def parse_and_set_args(block): args = parser.parse_args() torch.backends.cudnn.benchmark = True block.log("Enabling torch.backends.cudnn.benchmark") if args.resume != '': block.log("Setting initial eval to true since checkpoint is provided") args.initial_eval = True args.rank = int(os.getenv('RANK', 0)) args.world_size = int(os.getenv("WORLD_SIZE", 1)) if args.local_rank: args.rank = args.local_rank if args.local_rank is not None and args.local_rank != 0: utils.block_print() block.log("Creating save directory: {}".format( os.path.join(args.save, args.name))) args.save_root = os.path.join(args.save, args.name) os.makedirs(args.save_root, exist_ok=True) assert os.path.exists(args.save_root) # temporary directory for torch pre-trained models os.makedirs(args.torch_home, exist_ok=True) os.environ['TORCH_HOME'] = args.torch_home defaults, input_arguments = {}, {} for key in vars(args): defaults[key] = parser.get_default(key) for argument, value in sorted(vars(args).items()): if value != defaults[argument] and argument in vars( parser.parse_args()).keys(): input_arguments['--' + str(argument)] = value block.log('{}: {}'.format(argument, value)) if args.rank == 0: utils.copy_arguments(input_arguments, os.path.realpath(__file__), args.save_root) args.network_class = utils.module_to_dict(models)[args.model] args.optimizer_class = utils.module_to_dict(torch.optim)[args.optimizer] args.dataset_class = utils.module_to_dict(datasets)[args.dataset] if args.backbone != 'none': args.backbone = utils.module_to_dict(backbone_models)[args.backbone] else: args.backbone = None return args
def parseArguments(): global VERSION global GPL global args parser = argparse.ArgumentParser(description=GPL.split("\n")[1], epilog="Copyright (C) 2015 Mario Alviano ([email protected])") parser.add_argument('--help-syntax', action='store_true', help='print syntax description and exit') parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + VERSION, help='print version number') parser.add_argument('-g', '--grounder', metavar='<grounder>', type=str, help='path to the gringo 4.5 or higher (default \'gringo\')', default='gringo') parser.add_argument('-s', '--solver', metavar='<solver>', type=str, help='path to the SMT solver (default \'z3\')', default='z3') parser.add_argument('--print-grounder-input', action='store_true', help='print the input of the grounder') parser.add_argument('--print-grounder-output', action='store_true', help='print the output of the grounder') parser.add_argument('--print-smt-input', action='store_true', help='print the input of the SMT solver') parser.add_argument('--print-smt-output', action='store_true', help='print the output of the SMT solver') parser.add_argument('-o', '--optimize-definedness', metavar='<strategy>', help='prefer more defined fuzzy answer sets; set optimization strategy: none (default), maximize, binary-search, progression, any', default='none') parser.add_argument('-p', '--precision', metavar='<epsilon>', type=float, help='precision required in definedness', default=0.01) parser.add_argument('args', metavar="...", nargs=argparse.REMAINDER, help="input files, and arguments for <grounder>") args = parser.parse_args() assert args.optimize_definedness in ['none', 'maximize', 'binary-search', 'progression', 'any'] args.files = [] args.grounder_args = [] for arg in args.args: if os.path.isfile(arg) or arg == "/dev/stdin": args.files.append(arg) else: args.grounder_args.append(arg) if args.help_syntax: helpSyntax()
def get(self): args = parser.parse_args() db_sess = db_session.create_session() jobs = db_sess.query(Jobs).get(args["job_id"]) if not jobs: return jsonify({"error": "Not found"}) return jsonify({'jobs': jobs.to_dict()})
def get(self): args = parser.parse_args() user_id = args['user_id'] return abort_if_user_not_found(user_id) db_sess = db_session.create_session() users = db_sess.query(User).get(user_id) return jsonify({'users': users.to_dict()})
def argparsers(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--project_id") parser.add_argument("--create_network", action="store_true") parser.add_argument("--delete_network", action="store_true") parser.add_argument("--attach_interface", action="store_true") parser.add_argument("--detach_interface", action="store_true") args = parser.parse_args() return args
def delete(self): args = parser.parse_args() db_sess = db_session.create_session() jobs = db_sess.query(Jobs).get(args["job_id"]) if not jobs: return jsonify({'error': 'Not found'}) db_sess.delete(jobs) db_sess.commit() return jsonify({'success': 'OK'})
def delete(self): args = parser.parse_args() user_id = args['user_id'] return abort_if_user_not_found(user_id) db_sess = db_session.create_session() user = db_sess.query(User).get(user_id) db_sess.delete(user) db_sess.commit() return jsonify({'success': 'OK'})
def post(self): args = parser.parse_args() if not args: return jsonify({"error": "Empty request"}) elif not all(key in args for key in USER_FIELDS): return jsonify({"error": "Bad request"}) db_sess = db_session.create_session() user = User(**args) db_sess.add(user) db_sess.commit() return jsonify({"success": "OK"})
def load_config(self): parser = optparse.OptionParser() parser.add_option('-i', '--iface', dest='listen_interface', default='mon0', help='Interface to listen') parser.add_option('-p', '--pcap', dest='pcap_file', default='None', help='Pcap file to read') parser.add_option('--filter', dest='filter', default='tcp dst port 80 or tcp dst port 8080 or tcp dst port 3128 or tcp dst port 5190 or tcp dst port 110 or tcp dst port 25 or tcp dst port 2041 or tcp dst port 21 or tcp dst port 143', help='Tcpdump filter for password sniff') parser.add_option('--p0f-filter', dest='p0f_filter', default='tcp dst port 80 and tcp[tcpflags] & tcp-syn == tcp-syn', help='Tcpdump filter for p0f OS fingerprint') parser.add_option('--db-host', dest='db_host', default='localhost', help='Database host') parser.add_option('--db-user', dest='db_user', default='root', help='Database user') parser.add_option('--db-password', dest='db_password', default='', help='Database password') parser.add_option('--db-database', dest='db_database', default='wall', help='Database name') parser.add_option('--tcp_timeout', dest='tcp_assemble_timeout', type='int', default='10', help='TCP stream reassemble timeout') self.options = parser.parse_args()[0]
def parse_user_input_and_get_format(): user_input = parser.parse_args() user_input = vars(user_input) check = [abspath(path) for path in user_input["inputs"]] all_files = get_all_files(check, user_input["types"], user_input["recurse"]) # Initializing output dictionary formats = {} for file in all_files: grab_formats(file, formats) # Output based on --outform output[user_input["outtype"]](formats = formats, output_format = user_input["outform"])
def post(self): args = parser.parse_args() session = db_session.create_session() users = User( surname=args['surname'], name=args['name'], user_id=args['user_id'], position=args['position'], speciality=args['speciality'], hashed_password=args['hashed_password'] ) session.add(users) session.commit() return jsonify({'success': 'OK'})
def post(self): args = parser.parse_args() if not args: return jsonify({"error": "Empty request"}) elif not all(key in args for key in [ 'id', 'team_leader', 'job', 'work_size', 'collaborators', 'start_date', 'end_date', 'is_finished' ]): return jsonify({"error": "Bad request"}) db_sess = db_session.create_session() jobs = Jobs(**args) db_sess.add(jobs) db_sess.commit() return jsonify({"success": "OK"})
def put(self): args = parser.parse_args() user_id = args['user_id'] if not args: return jsonify({"error": "Empty request"}) elif not all(key in args for key in USER_FIELDS): return jsonify({"error": "Bad request"}) return abort_if_user_not_found(user_id) db_sess = db_session.create_session() user = db_sess.query(User).get(user_id) user.update(args) db_sess.commit() return jsonify({'success': 'OK'})
def load_config(self): parser = optparse.OptionParser() parser.add_option('-i', '--iface', dest='listen_interface', default='mon0', help='Interface to listen') parser.add_option('-p', '--pcap', dest='pcap_file', default='None', help='Pcap file to read') parser.add_option( '--filter', dest='filter', default= 'tcp dst port 80 or tcp dst port 8080 or tcp dst port 3128 or tcp dst port 5190 or tcp dst port 110 or tcp dst port 25 or tcp dst port 2041 or tcp dst port 21 or tcp dst port 143', help='Tcpdump filter for password sniff') parser.add_option( '--p0f-filter', dest='p0f_filter', default='tcp dst port 80 and tcp[tcpflags] & tcp-syn == tcp-syn', help='Tcpdump filter for p0f OS fingerprint') parser.add_option('--db-host', dest='db_host', default='localhost', help='Database host') parser.add_option('--db-user', dest='db_user', default='root', help='Database user') parser.add_option('--db-password', dest='db_password', default='', help='Database password') parser.add_option('--db-database', dest='db_database', default='wall', help='Database name') parser.add_option('--tcp_timeout', dest='tcp_assemble_timeout', type='int', default='10', help='TCP stream reassemble timeout') self.options = parser.parse_args()[0]
def main(): args = parser.parse_args() try: config = build_config(args) pdf_modifier = PdfModifier(config) pdf_modifier.execute() sys.exit(0) except Exception as e: if args.verbose: print("{:=^30}".format(" Stack Trace")) traceback.print_exc() else: t, v, tb = sys.exc_info() print("%s\n", v) sys.exit(1)
def put(self): args = parser.parse_args() if not args: return jsonify({"error": "Empty request"}) elif not all(key in args for key in [ 'id', 'team_leader', 'job', 'work_size', 'collaborators', 'start_date', 'end_date', 'is_finished' ]): return jsonify({"error": "Bad request"}) db_sess = db_session.create_session() jobs = db_sess.query(Jobs).get(args["job_id"]) if not jobs: return jsonify({'error': 'Not found'}) jobs.update(args) db_sess.commit() return jsonify({'success': 'OK'})
import random import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt from utils import * from glob import glob from functools import reduce from collections import defaultdict from focal_loss import BinaryFocalLoss from TrackNet import ResNet_Track from tensorflow import keras from parser import parser from tensorflow.keras import backend as K args = parser.parse_args() tol = args.tol save_weights = args.save_weights HEIGHT = args.HEIGHT WIDTH = args.WIDTH BATCH_SIZE = args.batch_size FRAME_STACK = args.frame_stack pre_trained = args.pre_trained optimizer = keras.optimizers.Adadelta(lr=args.lr) if not pre_trained: model = ResNet_Track(input_shape=(FRAME_STACK, HEIGHT, WIDTH)) model.compile(loss=BinaryFocalLoss(gamma=2), optimizer=optimizer, metrics=[keras.metrics.BinaryAccuracy()]) else:
import sys import commands # noqa from parser import parser if len(sys.argv) < 2: args = parser.parse_args(['--help']) else: args = parser.parse_args() # Runs the command end exits the script with the return-code of the command exit(args.func(args))
import sys import commands # noqa from parser import parser if len(sys.argv) < 2: args = parser.parse_args(["--help"]) else: args = parser.parse_args() # Runs the command end exits the script with the return-code of the command exit(args.func(args))
'''__DEBUG_ARGS = ['--api_key', '2fbborrg7dwqegs40t4gacfg14', '--db_address','http://66.172.13.75/pas/pasql/select?s=select%20%2A%20from%20proj_master%20where%20started%3E1380000000&db=asi.db', '--db_encoding', 'utf-8', '--sheet_id', '5835894021220228', '--column_id', '1294997367613316']''' _LOG_FORMAT = '''%(asctime)-15s: %(message)s \n \n \ Old Options: %(old_options)s \n \n \ New Options: %(new_options)s \n \n \n''' if __name__ == '__main__': from AqProjectUpdater import AqProjectUpdater from parser import parser import signal # Persistent python process for scheduling if __DEBUG: parser.parse_args(args = sys.argv[1:] + __DEBUG_ARGS) else: parser.parse_args() settings = parser.values.__dict__ # Import SmartSheet stuff sys.path.insert(0, settings.pop('smartsheet_path')) from SmartSheet.SmartObjects import * from SmartSheet.SmartSocket import SmartSocket from SmartSheet.util import align # Set up directories home_dir = os.path.join(settings.pop('home_dir'), 'AqProjectUpdater-files') work_dir = os.path.join(home_dir, 'temp')
def parseArguments(): global VERSION global GPL global args parser = argparse.ArgumentParser( description=GPL.split("\n")[1], epilog="Copyright (C) 2015 Mario Alviano ([email protected])") parser.add_argument('--help-syntax', action='store_true', help='print syntax description and exit') parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + VERSION, help='print version number') parser.add_argument( '-g', '--grounder', metavar='<grounder>', type=str, help='path to the gringo 4.5 or higher (default \'gringo\')', default='gringo') parser.add_argument('-s', '--solver', metavar='<solver>', type=str, help='path to the SMT solver (default \'z3\')', default='z3') parser.add_argument('--print-grounder-input', action='store_true', help='print the input of the grounder') parser.add_argument('--print-grounder-output', action='store_true', help='print the output of the grounder') parser.add_argument('--print-smt-input', action='store_true', help='print the input of the SMT solver') parser.add_argument('--print-smt-output', action='store_true', help='print the output of the SMT solver') parser.add_argument( '-o', '--optimize-definedness', metavar='<strategy>', help= 'prefer more defined fuzzy answer sets; set optimization strategy: none (default), maximize, binary-search, progression, any', default='none') parser.add_argument('-p', '--precision', metavar='<epsilon>', type=float, help='precision required in definedness', default=0.01) parser.add_argument('args', metavar="...", nargs=argparse.REMAINDER, help="input files, and arguments for <grounder>") args = parser.parse_args() assert args.optimize_definedness in [ 'none', 'maximize', 'binary-search', 'progression', 'any' ] args.files = [] args.grounder_args = [] for arg in args.args: if os.path.isfile(arg) or arg == "/dev/stdin": args.files.append(arg) else: args.grounder_args.append(arg) if args.help_syntax: helpSyntax()
class CancelTaskTest(unittest.TestCase): def __init__(self, testname, ip, data): super(CancelTaskTest, self).__init__(testname) self.ct = CancelTask(ip, data) def setUp(self): pass def tearDown(self): pass def testCancelTask(self): ip = self.ct.ip url = "http://%s:%s/cancel_task" % (ip, PORT) code, result = post(url, self.ct.data) print code, result self.assertEqual(result['ret'], 4) if __name__ == "__main__": options, args = parser.parse_args() ip = options.ip if options.ip else HOST data = dict( task_id=options.taskid if options.taskid else default["task_id"]) print "ip:", ip print "data:", data suite = unittest.TestSuite() suite.addTest(CancelTaskTest("testCancelTask", ip, data)) unittest.TextTestRunner().run(suite)
def parse(self): self.args = parser.parse_args() self.dispatch()
def main(): with utils.TimerBlock("\nParsing Arguments") as block: args = parser.parse_args() args.rank = int(os.getenv('RANK', 0)) block.log("Creating save directory: {}".format(args.save)) args.save_root = os.path.join(args.save, args.name) if args.write_images or args.write_video: os.makedirs(args.save_root, exist_ok=True) assert os.path.exists(args.save_root) else: os.makedirs(args.save, exist_ok=True) assert os.path.exists(args.save) os.makedirs(args.torch_home, exist_ok=True) os.environ['TORCH_HOME'] = args.torch_home args.gpus = torch.cuda.device_count() if args.gpus < 0 else args.gpus block.log('Number of gpus: {} | {}'.format(args.gpus, list(range(args.gpus)))) args.network_class = utils.module_to_dict(models)[args.model] args.dataset_class = utils.module_to_dict(datasets)[args.dataset] block.log('save_root: {}'.format(args.save_root)) block.log('val_file: {}'.format(args.val_file)) with utils.TimerBlock("Building {} Dataset".format(args.dataset)) as block: vkwargs = { 'batch_size': args.gpus * args.val_batch_size, 'num_workers': args.gpus * args.workers, 'pin_memory': True, 'drop_last': True } step_size = args.val_step_size if args.val_step_size > 0 else ( args.num_interp + 1) val_dataset = args.dataset_class(args=args, root=args.val_file, num_interp=args.num_interp, sample_rate=args.val_sample_rate, step_size=step_size) val_loader = torch.utils.data.DataLoader(val_dataset, shuffle=False, **vkwargs) args.folder_list = natsort.natsorted([ os.path.basename(f) for f in sorted(glob(os.path.join(args.val_file, '*'))) ]) block.log('Number of Validation Images: {}:({} mini-batches)'.format( len(val_loader.dataset), len(val_loader))) with utils.TimerBlock("Building {} Model".format(args.model)) as block: model = args.network_class(args) block.log('Number of parameters: {val:,}'.format(val=sum([ p.data.nelement() if p.requires_grad else 0 for p in model.parameters() ]))) block.log('Initializing CUDA') assert torch.cuda.is_available( ), 'Code supported for GPUs only at the moment' model = model.cuda() model = torch.nn.DataParallel(model, device_ids=list(range(args.gpus))) torch.manual_seed(args.seed) block.log("Attempting to Load checkpoint '{}'".format(args.resume)) if args.resume and os.path.isfile(args.resume): checkpoint = torch.load(args.resume) # Partial initialization input_dict = checkpoint['state_dict'] curr_dict = model.module.state_dict() state_dict = input_dict.copy() for key in input_dict: if key not in curr_dict: continue if curr_dict[key].shape != input_dict[key].shape: state_dict.pop(key) print( "key {} skipped because of size mismatch.".format(key)) model.module.load_state_dict(state_dict, strict=False) epoch = checkpoint['epoch'] block.log( "Successfully loaded checkpoint (at epoch {})".format(epoch)) elif args.resume: block.log("No checkpoint found at '{}'.\nAborted.".format( args.resume)) sys.exit(0) else: block.log("Random initialization, checkpoint not provided.") with utils.TimerBlock("Inference started ") as block: evaluate(args, val_loader, model, args.num_interp, epoch, block)