Esempio n. 1
0
def test_fdm_operator_on_pde_with_t_and_x_dependent_rhs():
    class TestDiffEq(DifferentialEquation):
        def __init__(self):
            super(TestDiffEq, self).__init__(2, 1)

        @property
        def symbolic_equation_system(self) -> SymbolicEquationSystem:
            return SymbolicEquationSystem([
                self.symbols.t / 100. *
                (self.symbols.x[0] + self.symbols.x[1])**2
            ])

    diff_eq = TestDiffEq()
    mesh = Mesh([(-5., 5.), (0., 3.)], [2., 1.])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1))),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1))))] * 2
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = ContinuousInitialCondition(cp, lambda x: np.zeros((len(x), 1)))
    ivp = InitialValueProblem(cp, (0., 5.), ic)

    op = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .25)
    solution = op.solve(ivp)
    y = solution.discrete_y()

    assert solution.vertex_oriented
    assert solution.d_t == .25
    assert y.shape == (20, 6, 4, 1)
Esempio n. 2
0
def test_pidon_operator_on_spherical_pde():
    set_random_seed(0)

    diff_eq = DiffusionEquation(3)
    mesh = Mesh(
        [(1., 11.), (0., 2 * np.pi), (.25 * np.pi, .75 * np.pi)],
        [2., np.pi / 5., np.pi / 4],
        CoordinateSystem.SPHERICAL)
    bcs = [
        (DirichletBoundaryCondition(
            lambda x, t: np.ones((len(x), 1)), is_static=True),
         DirichletBoundaryCondition(
             lambda x, t: np.full((len(x), 1), 1. / 11.), is_static=True)),
        (NeumannBoundaryCondition(
            lambda x, t: np.zeros((len(x), 1)), is_static=True),
         NeumannBoundaryCondition(
             lambda x, t: np.zeros((len(x), 1)), is_static=True)),
        (NeumannBoundaryCondition(
            lambda x, t: np.zeros((len(x), 1)), is_static=True),
         NeumannBoundaryCondition(
             lambda x, t: np.zeros((len(x), 1)), is_static=True))
    ]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = ContinuousInitialCondition(cp, lambda x: 1. / x[:, :1])
    t_interval = (0., .5)
    ivp = InitialValueProblem(cp, t_interval, ic)

    sampler = UniformRandomCollocationPointSampler()
    pidon = PIDONOperator(sampler, .001, True)

    training_loss_history, test_loss_history = pidon.train(
        cp,
        t_interval,
        training_data_args=DataArgs(
            y_0_functions=[ic.y_0],
            n_domain_points=20,
            n_boundary_points=10,
            n_batches=1
        ),
        model_args=ModelArgs(
            latent_output_size=20,
            branch_hidden_layer_sizes=[30, 30],
            trunk_hidden_layer_sizes=[30, 30],
        ),
        optimization_args=OptimizationArgs(
            optimizer=optimizers.Adam(learning_rate=2e-5),
            epochs=3,
            verbose=False
        )
    )

    assert len(training_loss_history) == 3
    for i in range(2):
        assert np.all(
            training_loss_history[i + 1].weighted_total_loss.numpy() <
            training_loss_history[i].weighted_total_loss.numpy())

    solution = pidon.solve(ivp)
    assert solution.d_t == .001
    assert solution.discrete_y().shape == (500, 6, 11, 3, 1)
Esempio n. 3
0
def test_solution_generate_plots_for_2d_pde_with_scalar_and_vector_fields():
    diff_eq = ShallowWaterEquation(.5)
    mesh = Mesh([(0., 5.), (0., 5.)], [1., 1.])
    bcs = [(NeumannBoundaryCondition(
        vectorize_bc_function(lambda x, t: (.0, None, None)), is_static=True),
            NeumannBoundaryCondition(
                vectorize_bc_function(lambda x, t: (.0, None, None)),
                is_static=True))] * 2
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(
        cp, [(np.array([2.5, 1.25]), np.array([[1., 0.], [0., 1.]]))] * 3,
        [1., .0, .0])
    ivp = InitialValueProblem(cp, (0., 20.), ic)

    t_coordinates = np.array([10., 20.])
    discrete_y = np.arange(216).reshape((2, 6, 6, 3))

    solution = Solution(ivp, t_coordinates, discrete_y, vertex_oriented=True)

    plots = list(solution.generate_plots())
    try:
        assert len(plots) == 4
        assert isinstance(plots[0], QuiverPlot)
        assert isinstance(plots[1], StreamPlot)
        assert isinstance(plots[2], ContourPlot)
        assert isinstance(plots[3], SurfacePlot)
    finally:
        for plot in plots:
            plot.close()
Esempio n. 4
0
def test_fdm_operator_on_pde_with_t_and_x_dependent_rhs():
    class TestDiffEq(DifferentialEquation):

        def __init__(self):
            super(TestDiffEq, self).__init__(2, 1)

        @property
        def symbolic_equation_system(self) -> SymbolicEquationSystem:
            return SymbolicEquationSystem([
                self.symbols.t / 100. *
                (self.symbols.x[0] + self.symbols.x[1]) ** 2
            ])

    diff_eq = TestDiffEq()
    mesh = Mesh([(-1., 1.), (0., 2.)], [2., 1.])
    bcs = [
        (NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1))),
         NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1))))
    ] * 2
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = ContinuousInitialCondition(cp, lambda x: np.zeros((len(x), 1)))
    t_interval = (0., 1.)
    ivp = InitialValueProblem(cp, t_interval, ic)

    sampler = UniformRandomCollocationPointSampler()
    pidon = PIDONOperator(sampler, .05, True)

    training_loss_history, test_loss_history = pidon.train(
        cp,
        t_interval,
        training_data_args=DataArgs(
            y_0_functions=[ic.y_0],
            n_domain_points=20,
            n_boundary_points=10,
            n_batches=1
        ),
        model_args=ModelArgs(
            latent_output_size=20,
            branch_hidden_layer_sizes=[30, 30],
            trunk_hidden_layer_sizes=[30, 30],
        ),
        optimization_args=OptimizationArgs(
            optimizer=optimizers.Adam(learning_rate=2e-5),
            epochs=3,
            verbose=False
        )
    )

    assert len(training_loss_history) == 3
    for i in range(2):
        assert np.all(
            training_loss_history[i + 1].weighted_total_loss.numpy() <
            training_loss_history[i].weighted_total_loss.numpy())

    solution = pidon.solve(ivp)
    assert solution.d_t == .05
    assert solution.discrete_y().shape == (20, 2, 3, 1)
Esempio n. 5
0
def test_neumann_boundary_condition():
    bc = NeumannBoundaryCondition(
        lambda x, t: np.zeros((len(x), 2)), is_static=True)
    assert bc.is_static
    assert not bc.has_y_condition
    assert bc.has_d_y_condition

    assert np.allclose(
        bc.d_y_condition(np.ones((7, 3)), 5.),
        np.zeros((7, 2)))

    with pytest.raises(RuntimeError):
        bc.y_condition(np.ones((7, 1)), 5.)
Esempio n. 6
0
def test_solution_pde_with_no_vertex_orientation_defined():
    diff_eq = WaveEquation(1)
    mesh = Mesh([(0., 2.)], [1.])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))))]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array([1.]), np.array([[1.]]))] * 2)
    ivp = InitialValueProblem(cp, (0., 2.), ic)

    t_coordinates = np.array([1., 2.])
    discrete_y = np.arange(12).reshape((2, 3, 2))

    with pytest.raises(ValueError):
        Solution(ivp, t_coordinates, discrete_y)
Esempio n. 7
0
def test_pidon_operator_in_ar_mode_on_pde():
    set_random_seed(0)

    diff_eq = WaveEquation(1)
    mesh = Mesh([(0., 1.)], (.2,))
    bcs = [
        (NeumannBoundaryCondition(
            lambda x, t: np.zeros((len(x), 2)), is_static=True),
         NeumannBoundaryCondition(
             lambda x, t: np.zeros((len(x), 2)), is_static=True)),
    ]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    t_interval = (0., 1.)
    ic = BetaInitialCondition(cp, [(3.5, 3.5), (3.5, 3.5)])
    ivp = InitialValueProblem(cp, t_interval, ic)

    training_y_0_functions = [
        BetaInitialCondition(cp, [(p, p), (p, p)]).y_0
        for p in [2., 3., 4., 5.]
    ]
    sampler = UniformRandomCollocationPointSampler()
    pidon = PIDONOperator(sampler, .25, False, auto_regression_mode=True)

    assert pidon.auto_regression_mode

    pidon.train(
        cp,
        (0., .25),
        training_data_args=DataArgs(
            y_0_functions=training_y_0_functions,
            n_domain_points=50,
            n_boundary_points=20,
            n_batches=2
        ),
        model_args=ModelArgs(
            latent_output_size=50,
            branch_hidden_layer_sizes=[50, 50],
            trunk_hidden_layer_sizes=[50, 50],
        ),
        optimization_args=OptimizationArgs(
            optimizer=optimizers.Adam(learning_rate=1e-4),
            epochs=2,
            ic_loss_weight=10.,
            verbose=False
        )
    )

    sol = pidon.solve(ivp)
    assert np.allclose(sol.t_coordinates, [.25, .5, .75, 1.])
    assert sol.discrete_y().shape == (4, 5, 2)
Esempio n. 8
0
def test_beta_initial_condition_with_wrong_number_of_alpha_and_betas():
    diff_eq = DiffusionEquation(1)
    mesh = Mesh([(0., 1.)], [.1])
    bcs = [(NeumannBoundaryCondition(lambda x: np.zeros((len(x), 1))), ) * 2]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    with pytest.raises(ValueError):
        BetaInitialCondition(cp, [(1., 1.), (1., 1)])
Esempio n. 9
0
def test_beta_initial_condition_with_more_than_1d_pde():
    diff_eq = DiffusionEquation(2)
    mesh = Mesh([(0., 1.), (0., 1.)], [.1, .1])
    bcs = [(NeumannBoundaryCondition(lambda x: np.zeros((len(x), 1))), ) * 2
           ] * 2
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    with pytest.raises(ValueError):
        BetaInitialCondition(cp, [(1., 1.), (1., 1)])
Esempio n. 10
0
def test_fdm_operator_on_1d_pde():
    diff_eq = BurgerEquation(1, 1000.)
    mesh = Mesh([(0., 10.)], [.1])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1)),
                                     is_static=True),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1)),
                                     is_static=True))]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array([2.5]), np.array([[1.]]))])
    ivp = InitialValueProblem(cp, (0., 50.), ic)
    op = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .25)
    solution = op.solve(ivp)

    assert solution.vertex_oriented
    assert solution.d_t == .25
    assert solution.discrete_y().shape == (200, 101, 1)
    assert solution.discrete_y(False).shape == (200, 100, 1)
Esempio n. 11
0
def test_fdm_operator_on_3d_pde():
    diff_eq = CahnHilliardEquation(3)
    mesh = Mesh([(0., 5.), (0., 5.), (0., 10.)], [.5, 1., 2.])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2)),
                                     is_static=True),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2)),
                                     is_static=True))] * 3
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = DiscreteInitialCondition(
        cp, .05 * np.random.uniform(-1., 1., cp.y_shape(True)), True)
    ivp = InitialValueProblem(cp, (0., 5.), ic)
    op = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .05)
    solution = op.solve(ivp)

    assert solution.vertex_oriented
    assert solution.d_t == .05
    assert solution.discrete_y().shape == (100, 11, 6, 6, 2)
    assert solution.discrete_y(False).shape == (100, 10, 5, 5, 2)
Esempio n. 12
0
def test_fdm_operator_on_spherical_pde():
    diff_eq = DiffusionEquation(3)
    mesh = Mesh([(1., 11.), (0., 2. * np.pi), (.1 * np.pi, .9 * np.pi)],
                [2., np.pi / 5., np.pi / 5], CoordinateSystem.SPHERICAL)
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1)),
                                     is_static=True),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1)),
                                     is_static=True))] * 3
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = ContinuousInitialCondition(cp, lambda x: 1. / x[:, :1])
    ivp = InitialValueProblem(cp, (0., 5.), ic)
    op = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .1)
    solution = op.solve(ivp)

    assert solution.vertex_oriented
    assert solution.d_t == .1
    assert solution.discrete_y().shape == (50, 6, 11, 5, 1)
    assert solution.discrete_y(False).shape == (50, 5, 10, 4, 1)
Esempio n. 13
0
def test_fdm_operator_on_polar_pde():
    diff_eq = ShallowWaterEquation(.5)
    mesh = Mesh([(1., 11.), (0., 2 * np.pi)], [2., np.pi / 5.],
                CoordinateSystem.POLAR)
    bcs = [(NeumannBoundaryCondition(
        vectorize_bc_function(lambda x, t: (.0, None, None)), is_static=True),
            NeumannBoundaryCondition(
                vectorize_bc_function(lambda x, t: (.0, None, None)),
                is_static=True))] * 2
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(
        cp, [(np.array([-6., 0.]), np.array([[.25, 0.], [0., .25]]))] * 3,
        [1., .0, .0])
    ivp = InitialValueProblem(cp, (0., 5.), ic)
    op = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .1)
    solution = op.solve(ivp)

    assert solution.vertex_oriented
    assert solution.d_t == .1
    assert solution.discrete_y().shape == (50, 6, 11, 3)
    assert solution.discrete_y(False).shape == (50, 5, 10, 3)
Esempio n. 14
0
def test_solution_pde():
    diff_eq = WaveEquation(1)
    mesh = Mesh([(0., 2.)], [1.])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))))]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array([1.]), np.array([[1.]]))] * 2)
    ivp = InitialValueProblem(cp, (0., 2.), ic)

    t_coordinates = np.array([1., 2.])
    discrete_y = np.arange(12).reshape((2, 3, 2))

    solution = Solution(ivp, t_coordinates, discrete_y, vertex_oriented=True)

    assert solution.initial_value_problem == ivp
    assert np.array_equal(solution.t_coordinates, t_coordinates)
    assert np.isclose(solution.d_t, 1.)
    assert solution.vertex_oriented

    x_coordinates = np.array([[.5], [1.]])
    expected_y = [[[1., 2.], [2., 3.]], [[7., 8.], [8., 9.]]]
    assert np.allclose(solution.y(x_coordinates), expected_y)

    expected_cell_y = [[[1., 2.], [3., 4.]], [[7., 8.], [9., 10.]]]
    assert np.allclose(solution.discrete_y(False), expected_cell_y)
    assert np.allclose(solution.discrete_y(), discrete_y)

    other_solutions = [
        Solution(ivp,
                 np.linspace(.5, 2., 4),
                 np.arange(16).reshape((4, 2, 2)),
                 vertex_oriented=False)
    ]
    expected_differences = [
        [[3., 3.], [3., 3.], [3., 3.]],
        [[5., 5.], [5., 5.], [5., 5.]],
    ]
    diff = solution.diff(other_solutions)
    assert np.allclose(diff.matching_time_points, [1., 2.])
    assert np.allclose(diff.differences, expected_differences)
Esempio n. 15
0
def test_solution_generate_plots_for_1d_pde_with_scalar_fields():
    diff_eq = WaveEquation(1)
    mesh = Mesh([(0., 2.)], [1.])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))))]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array([1.]), np.array([[1.]]))] * 2)
    ivp = InitialValueProblem(cp, (0., 2.), ic)

    t_coordinates = np.array([1., 2.])
    discrete_y = np.arange(12).reshape((2, 3, 2))

    solution = Solution(ivp, t_coordinates, discrete_y, vertex_oriented=True)

    plots = list(solution.generate_plots())
    try:
        assert len(plots) == 2
        assert isinstance(plots[0], SpaceLinePlot)
        assert isinstance(plots[1], SpaceLinePlot)
    finally:
        for plot in plots:
            plot.close()
Esempio n. 16
0
def test_beta_initial_condition():
    diff_eq = WaveEquation(1)
    mesh = Mesh([(0., 1.)], [.5])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2)),
                                     is_static=True),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2)),
                                     is_static=True))]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    initial_condition = BetaInitialCondition(cp, [(2., 3.), (3., 2.)])

    x_coordinates = np.array([[.125], [.625]])
    expected_y_0 = [[1.1484375, .1640625], [1.0546875, 1.7578125]]
    actual_y_0 = initial_condition.y_0(x_coordinates)
    assert np.allclose(actual_y_0, expected_y_0)

    expected_vertex_discrete_y_0 = [[0., 0.], [1.5, 1.5], [0., 0.]]
    actual_vertex_discrete_y_0 = initial_condition.discrete_y_0(True)
    assert np.allclose(actual_vertex_discrete_y_0,
                       expected_vertex_discrete_y_0)

    expected_cell_discrete_y_0 = [[1.6875, .5625], [.5625, 1.6875]]
    actual_cell_discrete_y_0 = initial_condition.discrete_y_0(False)
    assert np.allclose(actual_cell_discrete_y_0, expected_cell_discrete_y_0)
Esempio n. 17
0
def test_parareal_operator_on_pde():
    diff_eq = DiffusionEquation(2)
    mesh = Mesh([(0., 5.), (0., 5.)], [1., 1.])
    bcs = [(NeumannBoundaryCondition(lambda x, _: np.zeros((len(x), 1)),
                                     is_static=True),
            NeumannBoundaryCondition(lambda x, _: np.zeros((len(x), 1)),
                                     is_static=True))] * 2
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(
        cp, [(np.array([2.5, 2.5]), np.array([[1., 0.], [0., 1.]]))])
    ivp = InitialValueProblem(cp, (0., 5.), ic)

    f = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .05)
    g = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .5)
    p = PararealOperator(f, g, .005)

    f_solution = f.solve(ivp)
    p_solution = p.solve(ivp)

    assert p_solution.vertex_oriented == f_solution.vertex_oriented
    assert p_solution.d_t == f_solution.d_t
    assert np.array_equal(p_solution.t_coordinates, f_solution.t_coordinates)
    assert np.allclose(p_solution.discrete_y(), f_solution.discrete_y())
Esempio n. 18
0
def test_ode_operator_on_pde():
    diff_eq = DiffusionEquation(1, 1.5)
    mesh = Mesh([(0., 10.)], [.1])
    bcs = [
        (NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1))),
         DirichletBoundaryCondition(lambda x, t: np.zeros((len(x), 1)))),
    ]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array([5.]), np.array([[2.5]]))],
                                  [20.])
    ivp = InitialValueProblem(cp, (0., 10.), ic)
    op = ODEOperator('RK23', 2.5e-3)
    with pytest.raises(ValueError):
        op.solve(ivp)
Esempio n. 19
0
def test_solution_generate_plots_for_3d_pde_with_vector_field():
    diff_eq = BurgerEquation(3)
    mesh = Mesh([(0., 2.)] * 3, [1.] * 3)
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))),
            NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 2))))] * 3
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array(
        [1., 1., 1.]), np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]))] *
                                  3)
    ivp = InitialValueProblem(cp, (0., 2.), ic)

    t_coordinates = np.array([1., 2.])
    discrete_y = np.arange(162).reshape((2, 3, 3, 3, 3))

    solution = Solution(ivp, t_coordinates, discrete_y, vertex_oriented=True)

    plots = list(solution.generate_plots())
    try:
        assert len(plots) == 1
        assert isinstance(plots[0], QuiverPlot)
    finally:
        for plot in plots:
            plot.close()
Esempio n. 20
0
def test_pidon_operator_in_ar_mode_training_with_dynamic_boundary_conditions():
    diff_eq = DiffusionEquation(1, .25)
    mesh = Mesh([(0., .5)], (.05,))
    bcs = [
        (NeumannBoundaryCondition(
            lambda x, t: np.full((len(x), 1), t), is_static=False),
         NeumannBoundaryCondition(
             lambda x, t: np.zeros((len(x), 1)), is_static=True)),
    ]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    t_interval = (0., .5)
    y_0_functions = [lambda x: np.zeros((len(x), 1))]

    pidon = PIDONOperator(UniformRandomCollocationPointSampler(), .001, True)

    with pytest.raises(ValueError):
        pidon.train(
            cp,
            t_interval,
            training_data_args=DataArgs(
                y_0_functions=y_0_functions,
                n_domain_points=50,
                n_boundary_points=20,
                n_batches=2
            ),
            model_args=ModelArgs(
                latent_output_size=50,
                branch_hidden_layer_sizes=[50, 50],
                trunk_hidden_layer_sizes=[50, 50],
            ),
            optimization_args=OptimizationArgs(
                optimizer={'class_name': 'Adam'},
                epochs=3,
                ic_loss_weight=10.,
                verbose=False
            )
        )
Esempio n. 21
0
def test_fdm_operator_conserves_density_on_zero_flux_diffusion_equation():
    diff_eq = DiffusionEquation(1, 5.)
    mesh = Mesh([(0., 500.)], [.1])
    bcs = [
        (NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1)),
                                  is_static=True),
         NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1)),
                                  is_static=True)),
    ]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array([250]), np.array([[250.]]))],
                                  [1000.])
    ivp = InitialValueProblem(cp, (0., 20.), ic)

    y_0 = ic.discrete_y_0(True)
    y_0_sum = np.sum(y_0)

    fdm_op = FDMOperator(CrankNicolsonMethod(),
                         ThreePointCentralDifferenceMethod(), 1e-3)
    solution = fdm_op.solve(ivp)
    y = solution.discrete_y()
    y_sums = np.sum(y, axis=tuple(range(1, y.ndim)))

    assert np.allclose(y_sums, y_0_sum)
def test_cp_1d_pde():
    diff_eq = DiffusionEquation(1)
    mesh = Mesh([(0., 1.)], [.1])
    bcs = [(NeumannBoundaryCondition(lambda x, t: np.zeros((1, 1)),
                                     is_static=True), ) * 2]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)

    assert cp.are_all_boundary_conditions_static
    assert not cp.are_there_boundary_conditions_on_y
    assert cp.y_shape(True) == (11, 1)
    assert cp.y_shape(False) == (10, 1)

    assert cp.differential_equation == diff_eq
    assert cp.mesh == mesh
    assert np.array_equal(cp.boundary_conditions, bcs)

    y_vertex_constraints = cp.static_y_vertex_constraints
    assert y_vertex_constraints.shape == (1, )
    assert np.all(y_vertex_constraints[0].mask == [False])
    assert np.all(y_vertex_constraints[0].values == [])

    vertex_boundary_constraints = cp.static_boundary_constraints(True)
    y_vertex_boundary_constraints = vertex_boundary_constraints[0]
    assert y_vertex_boundary_constraints.shape == (1, 1)
    assert y_vertex_boundary_constraints[0, 0][0] is None
    assert y_vertex_boundary_constraints[0, 0][1] is None
    d_y_vertex_boundary_constraints = vertex_boundary_constraints[1]
    assert d_y_vertex_boundary_constraints.shape == (1, 1)
    assert np.all(d_y_vertex_boundary_constraints[0, 0][0].mask == [True])
    assert np.all(d_y_vertex_boundary_constraints[0, 0][0].values == [0.])
    assert np.all(d_y_vertex_boundary_constraints[0, 0][1].mask == [True])
    assert np.all(d_y_vertex_boundary_constraints[0, 0][1].values == [0.])

    cell_boundary_constraints = cp.static_boundary_constraints(False)
    y_cell_boundary_constraints = cell_boundary_constraints[0]
    assert y_cell_boundary_constraints.shape == (1, 1)
    assert y_cell_boundary_constraints[0, 0][0] is None
    assert y_cell_boundary_constraints[0, 0][1] is None
    d_y_cell_boundary_constraints = cell_boundary_constraints[1]
    assert d_y_cell_boundary_constraints.shape == (1, 1)
    assert np.all(d_y_cell_boundary_constraints[0, 0][0].mask == [True])
    assert np.all(d_y_cell_boundary_constraints[0, 0][0].values == [0.])
    assert np.all(d_y_cell_boundary_constraints[0, 0][1].mask == [True])
    assert np.all(d_y_cell_boundary_constraints[0, 0][1].values == [0.])
Esempio n. 23
0
def test_fdm_operator_on_pde_with_dynamic_boundary_conditions():
    diff_eq = DiffusionEquation(1, 1.5)
    mesh = Mesh([(0., 10.)], [1.])
    bcs = [
        (NeumannBoundaryCondition(lambda x, t: np.zeros((len(x), 1))),
         DirichletBoundaryCondition(lambda x, t: np.full((len(x), 1), t / 5.))
         ),
    ]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    ic = GaussianInitialCondition(cp, [(np.array([5.]), np.array([[2.5]]))],
                                  [20.])
    ivp = InitialValueProblem(cp, (0., 10.), ic)
    op = FDMOperator(RK4(), ThreePointCentralDifferenceMethod(), .5)
    solution = op.solve(ivp)
    y = solution.discrete_y()

    assert solution.vertex_oriented
    assert solution.d_t == .5
    assert y.shape == (20, 11, 1)
    assert solution.discrete_y(False).shape == (20, 10, 1)

    assert np.isclose(y[0, -1, 0], .1)
    assert np.isclose(y[-1, -1, 0], 2.)
def test_cp_3d_pde():
    mesh = Mesh([(2., 6.), (-3., 3.), (10., 12.)], [.1, .2, .5])

    assert mesh.shape(True) == (41, 31, 5)
    assert mesh.shape(False) == (40, 30, 4)

    diff_eq = WaveEquation(3)
    cp = ConstrainedProblem(
        diff_eq, mesh,
        ((DirichletBoundaryCondition(
            vectorize_bc_function(lambda x, t: (999., None)), is_static=True),
          NeumannBoundaryCondition(
              vectorize_bc_function(lambda x, t: (None, None)),
              is_static=True)),
         (DirichletBoundaryCondition(
             vectorize_bc_function(lambda x, t: (0., 0.)), is_static=True),
          NeumannBoundaryCondition(lambda x, t: np.full((len(x), 2), t))),
         (NeumannBoundaryCondition(lambda x, t: -x[:, :2] * x[:, 1:3],
                                   is_static=True),
          DirichletBoundaryCondition(
              vectorize_bc_function(lambda x, t: (-999., None))))))

    assert cp.y_shape(True) == (41, 31, 5, 2)
    assert cp.y_shape(False) == (40, 30, 4, 2)

    assert not cp.are_all_boundary_conditions_static
    assert cp.are_there_boundary_conditions_on_y

    assert cp.static_y_vertex_constraints.shape == (2, )

    y = np.full(cp._y_vertices_shape, -1)
    cp.static_y_vertex_constraints[0].apply(y[..., :1])
    cp.static_y_vertex_constraints[1].apply(y[..., 1:])

    assert np.all(y[0, 1:, :, 0] == 999.)
    assert np.all(y[:, 0, :, 0] == 0.)
    assert np.all(y[1:, 1:, :, 0] == -1.)
    assert np.all(y[:, 0, :, 1] == 0.)
    assert np.all(y[:, 1:, :, 1] == -1.)

    vertex_boundary_constraints = cp.static_boundary_vertex_constraints
    cell_boundary_constraints = cp.static_boundary_cell_constraints

    for y_boundary_constraints in \
            [vertex_boundary_constraints[0], cell_boundary_constraints[0]]:
        assert y_boundary_constraints.shape == (3, 2)
        assert y_boundary_constraints[0, 0][0] is not None
        assert y_boundary_constraints[0, 1][0] is not None
        assert y_boundary_constraints[0, 0][1] is None
        assert y_boundary_constraints[0, 1][1] is None
        assert y_boundary_constraints[1, 0][0] is not None
        assert y_boundary_constraints[1, 1][0] is not None
        assert y_boundary_constraints[1, 0][1] is None
        assert y_boundary_constraints[1, 1][1] is None
        assert y_boundary_constraints[2, 0][0] is None
        assert y_boundary_constraints[2, 1][0] is None
        assert y_boundary_constraints[2, 0][1] is None
        assert y_boundary_constraints[2, 1][1] is None

    for d_y_boundary_constraints in \
            [vertex_boundary_constraints[1], cell_boundary_constraints[1]]:
        assert d_y_boundary_constraints.shape == (3, 2)
        assert d_y_boundary_constraints[0, 0][0] is None
        assert d_y_boundary_constraints[0, 1][0] is None
        assert d_y_boundary_constraints[0, 0][1] is not None
        assert d_y_boundary_constraints[0, 1][1] is not None
        assert d_y_boundary_constraints[1, 0][0] is None
        assert d_y_boundary_constraints[1, 1][0] is None
        assert d_y_boundary_constraints[1, 0][1] is None
        assert d_y_boundary_constraints[1, 1][1] is None
        assert d_y_boundary_constraints[2, 0][0] is not None
        assert d_y_boundary_constraints[2, 1][0] is not None
        assert d_y_boundary_constraints[2, 0][1] is None
        assert d_y_boundary_constraints[2, 1][1] is None

    new_vertex_boundary_constraints = cp.create_boundary_constraints(True, 1.)
    new_y_boundary_constraints = new_vertex_boundary_constraints[0]
    new_d_y_boundary_constraints = new_vertex_boundary_constraints[1]
    assert new_y_boundary_constraints[2, 0][1] is not None
    assert new_y_boundary_constraints[2, 1][1] is not None
    assert new_d_y_boundary_constraints[1, 0][1] is not None
    assert new_d_y_boundary_constraints[1, 1][1] is not None

    d_y_boundary = np.full((41, 1, 5, 2), np.nan)
    new_d_y_boundary_constraints[1, 0][1].apply(d_y_boundary[..., :1])
    new_d_y_boundary_constraints[1, 1][1].apply(d_y_boundary[..., 1:])
    assert np.all(d_y_boundary == 1.)

    new_y_vertex_constraints = \
        cp.create_y_vertex_constraints(new_y_boundary_constraints)
    assert new_y_vertex_constraints.shape == (2, )

    y = np.full(cp._y_vertices_shape, -1)
    new_y_vertex_constraints[0].apply(y[..., :1])
    new_y_vertex_constraints[1].apply(y[..., 1:])

    assert np.all(y[0, 1:, :-1, 0] == 999.)
    assert np.all(y[:, 0, :-1, 0] == 0.)
    assert np.all(y[:, :, -1, 0] == -999.)
    assert np.all(y[1:, 1:, :-1, 0] == -1.)
    assert np.all(y[:, 0, :, 1] == 0.)
    assert np.all(y[:, 1:, :, 1] == -1.)
def test_cp_2d_pde():
    diff_eq = WaveEquation(2)
    mesh = Mesh([(2., 6.), (-3., 3.)], [.1, .2])
    bcs = ((DirichletBoundaryCondition(
        vectorize_bc_function(lambda x, t: (999., None)), is_static=True),
            NeumannBoundaryCondition(
                vectorize_bc_function(lambda x, t: (100., -100.)),
                is_static=True)),
           (NeumannBoundaryCondition(
               vectorize_bc_function(lambda x, t: (-x[0], None)),
               is_static=True),
            DirichletBoundaryCondition(
                vectorize_bc_function(lambda x, t: (x[0], x[1])),
                is_static=True)))
    cp = ConstrainedProblem(diff_eq, mesh, bcs)

    assert cp.are_all_boundary_conditions_static
    assert cp.are_there_boundary_conditions_on_y

    y_vertices = np.full(cp.y_shape(True), 13.)
    apply_constraints_along_last_axis(cp.static_y_vertex_constraints,
                                      y_vertices)

    assert np.all(y_vertices[0, :-1, 0] == 999.)
    assert np.all(y_vertices[0, :-1, 1] == 13.)
    assert np.all(y_vertices[-1, :-1, :] == 13.)
    assert np.all(y_vertices[1:, 0, :] == 13.)
    assert np.allclose(y_vertices[:, -1, 0],
                       np.linspace(2., 6., y_vertices.shape[0]))
    assert np.all(y_vertices[:, -1, 1] == 3.)

    y_vertices = np.zeros(cp.y_shape(True))
    diff = ThreePointCentralDifferenceMethod()
    d_y_boundary_constraints = cp.static_boundary_vertex_constraints[1]

    d_y_0_over_d_x_0 = diff.gradient(y_vertices[..., :1], mesh, 0,
                                     d_y_boundary_constraints[:, :1])

    assert np.all(d_y_0_over_d_x_0[-1, :, :] == 100.)
    assert np.all(d_y_0_over_d_x_0[:-1, :, :] == 0.)

    d_y_0_over_d_x_1 = diff.gradient(y_vertices[..., :1], mesh, 1,
                                     d_y_boundary_constraints[:, :1])

    assert np.allclose(d_y_0_over_d_x_1[:, 0, 0],
                       np.linspace(-2., -6., y_vertices.shape[0]))
    assert np.all(d_y_0_over_d_x_1[:, 1:, :] == 0.)

    d_y_1_over_d_x_0 = diff.gradient(y_vertices[..., 1:], mesh, 0,
                                     d_y_boundary_constraints[:, 1:])

    assert np.all(d_y_1_over_d_x_0[-1, :, :] == -100.)
    assert np.all(d_y_1_over_d_x_0[:-1, :, :] == 0.)

    d_y_1_over_d_x_1 = diff.gradient(y_vertices[..., 1:], mesh, 1,
                                     d_y_boundary_constraints[:, 1:])

    assert np.all(d_y_1_over_d_x_1 == 0.)

    y_boundary_cell_constraints = cp.static_boundary_cell_constraints[0]

    assert np.all(y_boundary_cell_constraints[0, 0][0].mask == [True] *
                  cp.y_cells_shape[1])
    assert np.all(y_boundary_cell_constraints[0, 0][0].values == 999.)
    assert np.all(y_boundary_cell_constraints[0, 1][0].mask == [False] *
                  cp.y_cells_shape[1])
    assert y_boundary_cell_constraints[0, 1][0].values.size == 0

    assert np.all(y_boundary_cell_constraints[1, 0][1].mask == [True] *
                  cp.y_cells_shape[0])
    assert np.allclose(y_boundary_cell_constraints[1, 0][1].values,
                       np.linspace(2.05, 5.95, cp.y_cells_shape[0]))
    assert np.all(y_boundary_cell_constraints[1, 1][1].mask == [True] *
                  cp.y_cells_shape[0])
    assert np.all(y_boundary_cell_constraints[1, 1][1].values == 3.)
    assert y_boundary_cell_constraints[1, 0][0] is None
Esempio n. 26
0
def test_pidon_operator_on_pde_with_dynamic_boundary_conditions():
    set_random_seed(0)

    diff_eq = DiffusionEquation(1, .25)
    mesh = Mesh([(0., 1.)], (.1,))
    bcs = [
        (NeumannBoundaryCondition(lambda x, t: np.full((len(x), 1), t)),
         NeumannBoundaryCondition(lambda x, t: np.full((len(x), 1), t))),
    ]
    cp = ConstrainedProblem(diff_eq, mesh, bcs)
    t_interval = (0., .5)

    training_y_0_functions = [
        BetaInitialCondition(cp, [(p, p)]).y_0 for p in [2., 3., 4., 5.]
    ]
    test_y_0_functions = [
        BetaInitialCondition(cp, [(p, p)]).y_0 for p in [2.5, 3.5, 4.5]
    ]

    sampler = UniformRandomCollocationPointSampler()
    pidon = PIDONOperator(sampler, .001, True)

    training_loss_history, test_loss_history = pidon.train(
        cp,
        t_interval,
        training_data_args=DataArgs(
            y_0_functions=training_y_0_functions,
            n_domain_points=50,
            n_boundary_points=20,
            n_batches=2
        ),
        test_data_args=DataArgs(
            y_0_functions=test_y_0_functions,
            n_domain_points=25,
            n_boundary_points=10,
            n_batches=1
        ),
        model_args=ModelArgs(
            latent_output_size=50,
            branch_hidden_layer_sizes=[50, 50],
            trunk_hidden_layer_sizes=[50, 50],
        ),
        optimization_args=OptimizationArgs(
            optimizer={
                'class_name': 'Adam',
                'config': {
                    'learning_rate': 1e-4
                }
            },
            epochs=3,
            ic_loss_weight=10.,
            verbose=False
        )
    )

    assert len(training_loss_history) == 3
    assert len(test_loss_history) == 3
    for i in range(2):
        assert training_loss_history[i + 1].weighted_total_loss.numpy() < \
            training_loss_history[i].weighted_total_loss.numpy()
        assert test_loss_history[i + 1].weighted_total_loss.numpy() < \
            test_loss_history[i].weighted_total_loss.numpy()

    ic = BetaInitialCondition(cp, [(3.5, 3.5)])
    ivp = InitialValueProblem(cp, t_interval, ic)

    solution = pidon.solve(ivp)
    assert solution.d_t == .001
    assert solution.discrete_y().shape == (500, 11, 1)