"method_opts": { 'n_epochs': 300, 'model': 0, # 0 is avg, 1 is final 'burnin': 200 }, "metrics": { 'rmse': ivfunctions.mse, 'rsquare': ivfunctions.rsquare, 'raw': raw_metric }, "plots": { 'print_metrics': lambda x, y, z: papertables.paper_table( x, y, z, filename= 'many_z_many_t_nnet_print_metrics_paper_n_2000_gamma_6_n_z_10.csv', nn=True) }, "sweep_plots": {}, "mc_opts": { 'n_experiments': 100, # number of monte carlo experiments "seed": 123, }, "cluster_opts": { "node_id": __NODEID__, "n_nodes": __NNODES__ }, "proposed_method": "NystromRKHS", }
'nstrm_n_comp': 100, 'shiv_L': 2, 'shiv_mon': None, 'lin_degree': 3 }, "metrics": { 'rmse': ivfunctions.mse, 'rsquare': ivfunctions.rsquare, 'raw': raw_metric }, "plots": { 'print_metrics': lambda x, y, z: papertables.paper_table( x, y, z, filename= 'many_z_one_t_print_metrics_paper_n_2000_gamma_6_n_z_10.csv', nn=False) }, "sweep_plots": {}, "mc_opts": { 'n_experiments': 100, # number of monte carlo experiments "seed": 123, }, "cluster_opts": { "node_id": __NODEID__, "n_nodes": __NNODES__ }, "proposed_method": "NystromRKHS", }
"method_opts": { 'nstrm_n_comp': 100, 'shiv_L': 2, 'shiv_mon': None, 'lin_degree': 3 }, "metrics": { 'rmse': ivfunctions.mse, 'rsquare': ivfunctions.rsquare, 'raw': raw_metric }, "plots": { 'print_metrics': lambda x, y, z: papertables.paper_table( x, y, z, filename='one_z_one_t_nnet_print_metrics_paper_n_2000_gamma_8.csv', nn=False) }, "sweep_plots": {}, "mc_opts": { 'n_experiments': 100, # number of monte carlo experiments "seed": 123, }, "cluster_opts": { "node_id": __NODEID__, "n_nodes": __NNODES__ }, "proposed_method": "NystromRKHS", }