ebands_widgets(self): """Widgets to plot ebands.""" return pn.Column(self.with_gaps, self.set_fermie_to_vbm, self.plot_ebands_btn) @param.depends('plot_ebands_btn.clicks') def on_plot_ebands_btn(self): """Button triggering ebands plot.""" if self.plot_ebands_btn.clicks == 0: return if self.set_fermie_to_vbm.value: self.ebands.set_fermie_to_vbm() fig1 = self.ebands.plot(e0="fermie", ylims=None, with_gaps=self.with_gaps.value, max_phfreq=None, fontsize=8, **self.fig_kwargs) fig2 = self.ebands.kpoints.plot(**self.fig_kwargs) row = pn.Row(self._mp(fig1), self._mp(fig2)) #, sizing_mode='scale_width') text = bkw.PreText(text=self.ebands.to_string(verbose=self.verbose)) return pn.Column(row, text, sizing_mode='scale_width') def get_plot_edos_widgets(self): """Widgets to compute e-DOS.""" return pn.Column(self.edos_method, self.edos_step, self.edos_width, self.plot_edos_btn) @param.depends('plot_edos_btn.clicks') def on_plot_edos_btn(self): """Button triggering edos plot.""" if self.plot_edos_btn.clicks == 0: return edos = self.ebands.get_edos(method=self.edos_method.value, step=self.edos_step.value, width=self.edos_width.value) fig = edos.plot(**self.fig_kwargs) return pn.Row(self._mp(fig), sizing_mode='scale_width') def get_plot_fermi_surface_widgets(self): """Widgets to compute e-DOS.""" return pn.Column(self.fs_viewer, self.plot_fermi_surface_btn) @param.depends('plot_fermi_surface_btn.clicks') def on_plot_fermi_surface_btn(self): if self.plot_fermi_surface_btn.clicks == 0: return # Cache eb3d if hasattr(self, "_eb3d"): eb3d = self._eb3d else: # Build ebands in full BZ. eb3d = self._eb3d = self.ebands.get_ebands3d() if self.fs_viewer.value == "matplotlib": # Use matplotlib to plot isosurfaces corresponding to the Fermi level (default) # Warning: requires skimage package, rendering could be slow. fig = eb3d.plot_isosurfaces(e0="fermie", cmap=None, **self.fig_kwargs) return pn.Row(self._mp(fig), sizing_mode='scale_width') else: raise ValueError("Invalid choice: %s" % self.fs_viewer.value)