def test_unjson_dataframe(self):
     '''Test unjson dataframe with `nan` values'''
     csv_utils.unjson_dataframe(json_data)
     assert_frame_equal(json_data, unjson_data, check_like=True)
Esempio n. 2
0
    figsize = width / float(dpi), height / float(dpi)
    # Create a figure of the right size with one axes that takes up the full figure
    fig = plt.figure(figsize=figsize)
    ax = fig.add_axes([0, 0, 1, 1])
    # Hide spines, ticks, etc.
    ax.axis('off')
    # Display the image.
    ax.imshow(im_data)
    return fig, ax


subjects = pandas.read_csv(subjects_with_marks_path)
reductions_all = pandas.read_csv(reducer_export_path)
reductions = reductions_all[reductions_all.reducer_key == 'points']
reductions = reductions.dropna(axis=1, how='all')
unjson_dataframe(reductions)
reductions_counts = reductions_all[reductions_all.reducer_key == 'counts']
reductions_counts = reductions_counts.dropna(axis=1, how='all')

bbox_props = {
    'boxstyle': 'round',
    'fc': 'w',
    'ec': '0.5',
    'alpha': 1
}
text_props = {
    'bbox': bbox_props,
    'ha': 'left',
    'va': 'top',
    'size': 18
}
Esempio n. 3
0
from panoptes_aggregation.csv_utils import unjson_dataframe
from astropy.wcs import WCS
import numpy as np
from gz3d_fits import cov_to_ellipse
from plot_fits_files import set_up_axes
from make_subject_fits import define_wcs
import matplotlib.pyplot as plt
import mpl_style
import progressbar as pb

plt.style.use(mpl_style.style1)

path = '/Volumes/Work/GZ3D'

data = pandas.read_csv(path + '/point_reducer_galaxy_and_star_mpl6.csv')
unjson_dataframe(data)

widgets = [
    'Plot: ',
    pb.Percentage(), ' ',
    pb.Bar(marker='0', left='[', right=']'), ' ',
    pb.ETA()
]
pbar = pb.ProgressBar(widgets=widgets, max_value=len(data))

subjects = pandas.read_csv(path + '/galaxy-zoo-3d-subjects-mpl5-mpl6.csv')
subjects.columns = [
    'subject_id', 'project_id', 'workflow_id', 'subject_set_id',
    'data.metadata', 'data.locations', 'classifications_count', 'retired_at',
    'retirement_reason'
]