Esempio n. 1
0
    def forward(self, input, index, src_enc):
        """
        # input: relBatch: packed_gold_amr_lengths x n_feature,  AMR_CAT, AMR_LE, AMR_NER, AMR_SENSE, index of nodes,
        #  mypacked_seq[packed_batch_gold_amr_len x tgt_feature_dim]
        # index:  rel_index_batch:  list(batch, real_gold_amr_len), but content is the index of recatogrized amr index, is a mapping
        # src_enc: DoublePackedSequence(packed: packed_g_amr_len x re_amr_len x dim), length= re_lens)
        """
        assert isinstance(input, MyPackedSequence), input
        # lengths: real_gold_amr_lens
        # after unpack, input is packed_gold_amr_lengths x n_features
        input, lengths = input
        if self.alpha_dropout and self.training:
            input = data_dropout(input, self.alpha_dropout)

        psd_target_pos_embed = self.psd_target_pos_lut(input[:, PSD_POS])
        #psd_sense_embed = self.psd_sense_lut(input[:,PSD_SENSE])
        #psd_lemma_embed = self.lemma_lut(input[:,PSD_LE])

        #psd_emb = torch.cat([psd_target_pos_embed, psd_sense_embed,psd_lemma_embed],1)
        #psd_emb = torch.cat([psd_target_pos_embed, psd_sense_embed],1)
        psd_emb = torch.cat([psd_target_pos_embed], 1)

        # head_emb_t :  MyPackedSequence(data: packed_real_g_amr_l x dim), g_amr_l
        # dep_emb_t :  MyDoublePackedSequence(PackedSequenceLength(packed_real_g_amr_l x real_g_amr_l x dim), length_pairs)
        # length_pairs :(g_amr_l, g_amr_l)
        head_emb_t, dep_emb_t, length_pairs = self.getEmb(
            index, src_enc)  #packed, mydoublepacked

        head_emb = torch.cat([psd_emb, head_emb_t.data], 1)

        dep_psd_emb_t = myunpack(*MyPackedSequence(psd_emb, lengths))
        dep_psd_emb = [
            emb.unsqueeze(0).expand(emb.size(0), emb.size(0), emb.size(-1))
            for emb in dep_psd_emb_t
        ]

        mydouble_psd_emb = mydoublepack(dep_psd_emb, length_pairs)

        dep_emb = torch.cat([mydouble_psd_emb.data, dep_emb_t.data], -1)

        # emb_unpacked = myunpack(emb,lengths)
        assert head_emb.size(
            -1) == self.inputSize, "wrong head  size {}".format(
                head_emb.size())
        # head_packed :  MyPackedSequence(data: packed_real_g_amr_l x rel_dim), g_amr_l
        head_packed = MyPackedSequence(self.head(head_emb),
                                       lengths)  #  total,rel_dim
        head_psd_packed = MyPackedSequence(psd_emb, lengths)  #  total,rel_dim

        size = dep_emb.size()
        assert dep_emb.size(-1) == self.inputSize, "wrong dep size {}".format(
            dep_emb.size())
        dep = self.dep(dep_emb.view(-1, size[-1])).view(size[0], size[1], -1)

        # dep_emb_t :  MyDoublePackedSequence(PackedSequenceLength(packed_real_g_amr_l x real_g_amr_l x rel_dim), length_pairs)
        dep_packed = MyDoublePackedSequence(
            MyPackedSequence(dep, mydouble_psd_emb[0][1]), mydouble_psd_emb[1],
            dep)

        return head_psd_packed, head_packed, dep_packed  #,MyPackedSequence(emb,lengths)
Esempio n. 2
0
    def forward(self, input, index, src_enc):
        """
        # input: relBatch, packed_gold_amr_lengths x n_feature,  AMR_CAT, AMR_LE, AMR_NER, AMR_SENSE, index of nodes,
        # index:  rel_index_batch:  list(batch, real_gold_amr_len), but content is the index of recatogrized amr index, is a mapping
        # src_enc: is weighted root_src_enc, MyPackedSequence(data: packed_re_amr_len x txt_enc_size, lengtgs: re_amr_lens)
        """
        assert isinstance(input, MyPackedSequence), input
        # lengths: real_gold_amr_length_
        input, lengths = input
        if self.alpha_dropout and self.training:
            input = data_dropout(input, self.alpha_dropout)
        dm_target_pos_embed = self.dm_target_pos_lut(input[:, DM_POS])
        dm_cat_embed = self.dm_cat_lut(input[:, DM_CAT])
        dm_sense_embed = self.dm_sense_lut(input[:, DM_SENSE])

        # dm_emb = torch.cat([dm_target_pos_embed,dm_cat_embed],1)
        dm_emb = torch.cat([dm_target_pos_embed, dm_cat_embed, dm_sense_embed],
                           1)

        # head_emb: MyPackedSequence(data: packed_gold_amr_len x dim, lengths: readl_gold_amr_len)
        head_emb = self.getEmb(index, src_enc)  #packed, mydoublepacked

        # head_emb.data, [packed_head_amr_len, src_enc_size]
        root_emb = torch.cat([dm_emb, head_emb.data], 1)
        root_emb = self.root(root_emb)

        return MyPackedSequence(root_emb, lengths)
Esempio n. 3
0
    def forward(self, _, heads, deps):
        '''heads.data: mypacked        amr_l x rel_dim
            deps.data: mydoublepacked     amr_l x amr_l x rel_dim
        '''
        heads_data = heads.data
        deps_data = deps.data

        head_bilinear_transformed = self.bilinear(
            heads_data)  #all_data x (    n_rel x inputsize)

        head_bias_unpacked = myunpack(self.head_bias(heads_data),
                                      heads.lengths)  #[len x n_rel]

        size = deps_data.size()
        dep_bias = self.dep_bias(deps_data.view(-1, size[-1])).view(
            size[0], size[1], -1)

        dep_bias_unpacked, length_pairs = mydoubleunpack(
            MyDoublePackedSequence(MyPackedSequence(dep_bias, deps[0][1]),
                                   deps[1], dep_bias))  #[len x n_rel]

        bilinear_unpacked = myunpack(head_bilinear_transformed, heads.lengths)

        deps_unpacked, length_pairs = mydoubleunpack(deps)
        output, l = self.bilinearForParallel(
            zip(bilinear_unpacked, deps_unpacked, head_bias_unpacked,
                dep_bias_unpacked), length_pairs)
        myscore_packed = mypack(output, l)

        #  prob_packed = MyPackedSequence(myscore_packed.data,l)
        return myscore_packed
def rel_to_batch(rel_batch_p,rel_index_batch_p,data_iterator,dicts):
    lemma_dict,category_dict = dicts["lemma_dict"], dicts["category_dict"]

    data = [torch.LongTensor([[category_dict[uni.cat],lemma_dict[uni.le],0] for uni in uni_seq]) for uni_seq in rel_batch_p ]
    rel_index = [torch.LongTensor(index) for index in rel_index_batch_p]

    rel_batch,rel_index_batch,rel_lengths = data_iterator._batchify_rel_concept(data,rel_index)
    return  MyPackedSequence(rel_batch,rel_lengths),rel_index_batch
Esempio n. 5
0
    def forward(self, input, index,src_enc):
        assert isinstance(input, MyPackedSequence),input
        input,lengths = input
        if self.alpha and self.training:
            input = data_dropout(input,self.alpha)
        cat_embed = self.cat_lut(input[:,AMR_CAT])
        lemma_embed = self.lemma_lut(input[:,AMR_LE])

        amr_emb = torch.cat([cat_embed,lemma_embed],1)
    #    print (input,lengths)

        head_emb_t,dep_emb_t,length_pairs = self.getEmb(index,src_enc)  #packed, mydoublepacked


        head_emb = torch.cat([amr_emb,head_emb_t.data],1)

        dep_amr_emb_t = myunpack(*MyPackedSequence(amr_emb,lengths))
        dep_amr_emb = [ emb.unsqueeze(0).expand(emb.size(0),emb.size(0),emb.size(-1))      for emb in dep_amr_emb_t]

        mydouble_amr_emb = mydoublepack(dep_amr_emb,length_pairs)

    #    print ("rel_encoder",mydouble_amr_emb.data.size(),dep_emb_t.data.size())
        dep_emb = torch.cat([mydouble_amr_emb.data,dep_emb_t.data],-1)

       # emb_unpacked = myunpack(emb,lengths)

        head_packed = MyPackedSequence(self.head(head_emb),lengths) #  total,rel_dim
        head_amr_packed = MyPackedSequence(amr_emb,lengths) #  total,rel_dim

   #     print ("dep_emb",dep_emb.size())
        size = dep_emb.size()
        dep = self.dep(dep_emb.view(-1,size[-1])).view(size[0],size[1],-1)

        dep_packed  = MyDoublePackedSequence(MyPackedSequence(dep,mydouble_amr_emb[0][1]),mydouble_amr_emb[1],dep)

        return  head_amr_packed,head_packed,dep_packed  #,MyPackedSequence(emb,lengths)
Esempio n. 6
0
    def forward(self, input, index,src_enc):
        assert isinstance(input, MyPackedSequence),input
        input,lengths = input
        if self.alpha and self.training:
            input = data_dropout(input,self.alpha)
        cat_embed = self.cat_lut(input[:,AMR_CAT])
        lemma_embed = self.lemma_lut(input[:,AMR_LE])

        amr_emb = torch.cat([cat_embed,lemma_embed],1)
    #    print (input,lengths)

        head_emb = self.getEmb(index,src_enc)  #packed, mydoublepacked


        root_emb = torch.cat([amr_emb,head_emb.data],1)
        root_emb = self.root(root_emb)

        return MyPackedSequence(root_emb,lengths)
Esempio n. 7
0
def rel_to_batch(rel_batch_p,rel_index_batch_p,data_iterator,dicts,frame):
    """
    build rel batch with concept batches.
    rel_batch_p: concept batches
    rel_index_batch_p : alignment batches.
    """
    if frame =="amr":
        lemma_dict,amr_category_dict = dicts["lemma_dict"], dicts["amr_category_dict"]
        data = [torch.LongTensor([[amr_category_dict[uni.cat],lemma_dict[uni.le],0] for uni in uni_seq]) for uni_seq in rel_batch_p ]
    elif frame=="dm":
        target_pos_dict,cat_dict = dicts["dm_target_pos_dict"], dicts["dm_cat_dict"]
        data = [torch.LongTensor([[target_pos_dict[uni.pos],cat_dict[uni.cat],0] for uni in uni_seq]) for uni_seq in rel_batch_p ]
    elif frame =="psd":
        psd_target_pos_dict,psd_sense_dict = dicts["psd_target_pos_dict"], dicts["psd_sense_dict"]
        data = [torch.LongTensor([[psd_target_pos_dict[uni.pos],psd_sense_dict[uni.sense],0] for uni in uni_seq]) for uni_seq in rel_batch_p ]
    else:
        raise NotImplementedError("{} is not supported".format(frame))

    rel_index = [torch.LongTensor(index) for index in rel_index_batch_p]
    rel_batch,rel_index_batch,rel_lengths = data_iterator._batchify_rel_concept(data,rel_index)
    return  MyPackedSequence(rel_batch,rel_lengths),rel_index_batch
    def __getitem__(self, index):
        assert index < self.numBatches, "%d > %d" % (index, self.numBatches)
        lengths,max_len = self.getLengths(index )
        def wrap(b,l ):
            #batch, len, feature
            if b is None:
                return b
            b = torch.stack(b, 0).transpose(0,1).contiguous()
            if self.cuda:
                b = b.cuda()
            packed =  pack(b,list(l))
            return PackedSequence(Variable(packed[0], volatile=self.volatile,requires_grad = False),packed[1])

        def wrap_align(b,l ):
            #batch, len_tgt, len_src
            if b is None:
                return b
            b = torch.stack(b, 0).transpose(0,1).contiguous().float()
            if self.cuda:
                b = b.cuda()
            packed =  pack(b,list(l))
            return PackedSequence(Variable(packed[0], volatile=self.volatile,requires_grad = False),packed[1])

        srcBatch = self._batchify_src(
            self.src[index*self.batchSize:(index+1)*self.batchSize],max_len)

        if self.source_only:
            src_sourceBatch = self.src_source[index*self.batchSize:(index+1)*self.batchSize]

            batch = zip( srcBatch,src_sourceBatch)
            lengths,max_len = self.getLengths(index )
            order_data =    sorted(list(enumerate(list(zip(batch, lengths)))),key = lambda x:-x[1][1])
            order,data = zip(*order_data)
            batch, lengths = zip(*data)
            srcBatch,src_sourceBatch = zip(*batch)
            return order,wrap(srcBatch,lengths),src_sourceBatch

        else:
            tgtBatch = self._batchify_tgt(
                    self.tgt[index*self.batchSize:(index+1)*self.batchSize],max_len)
            alignBatch = self._batchify_align(
                    self.align_index[index*self.batchSize:(index+1)*self.batchSize],max_len)

            rel_seq_pre = self.rel_seq[index*self.batchSize:(index+1)*self.batchSize]
            rel_index_pre = self.rel_index[index*self.batchSize:(index+1)*self.batchSize]
            rel_role_pre = self.rel_mat[index*self.batchSize:(index+1)*self.batchSize]

         #   roots = Variable(torch.IntTensor(self.root[index*self.batchSize:(index+1)*self.batchSize]),volatile = True)
            roots =self.root[index*self.batchSize:(index+1)*self.batchSize]

            src_sourceBatch = self.src_source[index*self.batchSize:(index+1)*self.batchSize]
            tgt_sourceBatch = self.tgt_source[index*self.batchSize:(index+1)*self.batchSize]
            sourceBatch = [  src_s +tgt_s for src_s,tgt_s in zip(src_sourceBatch,tgt_sourceBatch)]
            # within batch sorting by decreasing length for variable length rnns
            indices = range(len(srcBatch))

            batch = zip(indices, srcBatch ,tgtBatch,alignBatch,rel_seq_pre,rel_index_pre,rel_role_pre,sourceBatch,roots)
            order_data =    sorted(list(enumerate(list(zip(batch, lengths)))),key = lambda x:-x[1][1])
            order,data = zip(*order_data)
            batch, lengths = zip(*data)
            indices, srcBatch,tgtBatch,alignBatch ,rel_seq_pre,rel_index_pre,rel_role_pre,sourceBatch,roots= zip(*batch)

            rel_batch,rel_index_batch,rel_lengths = self._batchify_rel_concept(rel_seq_pre,rel_index_pre)
            rel_roles,length_squares = self._batchify_rel_roles(rel_role_pre)


    #,wrap(charBatch))
            return order,wrap(srcBatch,lengths), wrap(tgtBatch,lengths), wrap_align(alignBatch,lengths),\
                   MyPackedSequence(rel_batch,rel_lengths),rel_index_batch,MyPackedSequence(rel_roles,length_squares),roots,sourceBatch
Esempio n. 9
0
    def __getitem__(self, index):
        """
        retrieve every batch from the preprocessed dataset
        """
        assert index < self.numBatches, "%d > %d" % (index, self.numBatches)
        lengths, max_len = self.getLengths(index)

        def tuple2tensor(t):
            # generate a not batch first
            b = torch.stack(t, 0).contiguous()
            if self.cuda:
                b = b.cuda()
            return b

        def wrap(b, l):
            #batch, len, feature
            if b is None:
                return b
            b = torch.stack(b, 0).transpose(0, 1).contiguous()
            if self.cuda:
                b = b.cuda()
            # src_len, batch, feature
            packed = pack(b, list(l))
            return packed

        def wrap_align(b, l):
            #batch, len_tgt, len_src
            if b is None:
                return b
            b = torch.stack(b, 0).transpose(0, 1).contiguous().float()
            if self.cuda:
                b = b.cuda()
            packed = pack(b, list(l))
            #len_tag, batch, len_src
            return packed

        idsBatch = self.example_ids[index * self.batchSize:(index + 1) *
                                    self.batchSize]
        # prep a tensor with fixed max_len of this batch
        # batch_size, max_len, n_feature
        srcBatch = self._batchify_src(
            self.src[index * self.batchSize:(index + 1) * self.batchSize],
            max_len)

        # batch_size x word_len x char_len
        src_charBatch = self._batchify_src_char(
            self.src_char[index * self.batchSize:(index + 1) * self.batchSize],
            max_len)

        # batch_size, max_bert_len, no need to get length for bert, all non-zero token are padding
        srcBertBatch = self._batchify_srcBert(
            self.srcBert[index * self.batchSize:(index + 1) * self.batchSize],
            self.opt.max_bert_seq_length)

        srcBertIndexBatch = self._batchify_srcBertIndex(
            self.srcBertIndex[index * self.batchSize:(index + 1) *
                              self.batchSize], max_len)

        if self.source_only:
            src_sourceBatch = self.src_source[index *
                                              self.batchSize:(index + 1) *
                                              self.batchSize]

            # zip with batch id
            batch = zip(idsBatch, srcBatch, src_charBatch, src_sourceBatch,
                        srcBertBatch, srcBertIndexBatch)
            # sort by length, ascending
            order_data = sorted(list(enumerate(list(zip(batch, lengths)))),
                                key=lambda x: -x[1][1])
            # order is the sorted index for batch
            order, data = zip(*order_data)
            batch, lengths = zip(*data)
            #keep consistent
            idsBatch, srcBatch, src_charBatch, src_sourceBatch, srcBertBatch, srcBertBatchIndex = zip(
                *batch)
            return order, idsBatch, wrap(srcBatch, lengths), wrap(
                src_charBatch,
                lengths), src_sourceBatch, tuple2tensor(srcBertBatch), wrap(
                    srcBertBatchIndex, lengths)

        else:
            # batch input data for amr
            tgtBatch = self._batchify_tgt(
                self.tgt[index * self.batchSize:(index + 1) * self.batchSize],
                max_len)
            # batch input for alignment from align_index
            alignBatch = self._batchify_align(
                self.align_index[index * self.batchSize:(index + 1) *
                                 self.batchSize], max_len)

            rel_seq_pre = self.rel_seq[index * self.batchSize:(index + 1) *
                                       self.batchSize]
            rel_index_pre = self.rel_index[index * self.batchSize:(index + 1) *
                                           self.batchSize]
            rel_role_pre = self.rel_mat[index * self.batchSize:(index + 1) *
                                        self.batchSize]

            roots = self.root[index * self.batchSize:(index + 1) *
                              self.batchSize]

            src_sourceBatch = self.src_source[index *
                                              self.batchSize:(index + 1) *
                                              self.batchSize]
            tgt_sourceBatch = self.tgt_source[index *
                                              self.batchSize:(index + 1) *
                                              self.batchSize]
            sourceBatch = [
                src_s + tgt_s
                for src_s, tgt_s in zip(src_sourceBatch, tgt_sourceBatch)
            ]
            # within batch sorting by decreasing length for variable length rnns
            indices = range(len(srcBatch))

            # align with each data in a batch
            batch = zip(indices, idsBatch, srcBatch, src_charBatch, tgtBatch,
                        alignBatch, rel_seq_pre, rel_index_pre, rel_role_pre,
                        sourceBatch, roots, srcBertBatch, srcBertIndexBatch)
            order_data = sorted(list(enumerate(list(zip(batch, lengths)))),
                                key=lambda x: -x[1][1])
            order, data = zip(*order_data)
            batch, lengths = zip(*data)
            indices, idsBatch, srcBatch, src_charBatch, tgtBatch, alignBatch, rel_seq_pre, rel_index_pre, rel_role_pre, sourceBatch, roots, srcBertBatch, srcBertIndexBatch = zip(
                *batch)

            rel_batch, rel_index_batch, rel_lengths = self._batchify_rel_concept(
                rel_seq_pre, rel_index_pre)
            rel_roles, length_squares = self._batchify_rel_roles(rel_role_pre)

            #,wrap(charBatch))
            return order, idsBatch, wrap(srcBatch,lengths), wrap(src_charBatch, lengths), wrap(tgtBatch,lengths), wrap_align(alignBatch,lengths),\
                   MyPackedSequence(rel_batch,rel_lengths),rel_index_batch,MyPackedSequence(rel_roles,length_squares),roots,sourceBatch,tuple2tensor(srcBertBatch),wrap(srcBertIndexBatch, lengths)
Esempio n. 10
0
    def __getitem__(self, index):
        """
        retrieve every batch from the preprocessed dataset
        """
        assert index < self.numBatches, "%d > %d" % (index, self.numBatches)
        lengths,max_len = self.getLengths(index )
        def wrap(b,l ):
            #batch, len, feature
            if b is None:
                return b
            b = torch.stack(b, 0).transpose(0,1).contiguous()
            if self.cuda:
                b = b.cuda()
            packed =  pack(b,list(l))
            return packed

        def wrap_align(b,l ):
            #batch, len_tgt, len_src
            if b is None:
                return b
            b = torch.stack(b, 0).transpose(0,1).contiguous().float()
            if self.cuda:
                b = b.cuda()
            packed =  pack(b,list(l))
            return packed

        idsBatch = self.example_ids[index*self.batchSize:(index+1)*self.batchSize]
        # prep a tensor with fixed max_len of this batch
        srcBatch = self._batchify_src(
            self.src[index*self.batchSize:(index+1)*self.batchSize],max_len)

        # batch_size x word_len x char_len
        src_charBatch= self._batchify_src_char(
            self.src_char[index*self.batchSize: (index+1)*self.batchSize], max_len)

        if self.source_only:
            src_sourceBatch = self.src_source[index*self.batchSize:(index+1)*self.batchSize]

            batch = zip(idsBatch, srcBatch, src_charBatch, src_sourceBatch)
            order_data =    sorted(list(enumerate(list(zip(batch, lengths)))),key = lambda x:-x[1][1])
            order,data = zip(*order_data)
            batch, lengths = zip(*data)
            idsBatch, srcBatch, src_charBatch, src_sourceBatch = zip(*batch)
            return order,idsBatch, wrap(srcBatch,lengths), wrap(src_charBatch, lengths), src_sourceBatch

        else:
            # batch input data for amr
            tgtBatch = self._batchify_tgt(
                    self.tgt[index*self.batchSize:(index+1)*self.batchSize],max_len)
            # batch input for alignment from align_index
            alignBatch = self._batchify_align(
                    self.align_index[index*self.batchSize:(index+1)*self.batchSize],max_len)

            rel_seq_pre = self.rel_seq[index*self.batchSize:(index+1)*self.batchSize]
            rel_index_pre = self.rel_index[index*self.batchSize:(index+1)*self.batchSize]
            rel_role_pre = self.rel_mat[index*self.batchSize:(index+1)*self.batchSize]

            roots =self.root[index*self.batchSize:(index+1)*self.batchSize]

            src_sourceBatch = self.src_source[index*self.batchSize:(index+1)*self.batchSize]
            tgt_sourceBatch = self.tgt_source[index*self.batchSize:(index+1)*self.batchSize]
            sourceBatch = [  src_s +tgt_s for src_s,tgt_s in zip(src_sourceBatch,tgt_sourceBatch)]
            # within batch sorting by decreasing length for variable length rnns
            indices = range(len(srcBatch))

            batch = zip(indices, idsBatch, srcBatch, src_charBatch, tgtBatch,alignBatch,rel_seq_pre,rel_index_pre,rel_role_pre,sourceBatch,roots)
            order_data =    sorted(list(enumerate(list(zip(batch, lengths)))),key = lambda x:-x[1][1])
            order,data = zip(*order_data)
            batch, lengths = zip(*data)
            indices, idsBatch, srcBatch,src_charBatch, tgtBatch,alignBatch ,rel_seq_pre,rel_index_pre,rel_role_pre,sourceBatch,roots= zip(*batch)

            rel_batch,rel_index_batch,rel_lengths = self._batchify_rel_concept(rel_seq_pre,rel_index_pre)
            rel_roles,length_squares = self._batchify_rel_roles(rel_role_pre)


            return order,idsBatch, wrap(srcBatch,lengths), wrap(src_charBatch, lengths), wrap(tgtBatch,lengths), wrap_align(alignBatch,lengths),\
                   MyPackedSequence(rel_batch,rel_lengths),rel_index_batch,MyPackedSequence(rel_roles,length_squares),roots,sourceBatch