def do_query_ids(self, milvus, collection_name, top_k, nq, search_param=None): (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type) vectors = base_query_vectors[0:nq] logger.info( "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}" .format(top_k, nq, len(vectors))) query_res = milvus.query(vectors, top_k, search_param=search_param) result_ids = [] result_distances = [] for result in query_res: tmp = [] tmp_distance = [] for item in result: tmp.append(item.id) tmp_distance.append(item.distance) result_ids.append(tmp) result_distances.append(tmp_distance) return result_ids, result_distances
def do_query_ids(self, milvus, collection_name, vec_field_name, top_k, nq, search_param=None, filter_query=None): (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type) query_vectors = base_query_vectors[0:nq] logger.info( "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}" .format(top_k, nq, len(query_vectors))) vector_query = { "vector": { vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param } } } query_res = milvus.query(vector_query, filter_query=filter_query) result_ids = milvus.get_ids(query_res) return result_ids
def do_query(self, milvus, collection_name, top_ks, nqs, run_count=1, search_param=None): bi_res = [] (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type) for nq in nqs: tmp_res = [] vectors = base_query_vectors[0:nq] for top_k in top_ks: # avg_query_time = 0.0 min_query_time = 0.0 logger.info( "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}" .format(top_k, nq, len(vectors))) for i in range(run_count): logger.info("Start run query, run %d of %s" % (i + 1, run_count)) start_time = time.time() milvus.query(vectors, top_k, search_param=search_param) interval_time = time.time() - start_time if (i == 0) or (min_query_time > interval_time): min_query_time = interval_time logger.info("Min query time: %.2f" % min_query_time) tmp_res.append(round(min_query_time, 2)) bi_res.append(tmp_res) return bi_res
def do_query(self, milvus, collection_name, vec_field_name, top_ks, nqs, run_count=1, search_param=None, filter_query=None): bi_res = [] (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type) for nq in nqs: tmp_res = [] query_vectors = base_query_vectors[0:nq] for top_k in top_ks: avg_query_time = 0.0 min_query_time = 0.0 logger.info( "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}" .format(top_k, nq, len(query_vectors))) for i in range(run_count): logger.debug("Start run query, run %d of %s" % (i + 1, run_count)) start_time = time.time() vector_query = { "vector": { vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param } } } query_res = milvus.query(vector_query, filter_query=filter_query) interval_time = time.time() - start_time if (i == 0) or (min_query_time > interval_time): min_query_time = interval_time logger.info("Min query time: %.2f" % min_query_time) tmp_res.append(round(min_query_time, 2)) bi_res.append(tmp_res) return bi_res
def do_query_acc(self, milvus, collection_name, top_k, nq, id_store_name, search_param=None): (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type) vectors = base_query_vectors[0:nq] logger.info( "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}" .format(top_k, nq, len(vectors))) query_res = milvus.query(vectors, top_k, search_param=None) # if file existed, cover it if os.path.isfile(id_store_name): os.remove(id_store_name) with open(id_store_name, 'a+') as fd: for nq_item in query_res: for item in nq_item: fd.write(str(item.id) + '\t') fd.write('\n')
def run(self, run_type, collection): logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] if "collection_name" in collection else None milvus_instance = MilvusClient(collection_name=collection_name, host=self.host, port=self.port) logger.info(milvus_instance.show_collections()) env_value = milvus_instance.get_server_config() logger.debug(env_value) if run_type in ["insert_performance", "insert_flush_performance"]: (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) elif run_type == "delete_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.warning("Table: %s not found" % collection_name) return length = milvus_instance.count() ids = [i for i in range(length)] loops = int(length / ni_per) for i in range(loops): delete_ids = ids[i*ni_per : i*ni_per+ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete(delete_ids) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) elif run_type == "build_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) index_type = collection["index_type"] index_param = collection["index_param"] if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return search_params = {} start_time = time.time() # drop index logger.debug("Drop index") milvus_instance.drop_index() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) logger.debug("Table row counts: %d" % milvus_instance.count()) end_time = time.time() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug("Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1))) elif run_type == "search_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # for debugging # time.sleep(3600) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) res = self.do_query(milvus_instance, collection_name, top_ks, nqs, run_count, search_param) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "locust_search_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ### spawn locust requests collection_num = collection["collection_num"] task = collection["task"] #. generate task code task_file = utils.get_unique_name() task_file_script = task_file+'.py' task_file_csv = task_file+'_stats.csv' task_type = task["type"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = task["during_time"] def_name = task_type task_params = task["params"] collection_names = [] for i in range(collection_num): suffix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(5)) collection_names.append(collection_name + "_" + suffix) # collection_names = ['sift_1m_1024_128_l2_Kg6co', 'sift_1m_1024_128_l2_egkBK', 'sift_1m_1024_128_l2_D0wtE', # 'sift_1m_1024_128_l2_9naps', 'sift_1m_1024_128_l2_iJ0jj', 'sift_1m_1024_128_l2_nqUTm', # 'sift_1m_1024_128_l2_GIF0D', 'sift_1m_1024_128_l2_EL2qk', 'sift_1m_1024_128_l2_qLRnC', # 'sift_1m_1024_128_l2_8Ditg'] # ##### ni_per = collection["ni_per"] build_index = collection["build_index"] for c_name in collection_names: milvus_instance = MilvusClient(collection_name=c_name, host=self.host, port=self.port) if milvus_instance.exists_collection(collection_name=c_name): milvus_instance.drop(name=c_name) time.sleep(10) milvus_instance.create_collection(c_name, dimension, index_file_size, metric_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, c_name, data_type, dimension, collection_size, ni_per) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count(name=c_name)) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) code_str = """ import random import string from locust import User, task, between from locust_task import MilvusTask from client import MilvusClient host = '%s' port = %s dim = %s connection_type = '%s' collection_names = %s m = MilvusClient(host=host, port=port) def get_collection_name(): return random.choice(collection_names) def get_client(collection_name): if connection_type == 'single': return MilvusTask(m=m) elif connection_type == 'multi': return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) class QueryTask(User): wait_time = between(0.001, 0.002) @task() def %s(self): top_k = %s X = [[random.random() for i in range(dim)] for i in range(%s)] search_param = %s collection_name = get_collection_name() print(collection_name) client = get_client(collection_name) client.query(X, top_k, search_param, collection_name=collection_name) """ % (self.host, self.port, dimension, connection_type, collection_names, def_name, task_params["top_k"], task_params["nq"], task_params["search_param"]) with open(task_file_script, 'w+') as fd: fd.write(code_str) locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( task_file_script, task_file, clients_num, hatch_rate, during_time) logger.info(locust_cmd) try: res = os.system(locust_cmd) except Exception as e: logger.error(str(e)) return #. retrieve and collect test statistics metric = None with open(task_file_csv, newline='') as fd: dr = csv.DictReader(fd) for row in dr: if row["Name"] != "Aggregated": continue metric = row logger.info(metric) # clean up temp files elif run_type == "search_ids_stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) g_id = int(ids.split("-")[1]) l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) l_ids = random.randint(l_id, g_id-ids_num) # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] ids_param = [id for id in range(l_ids, l_ids+ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, } logger.info(metrics) elif run_type == "search_performance_concurrents": data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) hdf5_source_file = collection["source_file"] use_single_connection = collection["use_single_connection"] concurrents = collection["concurrents"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = self.generate_combinations(collection["search_params"]) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() dataset = utils.get_dataset(hdf5_source_file) for concurrent_num in concurrents: top_k = top_ks[0] for nq in nqs: mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) logger.debug(search_params) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) total_time = 0.0 if use_single_connection is True: connections = [MilvusClient(collection_name=collection_name, host=self.host, port=self.port)] with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: future_results = {executor.submit( self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} else: connections = [MilvusClient(collection_name=collection_name, host=self.hos, port=self.port) for i in range(concurrent_num)] with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: future_results = {executor.submit( self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} for future in concurrent.futures.as_completed(future_results): total_time = total_time + future.result() qps_value = total_time / concurrent_num logger.debug("QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num)) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_file_sizes = collection["index_file_sizes"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) dataset = utils.get_dataset(hdf5_source_file) if milvus_instance.exists_collection(collection_name): logger.info("Re-create collection: %s" % collection_name) milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) true_ids = np.array(dataset["neighbors"]) for index_file_size in index_file_sizes: milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) logger.info(milvus_instance.describe()) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) logger.debug(len(insert_vectors)) # Insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i*INSERT_INTERVAL end = min((i+1)*INSERT_INTERVAL, len(insert_vectors)) tmp_vectors = insert_vectors[start:end] if start < end: if not isinstance(tmp_vectors, list): milvus_instance.insert(tmp_vectors.tolist(), ids=[i for i in range(start, end)]) else: milvus_instance.insert(tmp_vectors, ids=[i for i in range(start, end)]) milvus_instance.flush() logger.info("Table: %s, row count: %s" % (collection_name, milvus_instance.count())) if milvus_instance.count() != len(insert_vectors): logger.error("Table row count is not equal to insert vectors") return for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s" % json.dumps(index_param)) milvus_instance.create_index(index_type, index_param=index_param) logger.info(milvus_instance.describe_index()) logger.info("Start preload collection: %s" % collection_name) milvus_instance.preload_collection() for search_param in search_params: for nq in nqs: query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) for top_k in top_ks: logger.debug("Search nq: %d, top-k: %d, search_param: %s" % (nq, top_k, json.dumps(search_param))) if not isinstance(query_vectors, list): result = milvus_instance.query(query_vectors.tolist(), top_k, search_param=search_param) else: result = milvus_instance.query(query_vectors, top_k, search_param=search_param) result_ids = result.id_array acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) elif run_type == "stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] insert_xb = collection["insert_xb"] insert_interval = collection["insert_interval"] delete_xb = collection["delete_xb"] # flush_interval = collection["flush_interval"] # compact_interval = collection["compact_interval"] during_time = collection["during_time"] if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.error("Table name: %s not existed" % collection_name) return g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) start_time = time.time() i = 0 ids = [] insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] while time.time() < start_time + during_time * 60: i = i + 1 for _ in range(insert_interval): top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param) count = milvus_instance.count() insert_ids = [(count+x) for x in range(len(insert_vectors))] ids.extend(insert_ids) _, res = milvus_instance.insert(insert_vectors, ids=insert_ids) logger.debug("%d, row_count: %d" % (i, milvus_instance.count())) milvus_instance.delete(ids[-delete_xb:]) milvus_instance.flush() milvus_instance.compact() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, "row_count_increments": end_row_count - start_row_count } logger.info(metrics) elif run_type == "loop_stability": # init data milvus_instance.clean_db() pull_interval = collection["pull_interval"] pull_interval_seconds = pull_interval * 60 collection_num = collection["collection_num"] dimension = collection["dimension"] if "dimension" in collection else 128 insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000 index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8'] index_param = {"nlist": 2048} collection_names = [] milvus_instances_map = {} insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] for i in range(collection_num): name = utils.get_unique_name(prefix="collection_") collection_names.append(name) metric_type = random.choice(["l2", "ip"]) index_file_size = random.randint(10, 20) milvus_instance.create_collection(name, dimension, index_file_size, metric_type) milvus_instance = MilvusClient(collection_name=name, host=self.host) index_type = random.choice(index_types) milvus_instance.create_index(index_type, index_param=index_param) logger.info(milvus_instance.describe_index()) insert_vectors = utils.normalize(metric_type, insert_vectors) milvus_instance.insert(insert_vectors) milvus_instance.flush() milvus_instances_map.update({name: milvus_instance}) logger.info(milvus_instance.describe_index()) logger.info(milvus_instance.describe()) tasks = ["insert_rand", "delete_rand", "query_rand", "flush"] i = 1 while True: logger.info("Loop time: %d" % i) start_time = time.time() while time.time() - start_time < pull_interval_seconds: # choose collection tmp_collection_name = random.choice(collection_names) # choose task from task task_name = random.choice(tasks) logger.info(tmp_collection_name) logger.info(task_name) # execute task task_run = getattr(milvus_instances_map[tmp_collection_name], task_name) task_run() # new connection for name in collection_names: milvus_instance = MilvusClient(collection_name=name, host=self.host) milvus_instances_map.update({name: milvus_instance}) i = i + 1 elif run_type == "locust_mix_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) # ni_per = collection["ni_per"] # build_index = collection["build_index"] # if milvus_instance.exists_collection(): # milvus_instance.drop() # time.sleep(10) # milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) # if build_index is True: # index_type = collection["index_type"] # index_param = collection["index_param"] # milvus_instance.create_index(index_type, index_param) # logger.debug(milvus_instance.describe_index()) # res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) # milvus_instance.flush() # logger.debug("Table row counts: %d" % milvus_instance.count()) # if build_index is True: # logger.debug("Start build index for last file") # milvus_instance.create_index(index_type, index_param) # logger.debug(milvus_instance.describe_index()) task = collection["tasks"] task_file = utils.get_unique_name() task_file_script = task_file + '.py' task_file_csv = task_file + '_stats.csv' task_types = task["types"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = task["during_time"] def_strs = "" for task_type in task_types: _type = task_type["type"] weight = task_type["weight"] if _type == "flush": def_str = """ @task(%d) def flush(self): client = get_client(collection_name) client.flush(collection_name=collection_name) """ % weight if _type == "compact": def_str = """ @task(%d) def compact(self): client = get_client(collection_name) client.compact(collection_name) """ % weight if _type == "query": def_str = """ @task(%d) def query(self): client = get_client(collection_name) params = %s X = [[random.random() for i in range(dim)] for i in range(params["nq"])] client.query(X, params["top_k"], params["search_param"], collection_name=collection_name) """ % (weight, task_type["params"]) if _type == "insert": def_str = """ @task(%d) def insert(self): client = get_client(collection_name) params = %s ids = [random.randint(10, 1000000) for i in range(params["nb"])] X = [[random.random() for i in range(dim)] for i in range(params["nb"])] client.insert(X,ids=ids, collection_name=collection_name) """ % (weight, task_type["params"]) if _type == "delete": def_str = """ @task(%d) def delete(self): client = get_client(collection_name) ids = [random.randint(1, 1000000) for i in range(1)] client.delete(ids, collection_name) """ % weight def_strs += def_str print(def_strs) code_str = """ import random import json from locust import User, task, between from locust_task import MilvusTask from client import MilvusClient host = '%s' port = %s collection_name = '%s' dim = %s connection_type = '%s' m = MilvusClient(host=host, port=port) def get_client(collection_name): if connection_type == 'single': return MilvusTask(m=m) elif connection_type == 'multi': return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) class MixTask(User): wait_time = between(0.001, 0.002) %s """ % (self.host, self.port, collection_name, dimension, connection_type, def_strs) with open(task_file_script, "w+") as fd: fd.write(code_str) locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( task_file_script, task_file, clients_num, hatch_rate, during_time) logger.info(locust_cmd) try: res = os.system(locust_cmd) except Exception as e: logger.error(str(e)) return # . retrieve and collect test statistics metric = None with open(task_file_csv, newline='') as fd: dr = csv.DictReader(fd) for row in dr: if row["Name"] != "Aggregated": continue metric = row logger.info(metric) else: logger.warning("Run type not defined") return logger.debug("Test finished")
def run(self, run_type, collection): logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] milvus_instance = MilvusClient(collection_name=collection_name, ip=self.ip) self.env_value = milvus_instance.get_server_config() # ugly implemention self.env_value.pop("logs") if run_type == "insert_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.delete() time.sleep(10) index_info = {} search_params = {} milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) logger.info(res) milvus_instance.flush() collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": { "total_time": res["total_time"], "qps": res["qps"], "ni_time": res["ni_time"] } } report(metric) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) if run_type == "insert_flush_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] if milvus_instance.exists_collection(): milvus_instance.delete() time.sleep(10) index_info = {} search_params = {} milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) logger.info(res) logger.debug(milvus_instance.count()) start_time = time.time() milvus_instance.flush() end_time = time.time() logger.debug(milvus_instance.count()) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": { "flush_time": round(end_time - start_time, 1) } } report(metric) elif run_type == "build_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) index_type = collection["index_type"] index_param = collection["index_param"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } index_info = { "index_type": index_type, "index_param": index_param } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return search_params = {} start_time = time.time() # drop index logger.debug("Drop index") milvus_instance.drop_index() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) logger.debug(milvus_instance.count()) end_time = time.time() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": "build_performance", "value": { "build_time": round(end_time - start_time, 1), "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) elif run_type == "delete_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] search_params = {} collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return length = milvus_instance.count() logger.info(length) index_info = milvus_instance.describe_index() logger.info(index_info) ids = [i for i in range(length)] loops = int(length / ni_per) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_time = time.time() for i in range(loops): delete_ids = ids[i*ni_per : i*ni_per+ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete_vectors(delete_ids) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.flush() end_time = time.time() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug("Table row counts: %d" % milvus_instance.count()) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": "delete_performance", "value": { "delete_time": round(end_time - start_time, 1), "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) elif run_type == "search_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } # fro debugging # time.sleep(3600) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.preload_collection() logger.info("Start warm up query") res = self.do_query(milvus_instance, collection_name, [1], [1], 2, search_param=search_params[0]) logger.info("End warm up query") for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) res = self.do_query(milvus_instance, collection_name, top_ks, nqs, run_count, search_param) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) for index_nq, nq in enumerate(nqs): for index_top_k, top_k in enumerate(top_ks): search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param } search_time = res[index_nq][index_top_k] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "search_performance", "value": { "search_time": search_time } } report(metric) elif run_type == "search_ids_stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) g_id = int(ids.split("-")[1]) l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_ids_stability", "value": { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) # for sift/deep datasets # TODO: enable elif run_type == "accuracy": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) top_ks = collection["top_ks"] nqs = collection["nqs"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.preload_collection() true_ids_all = self.get_groundtruth_ids(collection_size) for search_param in search_params: for top_k in top_ks: for nq in nqs: total = 0 search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param } logger.info("Query params: %s" % json.dumps(search_param_group)) result_ids, result_distances = self.do_query_ids(milvus_instance, collection_name, top_k, nq, search_param=search_param) acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids) logger.info("Query accuracy: %s" % acc_value) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "accuracy", "value": { "acc": acc_value } } report(metric) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_file_sizes = collection["index_file_sizes"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } dataset = utils.get_dataset(hdf5_source_file) if milvus_instance.exists_collection(collection_name): logger.info("Re-create collection: %s" % collection_name) milvus_instance.delete() time.sleep(DELETE_INTERVAL_TIME) true_ids = np.array(dataset["neighbors"]) for index_file_size in index_file_sizes: milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) logger.info(milvus_instance.describe()) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) # Insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i*INSERT_INTERVAL end = min((i+1)*INSERT_INTERVAL, len(insert_vectors)) tmp_vectors = insert_vectors[start:end] if start < end: if not isinstance(tmp_vectors, list): milvus_instance.insert(tmp_vectors.tolist(), ids=[i for i in range(start, end)]) else: milvus_instance.insert(tmp_vectors, ids=[i for i in range(start, end)]) milvus_instance.flush() logger.info("Table: %s, row count: %s" % (collection_name, milvus_instance.count())) if milvus_instance.count() != len(insert_vectors): logger.error("Table row count is not equal to insert vectors") return for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s" % json.dumps(index_param)) milvus_instance.create_index(index_type, index_param=index_param) logger.info(milvus_instance.describe_index()) logger.info("Start preload collection: %s" % collection_name) milvus_instance.preload_collection() index_info = { "index_type": index_type, "index_param": index_param } logger.debug(index_info) for search_param in search_params: for nq in nqs: query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) for top_k in top_ks: search_param_group = { "nq": len(query_vectors), "topk": top_k, "search_param": search_param } logger.debug(search_param_group) if not isinstance(query_vectors, list): result = milvus_instance.query(query_vectors.tolist(), top_k, search_param=search_param) else: result = milvus_instance.query(query_vectors, top_k, search_param=search_param) result_ids = result.id_array acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "ann_accuracy", "value": { "acc": acc_value } } report(metric) elif run_type == "search_stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)] logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) result = milvus_instance.query(query_vectors, top_k, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_stability", "value": { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) elif run_type == "stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] insert_xb = collection["insert_xb"] insert_interval = collection["insert_interval"] delete_xb = collection["delete_xb"] during_time = collection["during_time"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) start_time = time.time() i = 0 ids = [] insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] while time.time() < start_time + during_time * 60: i = i + 1 for j in range(insert_interval): top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param) count = milvus_instance.count() insert_ids = [(count+x) for x in range(len(insert_vectors))] ids.extend(insert_ids) status, res = milvus_instance.insert(insert_vectors, ids=insert_ids) logger.debug("%d, row_count: %d" % (i, milvus_instance.count())) milvus_instance.delete_vectors(ids[-delete_xb:]) milvus_instance.flush() milvus_instance.compact() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "stability", "value": { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, "row_count_increments": end_row_count - start_row_count } } report(metric) else: logger.warning("Run type not defined") return logger.debug("Test finished")
def run(self, run_type, collection): logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] milvus_instance = MilvusClient(collection_name=collection_name, ip=self.ip, port=self.port) logger.info(milvus_instance.show_collections()) env_value = milvus_instance.get_server_config() logger.debug(env_value) if run_type in ["insert_performance", "insert_flush_performance"]: (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.delete() time.sleep(10) milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) elif run_type == "delete_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.warning("Table: %s not found" % collection_name) return length = milvus_instance.count() ids = [i for i in range(length)] loops = int(length / ni_per) for i in range(loops): delete_ids = ids[i * ni_per:i * ni_per + ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete_vectors(delete_ids) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) elif run_type == "build_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) index_type = collection["index_type"] index_param = collection["index_param"] if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return search_params = {} start_time = time.time() # drop index logger.debug("Drop index") milvus_instance.drop_index() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) logger.debug("Table row counts: %d" % milvus_instance.count()) end_time = time.time() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug( "Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1))) elif run_type == "search_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # for debugging # time.sleep(3600) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) res = self.do_query(milvus_instance, collection_name, top_ks, nqs, run_count, search_param) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "search_ids_stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) g_id = int(ids.split("-")[1]) l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) l_ids = random.randint(l_id, g_id - ids_num) # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] ids_param = [id for id in range(l_ids, l_ids + ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, } logger.info(metrics) elif run_type == "search_performance_concurrents": data_type, dimension, metric_type = parser.parse_ann_collection_name( collection_name) hdf5_source_file = collection["source_file"] use_single_connection = collection["use_single_connection"] concurrents = collection["concurrents"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = self.generate_combinations( collection["search_params"]) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() dataset = utils.get_dataset(hdf5_source_file) for concurrent_num in concurrents: top_k = top_ks[0] for nq in nqs: mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) query_vectors = self.normalize( metric_type, np.array(dataset["test"][:nq])) logger.debug(search_params) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) total_time = 0.0 if use_single_connection is True: connections = [ MilvusClient(collection_name=collection_name, ip=self.ip, port=self.port) ] with concurrent.futures.ThreadPoolExecutor( max_workers=concurrent_num) as executor: future_results = { executor.submit(self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param): index for index in range(concurrent_num) } else: connections = [ MilvusClient(collection_name=collection_name, ip=self.ip, port=self.port) for i in range(concurrent_num) ] with concurrent.futures.ThreadPoolExecutor( max_workers=concurrent_num) as executor: future_results = { executor.submit(self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param): index for index in range(concurrent_num) } for future in concurrent.futures.as_completed( future_results): total_time = total_time + future.result() qps_value = total_time / concurrent_num logger.debug( "QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num)) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_file_sizes = collection["index_file_sizes"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name( collection_name) dataset = utils.get_dataset(hdf5_source_file) if milvus_instance.exists_collection(collection_name): logger.info("Re-create collection: %s" % collection_name) milvus_instance.delete() time.sleep(DELETE_INTERVAL_TIME) true_ids = np.array(dataset["neighbors"]) for index_file_size in index_file_sizes: milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) logger.info(milvus_instance.describe()) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) logger.debug(len(insert_vectors)) # Insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i * INSERT_INTERVAL end = min((i + 1) * INSERT_INTERVAL, len(insert_vectors)) tmp_vectors = insert_vectors[start:end] if start < end: if not isinstance(tmp_vectors, list): milvus_instance.insert( tmp_vectors.tolist(), ids=[i for i in range(start, end)]) else: milvus_instance.insert( tmp_vectors, ids=[i for i in range(start, end)]) milvus_instance.flush() logger.info("Table: %s, row count: %s" % (collection_name, milvus_instance.count())) if milvus_instance.count() != len(insert_vectors): logger.error( "Table row count is not equal to insert vectors") return for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s" % json.dumps(index_param)) milvus_instance.create_index(index_type, index_param=index_param) logger.info(milvus_instance.describe_index()) logger.info("Start preload collection: %s" % collection_name) milvus_instance.preload_collection() for search_param in search_params: for nq in nqs: query_vectors = self.normalize( metric_type, np.array(dataset["test"][:nq])) for top_k in top_ks: logger.debug( "Search nq: %d, top-k: %d, search_param: %s" % (nq, top_k, json.dumps(search_param))) if not isinstance(query_vectors, list): result = milvus_instance.query( query_vectors.tolist(), top_k, search_param=search_param) else: result = milvus_instance.query( query_vectors, top_k, search_param=search_param) result_ids = result.id_array acc_value = self.get_recall_value( true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) elif run_type == "stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] insert_xb = collection["insert_xb"] insert_interval = collection["insert_interval"] delete_xb = collection["delete_xb"] # flush_interval = collection["flush_interval"] # compact_interval = collection["compact_interval"] during_time = collection["during_time"] if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.error("Table name: %s not existed" % collection_name) return g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) start_time = time.time() i = 0 ids = [] insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] while time.time() < start_time + during_time * 60: i = i + 1 for j in range(insert_interval): top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint( int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param) count = milvus_instance.count() insert_ids = [(count + x) for x in range(len(insert_vectors))] ids.extend(insert_ids) status, res = milvus_instance.insert(insert_vectors, ids=insert_ids) logger.debug("%d, row_count: %d" % (i, milvus_instance.count())) milvus_instance.delete_vectors(ids[-delete_xb:]) milvus_instance.flush() milvus_instance.compact() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, "row_count_increments": end_row_count - start_row_count } logger.info(metrics) else: logger.warning("Run type not defined") return logger.debug("Test finished")
def run(self, run_type, collection): logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] if "collection_name" in collection else None milvus_instance = MilvusClient(collection_name=collection_name, host=self.host) # TODO: removed # self.env_value = milvus_instance.get_server_config() # ugly implemention # self.env_value = utils.convert_nested(self.env_value) # self.env_value.pop("logs") # self.env_value.pop("network") self.env_value = collection if run_type == "insert_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} vector_type = self.get_vector_type(data_type) other_fields = collection["other_fields"] if "other_fields" in collection else None milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } index_field_name = utils.get_default_field_name(vector_type) milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) flush_time = 0.0 if "flush" in collection and collection["flush"] == "no": logger.debug("No manual flush") else: start_time = time.time() milvus_instance.flush() flush_time = time.time() - start_time logger.debug(milvus_instance.count()) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name, "other_fields": other_fields, "ni_per": ni_per } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) total_time = res["total_time"] build_time = 0 if build_index is True: logger.debug("Start build index for last file") start_time = time.time() milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) build_time = time.time() - start_time total_time = total_time + build_time metric.metrics = { "type": run_type, "value": { "total_time": total_time, "qps": res["qps"], "ni_time": res["ni_time"], "flush_time": flush_time, "build_time": build_time } } report(metric) elif run_type == "build_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) index_type = collection["index_type"] index_param = collection["index_param"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } index_info = { "index_type": index_type, "index_param": index_param } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return search_params = {} vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) start_time = time.time() # drop index logger.debug("Drop index") milvus_instance.drop_index(index_field_name) # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] # TODO: need to check milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) logger.debug(milvus_instance.describe_index()) logger.debug(milvus_instance.count()) end_time = time.time() # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": "build_performance", "value": { "build_time": round(end_time - start_time, 1), } } report(metric) elif run_type == "delete_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] auto_flush = collection["auto_flush"] if "auto_flush" in collection else True search_params = {} collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.error("Table name: %s not existed" % collection_name) return length = milvus_instance.count() logger.info(length) index_info = milvus_instance.describe_index() logger.info(index_info) ids = [i for i in range(length)] loops = int(length / ni_per) milvus_instance.load_collection() # TODO: remove # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_time = time.time() # if auto_flush is False: # milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL) for i in range(loops): delete_ids = ids[i * ni_per: i * ni_per + ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete(delete_ids) logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) start_flush_time = time.time() milvus_instance.flush() end_flush_time = time.time() end_time = time.time() # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug("Table row counts: %d" % milvus_instance.count()) # milvus_instance.set_config("storage", "auto_flush_interval", DEFAULT_FLUSH_INTERVAL) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) delete_time = round(end_time - start_time, 1) metric.metrics = { "type": "delete_performance", "value": { "delete_time": delete_time, "qps": round(collection_size / delete_time, 1) } } if auto_flush is False: flush_time = round(end_flush_time - start_flush_time, 1) metric.metrics["value"].update({"flush_time": flush_time}) report(metric) elif run_type == "get_ids_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ids_length_per_segment = collection["ids_length_per_segment"] if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } search_params = {} logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) for ids_num in ids_length_per_segment: segment_num, get_ids = milvus_instance.get_rand_ids_each_segment(ids_num) start_time = time.time() get_res = milvus_instance.get_entities(get_ids) total_time = time.time() - start_time avg_time = total_time / segment_num run_params = {"ids_num": ids_num} logger.info( "Segment num: %d, ids num per segment: %d, run_time: %f" % (segment_num, ids_num, total_time)) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params, run_params=run_params) metric.metrics = { "type": run_type, "value": { "total_time": round(total_time, 1), "avg_time": round(avg_time, 1) } } report(metric) elif run_type == "search_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] # filter_query = collection["filter"] if "filter" in collection else None filters = collection["filters"] if "filters" in collection else [] filter_query = [] search_params = collection["search_params"] fields = self.get_fields(milvus_instance, collection_name) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name "fields": fields } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.load_collection() logger.info("Start warm up query") res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2, search_param=search_params[0], filter_query=filter_query) logger.info("End warm up query") for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) if not filters: filters.append(None) for filter in filters: filter_param = [] if isinstance(filter, dict) and "range" in filter: filter_query.append(eval(filter["range"])) filter_param.append(filter["range"]) if isinstance(filter, dict) and "term" in filter: filter_query.append(eval(filter["term"])) filter_param.append(filter["term"]) logger.info("filter param: %s" % json.dumps(filter_param)) res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count, search_param, filter_query=filter_query) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) for index_nq, nq in enumerate(nqs): for index_top_k, top_k in enumerate(top_ks): search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param, "filter": filter_param } search_time = res[index_nq][index_top_k] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "search_performance", "value": { "search_time": search_time } } report(metric) elif run_type == "locust_insert_stress": pass elif run_type in ["locust_search_performance", "locust_insert_performance", "locust_mix_performance"]: (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=None) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) logger.debug(milvus_instance.describe_index()) if run_type in ["locust_search_performance", "locust_mix_performance"]: res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) if "flush" in collection and collection["flush"] == "no": logger.debug("No manual flush") else: milvus_instance.flush() if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_field_name, index_type, metric_type, _async=True, index_param=index_param) logger.debug(milvus_instance.describe_index()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.load_collection() logger.info("Start warm up query") for i in range(2): res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2, search_param={"nprobe": 16}) logger.info("End warm up query") real_metric_type = utils.metric_type_trans(metric_type) ### spawn locust requests task = collection["task"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = utils.timestr_to_int(task["during_time"]) task_types = task["types"] run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time} for task_type in task_types: run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1}) # . collect stats locust_stats = locust_user.locust_executor(self.host, self.port, collection_name, connection_type=connection_type, run_params=run_params) logger.info(locust_stats) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": locust_stats} report(metric) elif run_type == "search_ids_stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) g_id = int(ids.split("-")[1]) l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.load_collection() # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] # logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_ids_stability", "value": { "during_time": during_time, } } report(metric) # for sift/deep datasets # TODO: enable elif run_type == "accuracy": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) top_ks = collection["top_ks"] nqs = collection["nqs"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.load_collection() true_ids_all = self.get_groundtruth_ids(collection_size) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) for search_param in search_params: headers = ["Nq/Top-k"] res = [] for nq in nqs: for top_k in top_ks: tmp_res = [] search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param, "metric_type": metric_type } logger.info("Query params: %s" % json.dumps(search_param_group)) result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq, search_param=search_param) # mem_used = milvus_instance.get_mem_info()["memory_used"] acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids) logger.info("Query accuracy: %s" % acc_value) tmp_res.append(acc_value) # logger.info("Memory usage: %s" % mem_used) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "accuracy", "value": { "acc": acc_value } } report(metric) # logger.info("Memory usage: %s" % mem_used) res.append(tmp_res) headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } dataset = utils.get_dataset(hdf5_source_file) if milvus_instance.exists_collection(collection_name): logger.info("Re-create collection: %s" % collection_name) milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) true_ids = np.array(dataset["neighbors"]) vector_type = self.get_vector_type_from_metric(metric_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) # re-create collection if milvus_instance.exists_collection(collection_name): milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) milvus_instance.create_collection(dimension, data_type=vector_type) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) if len(insert_vectors) != dataset["train"].shape[0]: raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % ( len(insert_vectors), dataset["train"].shape[0])) logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors)) # Insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i * INSERT_INTERVAL end = min((i + 1) * INSERT_INTERVAL, len(insert_vectors)) if start < end: tmp_vectors = insert_vectors[start:end] ids = [i for i in range(start, end)] if not isinstance(tmp_vectors, list): entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids) res_ids = milvus_instance.insert(entities, ids=ids) else: entities = milvus_instance.generate_entities(tmp_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) assert res_ids == ids milvus_instance.flush() res_count = milvus_instance.count() logger.info("Table: %s, row count: %d" % (collection_name, res_count)) if res_count != len(insert_vectors): raise Exception("Table row count is not equal to insert vectors") for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s" % json.dumps(index_param)) if milvus_instance.get_config("cluster.enable") == "true": milvus_instance.create_index(vec_field_name, index_type, metric_type, _async=True, index_param=index_param) else: milvus_instance.create_index(vec_field_name, index_type, metric_type, index_param=index_param) logger.info(milvus_instance.describe_index()) logger.info("Start load collection: %s" % collection_name) milvus_instance.load_collection() logger.info("End load collection: %s" % collection_name) index_info = { "index_type": index_type, "index_param": index_param } logger.debug(index_info) warm_up = True for search_param in search_params: for nq in nqs: query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) if not isinstance(query_vectors, list): query_vectors = query_vectors.tolist() for top_k in top_ks: search_param_group = { "nq": len(query_vectors), "topk": top_k, "search_param": search_param, "metric_type": metric_type } logger.debug(search_param_group) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": real_metric_type, "params": search_param} }} for i in range(2): result = milvus_instance.query(vector_query) warm_up = False logger.info("End warm up") result = milvus_instance.query(vector_query) result_ids = milvus_instance.get_ids(result) acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "ann_accuracy", "value": { "acc": acc_value } } report(metric) elif run_type == "search_stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) search_params = collection["search_params"] during_time = collection["during_time"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.load_collection() # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] # logger.debug(start_mem_usage) start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)] logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors[:nq], "metric_type": real_metric_type, "params": search_param} }} milvus_instance.query(vector_query) # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_stability", "value": { "during_time": during_time, } } report(metric) elif run_type == "loop_stability": # init data milvus_instance.clean_db() pull_interval = collection["pull_interval"] collection_num = collection["collection_num"] concurrent = collection["concurrent"] if "concurrent" in collection else False concurrent_num = collection_num dimension = collection["dimension"] if "dimension" in collection else 128 insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000 index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8'] index_param = {"nlist": 256} collection_names = [] milvus_instances_map = {} insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] ids = [i for i in range(insert_xb)] # initialize and prepare for i in range(collection_num): name = utils.get_unique_name(prefix="collection_%d_" % i) collection_names.append(name) metric_type = random.choice(["l2", "ip"]) # default float_vector milvus_instance = MilvusClient(collection_name=name, host=self.host) milvus_instance.create_collection(dimension, other_fields=None) index_type = random.choice(index_types) field_name = utils.get_default_field_name() milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param) logger.info(milvus_instance.describe_index()) insert_vectors = utils.normalize(metric_type, insert_vectors) entities = milvus_instance.generate_entities(insert_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) milvus_instance.flush() milvus_instances_map.update({name: milvus_instance}) logger.info(milvus_instance.describe_index()) # loop time unit: min -> s pull_interval_seconds = pull_interval * 60 tasks = ["insert_rand", "query_rand", "flush"] i = 1 while True: logger.info("Loop time: %d" % i) start_time = time.time() while time.time() - start_time < pull_interval_seconds: if concurrent: threads = [] for name in collection_names: task_name = random.choice(tasks) task_run = getattr(milvus_instances_map[name], task_name) t = threading.Thread(target=task_run, args=()) threads.append(t) t.start() for t in threads: t.join() # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: # future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)} # for future in concurrent.futures.as_completed(future_results): # future.result() else: tmp_collection_name = random.choice(collection_names) task_name = random.choice(tasks) logger.info(tmp_collection_name) logger.info(task_name) task_run = getattr(milvus_instances_map[tmp_collection_name], task_name) task_run() logger.debug("Restart server") helm_utils.restart_server(self.service_name, namespace) # new connection # for name in collection_names: # milvus_instance = MilvusClient(collection_name=name, host=self.host) # milvus_instances_map.update({name: milvus_instance}) time.sleep(30) i = i + 1 elif run_type == "stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) during_time = collection["during_time"] operations = collection["operations"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) raise Exception("Table name: %s not existed" % collection_name) logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.info(start_row_count) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] if "insert" in operations: insert_xb = operations["insert"]["xb"] if "delete" in operations: delete_xb = operations["delete"]["xb"] if "query" in operations: g_top_k = int(operations["query"]["top_ks"].split("-")[1]) l_top_k = int(operations["query"]["top_ks"].split("-")[0]) g_nq = int(operations["query"]["nqs"].split("-")[1]) l_nq = int(operations["query"]["nqs"].split("-")[0]) search_params = operations["query"]["search_params"] i = 0 start_time = time.time() while time.time() < start_time + during_time * 60: i = i + 1 q = self.gen_executors(operations) for name in q: try: if name == "insert": insert_ids = random.sample(list(range(collection_size)), insert_xb) insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] entities = milvus_instance.generate_entities(insert_vectors, insert_ids) milvus_instance.insert(entities, ids=insert_ids) elif name == "delete": delete_ids = random.sample(list(range(collection_size)), delete_xb) milvus_instance.delete(delete_ids) elif name == "query": top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors[:nq], "metric_type": real_metric_type, "params": search_param} }} result = milvus_instance.query(vector_query) elif name in ["flush", "compact"]: func = getattr(milvus_instance, name) func() logger.debug(milvus_instance.count()) except Exception as e: logger.error(name) logger.error(str(e)) raise logger.debug("Loop time: %d" % i) # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "stability", "value": { "during_time": during_time, "row_count_increments": end_row_count - start_row_count } } report(metric) elif run_type == "debug": time.sleep(7200) default_insert_vectors = [[random.random() for _ in range(128)] for _ in range(500000)] interval = 50000 for loop in range(1, 7): insert_xb = loop * interval insert_vectors = default_insert_vectors[:insert_xb] insert_ids = [i for i in range(insert_xb)] entities = milvus_instance.generate_entities(insert_vectors, insert_ids) for j in range(5): milvus_instance.insert(entities, ids=insert_ids) time.sleep(10) else: raise Exception("Run type not defined") logger.debug("All test finished")
def run(self, definition, run_type=None): if run_type == "performance": for op_type, op_value in definition.items(): # run docker mode run_count = op_value["run_count"] run_params = op_value["params"] container = None if op_type == "insert": if not run_params: logger.debug("No run params") continue for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) collection_name = param["collection_name"] volume_name = param["db_path_prefix"] print(collection_name) (data_type, collection_size, index_file_size, dimension, metric_type ) = parser.collection_parser(collection_name) for k, v in param.items(): if k.startswith("server."): # Update server config utils.modify_config(k, v, type="server", db_slave=None) container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(collection_name) # Check has collection or not if milvus.exists_collection(): milvus.delete() time.sleep(10) milvus.create_collection(collection_name, dimension, index_file_size, metric_type) # debug # milvus.create_index("ivf_sq8", 16384) res = self.do_insert(milvus, collection_name, data_type, dimension, collection_size, param["ni_per"]) logger.info(res) # wait for file merge time.sleep(collection_size * dimension / 5000000) # Clear up utils.remove_container(container) elif op_type == "query": for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) collection_name = param["dataset"] volume_name = param["db_path_prefix"] (data_type, collection_size, index_file_size, dimension, metric_type ) = parser.collection_parser(collection_name) for k, v in param.items(): if k.startswith("server."): utils.modify_config(k, v, type="server") container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(collection_name) logger.debug(milvus.show_collections()) # Check has collection or not if not milvus.exists_collection(): logger.warning( "Table %s not existed, continue exec next params ..." % collection_name) continue # parse index info index_types = param["index.index_types"] nlists = param["index.nlists"] # parse top-k, nq, nprobe top_ks, nqs, nprobes = parser.search_params_parser( param) for index_type in index_types: for nlist in nlists: result = milvus.describe_index() logger.info(result) # milvus.drop_index() # milvus.create_index(index_type, nlist) result = milvus.describe_index() logger.info(result) logger.info(milvus.count()) # preload index milvus.preload_collection() logger.info("Start warm up query") res = self.do_query(milvus, collection_name, [1], [1], 1, 1) logger.info("End warm up query") # Run query test for nprobe in nprobes: logger.info( "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe)) res = self.do_query( milvus, collection_name, top_ks, nqs, nprobe, run_count) headers = ["Nq/Top-k"] headers.extend( [str(top_k) for top_k in top_ks]) utils.print_collection(headers, nqs, res) utils.remove_container(container) elif run_type == "insert_performance": for op_type, op_value in definition.items(): # run docker mode run_count = op_value["run_count"] run_params = op_value["params"] container = None if not run_params: logger.debug("No run params") continue for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) collection_name = param["collection_name"] volume_name = param["db_path_prefix"] print(collection_name) (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) for k, v in param.items(): if k.startswith("server."): # Update server config utils.modify_config(k, v, type="server", db_slave=None) container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(collection_name) # Check has collection or not if milvus.exists_collection(): milvus.delete() time.sleep(10) milvus.create_collection(collection_name, dimension, index_file_size, metric_type) # debug # milvus.create_index("ivf_sq8", 16384) res = self.do_insert(milvus, collection_name, data_type, dimension, collection_size, param["ni_per"]) logger.info(res) # wait for file merge time.sleep(collection_size * dimension / 5000000) # Clear up utils.remove_container(container) elif run_type == "search_performance": for op_type, op_value in definition.items(): # run docker mode run_count = op_value["run_count"] run_params = op_value["params"] container = None for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) collection_name = param["dataset"] volume_name = param["db_path_prefix"] (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) for k, v in param.items(): if k.startswith("server."): utils.modify_config(k, v, type="server") container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(collection_name) logger.debug(milvus.show_collections()) # Check has collection or not if not milvus.exists_collection(): logger.warning( "Table %s not existed, continue exec next params ..." % collection_name) continue # parse index info index_types = param["index.index_types"] nlists = param["index.nlists"] # parse top-k, nq, nprobe top_ks, nqs, nprobes = parser.search_params_parser(param) for index_type in index_types: for nlist in nlists: result = milvus.describe_index() logger.info(result) # milvus.drop_index() # milvus.create_index(index_type, nlist) result = milvus.describe_index() logger.info(result) logger.info(milvus.count()) # preload index milvus.preload_collection() logger.info("Start warm up query") res = self.do_query(milvus, collection_name, [1], [1], 1, 1) logger.info("End warm up query") # Run query test for nprobe in nprobes: logger.info( "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe)) res = self.do_query(milvus, collection_name, top_ks, nqs, nprobe, run_count) headers = ["Nq/Top-k"] headers.extend( [str(top_k) for top_k in top_ks]) utils.print_collection(headers, nqs, res) utils.remove_container(container) elif run_type == "accuracy": """ { "dataset": "random_50m_1024_512", "index.index_types": ["flat", ivf_flat", "ivf_sq8"], "index.nlists": [16384], "nprobes": [1, 32, 128], "nqs": [100], "top_ks": [1, 64], "server.use_blas_threshold": 1100, "server.cpu_cache_capacity": 256 } """ for op_type, op_value in definition.items(): if op_type != "query": logger.warning( "invalid operation: %s in accuracy test, only support query operation" % op_type) break run_count = op_value["run_count"] run_params = op_value["params"] container = None for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) collection_name = param["dataset"] sift_acc = False if "sift_acc" in param: sift_acc = param["sift_acc"] (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) for k, v in param.items(): if k.startswith("server."): utils.modify_config(k, v, type="server") volume_name = param["db_path_prefix"] container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(collection_name) # Check has collection or not if not milvus.exists_collection(): logger.warning( "Table %s not existed, continue exec next params ..." % collection_name) continue # parse index info index_types = param["index.index_types"] nlists = param["index.nlists"] # parse top-k, nq, nprobe top_ks, nqs, nprobes = parser.search_params_parser(param) if sift_acc is True: # preload groundtruth data true_ids_all = self.get_groundtruth_ids( collection_size) acc_dict = {} for index_type in index_types: for nlist in nlists: result = milvus.describe_index() logger.info(result) milvus.create_index(index_type, nlist) # preload index milvus.preload_collection() # Run query test for nprobe in nprobes: logger.info( "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe)) for top_k in top_ks: for nq in nqs: result_ids = [] id_prefix = "%s_index_%s_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \ (collection_name, index_type, nlist, metric_type, nprobe, top_k, nq) if sift_acc is False: self.do_query_acc( milvus, collection_name, top_k, nq, nprobe, id_prefix) if index_type != "flat": # Compute accuracy base_name = "%s_index_flat_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \ (collection_name, nlist, metric_type, nprobe, top_k, nq) avg_acc = self.compute_accuracy( base_name, id_prefix) logger.info( "Query: <%s> accuracy: %s" % (id_prefix, avg_acc)) else: result_ids, result_distances = self.do_query_ids( milvus, collection_name, top_k, nq, nprobe) debug_file_ids = "0.5.3_result_ids" debug_file_distances = "0.5.3_result_distances" with open(debug_file_ids, "w+") as fd: total = 0 for index, item in enumerate( result_ids): true_item = true_ids_all[: nq, : top_k].tolist( )[index] tmp = set( item).intersection( set(true_item)) total = total + len(tmp) fd.write( "query: N-%d, intersection: %d, total: %d\n" % (index, len(tmp), total)) fd.write("%s\n" % str(item)) fd.write("%s\n" % str(true_item)) acc_value = self.get_recall_value( true_ids_all[:nq, :top_k]. tolist(), result_ids) logger.info( "Query: <%s> accuracy: %s" % (id_prefix, acc_value)) # # print accuracy collection # headers = [collection_name] # headers.extend([str(top_k) for top_k in top_ks]) # utils.print_collection(headers, nqs, res) # remove container, and run next definition logger.info("remove container, and run next definition") utils.remove_container(container) elif run_type == "stability": for op_type, op_value in definition.items(): if op_type != "query": logger.warning( "invalid operation: %s in accuracy test, only support query operation" % op_type) break run_count = op_value["run_count"] run_params = op_value["params"] container = None for index, param in enumerate(run_params): logger.info("Definition param: %s" % str(param)) collection_name = param["dataset"] index_type = param["index_type"] volume_name = param["db_path_prefix"] (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) # set default test time if "during_time" not in param: during_time = 100 # seconds else: during_time = int(param["during_time"]) * 60 # set default query process num if "query_process_num" not in param: query_process_num = 10 else: query_process_num = int(param["query_process_num"]) for k, v in param.items(): if k.startswith("server."): utils.modify_config(k, v, type="server") container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None) time.sleep(2) milvus = MilvusClient(collection_name) # Check has collection or not if not milvus.exists_collection(): logger.warning( "Table %s not existed, continue exec next params ..." % collection_name) continue start_time = time.time() insert_vectors = [[ random.random() for _ in range(dimension) ] for _ in range(10000)] i = 0 while time.time() < start_time + during_time: i = i + 1 processes = [] # do query # for i in range(query_process_num): # milvus_instance = MilvusClient(collection_name) # top_k = random.choice([x for x in range(1, 100)]) # nq = random.choice([x for x in range(1, 100)]) # nprobe = random.choice([x for x in range(1, 1000)]) # # logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe)) # p = Process(target=self.do_query, args=(milvus_instance, collection_name, [top_k], [nq], [nprobe], run_count, )) # processes.append(p) # p.start() # time.sleep(0.1) # for p in processes: # p.join() milvus_instance = MilvusClient(collection_name) top_ks = random.sample([x for x in range(1, 100)], 3) nqs = random.sample([x for x in range(1, 1000)], 3) nprobe = random.choice([x for x in range(1, 500)]) res = self.do_query(milvus, collection_name, top_ks, nqs, nprobe, run_count) if i % 10 == 0: status, res = milvus_instance.insert( insert_vectors, ids=[x for x in range(len(insert_vectors))]) if not status.OK(): logger.error(status) # status = milvus_instance.drop_index() # if not status.OK(): # logger.error(status) # index_type = random.choice(["flat", "ivf_flat", "ivf_sq8"]) milvus_instance.create_index(index_type, 16384) result = milvus.describe_index() logger.info(result) # milvus_instance.create_index("ivf_sq8", 16384) utils.remove_container(container) else: logger.warning("Run type: %s not supported" % run_type)
def run(self, run_type, collection): logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] if "collection_name" in collection else None milvus_instance = MilvusClient(collection_name=collection_name, host=self.host, port=self.port) logger.info(milvus_instance.show_collections()) # TODO: # self.env_value = milvus_instance.get_server_config() # ugly implemention # self.env_value = utils.convert_nested(self.env_value) # self.env_value.pop("logs") # self.env_value.pop("network") # logger.info(self.env_value) if run_type in ["insert_performance", "insert_flush_performance"]: (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) vector_type = self.get_vector_type(data_type) other_fields = collection["other_fields"] if "other_fields" in collection else None milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_field_name = utils.get_default_field_name(vector_type) milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) elif run_type == "delete_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] auto_flush = collection["auto_flush"] if "auto_flush" in collection else True if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.error("Table: %s not found" % collection_name) return length = milvus_instance.count() ids = [i for i in range(length)] loops = int(length / ni_per) if auto_flush is False: milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL) for i in range(loops): delete_ids = ids[i*ni_per: i*ni_per+ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete(delete_ids) logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) elif run_type == "build_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) index_type = collection["index_type"] index_param = collection["index_param"] if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) # drop index logger.debug("Drop index") milvus_instance.drop_index(index_field_name) start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_time = time.time() milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) end_time = time.time() logger.debug("Table row counts: %d" % milvus_instance.count()) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug("Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1))) elif run_type == "search_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] filter_query = [] filters = collection["filters"] if "filters" in collection else [] # pdb.set_trace() # ranges = collection["range"] if "range" in collection else None # terms = collection["term"] if "term" in collection else None # if ranges: # filter_query.append(eval(ranges)) # if terms: # filter_query.append(eval(terms)) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) # for debugging # time.sleep(3600) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) filter_param = [] if not filters: filters.append(None) for filter in filters: if isinstance(filter, dict) and "range" in filter: filter_query.append(eval(filter["range"])) filter_param.append(filter["range"]) if isinstance(filter, dict) and "term" in filter: filter_query.append(eval(filter["term"])) filter_param.append(filter["term"]) logger.info("filter param: %s" % json.dumps(filter_param)) res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count, search_param, filter_query) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "locust_search_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) # if build_index is True: # index_type = collection["index_type"] # index_param = collection["index_param"] # # TODO: debug # if milvus_instance.exists_collection(): # milvus_instance.drop() # time.sleep(10) # other_fields = collection["other_fields"] if "other_fields" in collection else None # milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields) # milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) # res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) # milvus_instance.flush() # logger.debug("Table row counts: %d" % milvus_instance.count()) # if build_index is True: # logger.debug("Start build index for last file") # milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) real_metric_type = utils.metric_type_trans(metric_type) ### spawn locust requests task = collection["task"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = utils.timestr_to_int(task["during_time"]) task_types = task["types"] # """ # task: # connection_num: 1 # clients_num: 100 # hatch_rate: 2 # during_time: 5m # types: # - # type: query # weight: 1 # params: # top_k: 10 # nq: 1 # # filters: # # - # # range: # # int64: # # LT: 0 # # GT: 1000000 # search_param: # nprobe: 16 # """ run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time} for task_type in task_types: run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1}) #. collect stats locust_stats = locust_user.locust_executor(self.host, self.port, collection_name, connection_type=connection_type, run_params=run_params) logger.info(locust_stats) elif run_type == "search_ids_stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) g_id = int(ids.split("-")[1]) l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) l_ids = random.randint(l_id, g_id-ids_num) # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] ids_param = [id for id in range(l_ids, l_ids+ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, } logger.info(metrics) elif run_type == "search_performance_concurrents": data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) hdf5_source_file = collection["source_file"] use_single_connection = collection["use_single_connection"] concurrents = collection["concurrents"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = self.generate_combinations(collection["search_params"]) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() dataset = utils.get_dataset(hdf5_source_file) for concurrent_num in concurrents: top_k = top_ks[0] for nq in nqs: mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) logger.debug(search_params) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) total_time = 0.0 if use_single_connection is True: connections = [MilvusClient(collection_name=collection_name, host=self.host, port=self.port)] with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: future_results = {executor.submit( self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} else: connections = [MilvusClient(collection_name=collection_name, host=self.hos, port=self.port) for i in range(concurrent_num)] with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: future_results = {executor.submit( self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} for future in concurrent.futures.as_completed(future_results): total_time = total_time + future.result() qps_value = total_time / concurrent_num logger.debug("QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num)) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) dataset = utils.get_dataset(hdf5_source_file) true_ids = np.array(dataset["neighbors"]) vector_type = self.get_vector_type_from_metric(metric_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) # re-create collection if milvus_instance.exists_collection(collection_name): milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) milvus_instance.create_collection(dimension, data_type=vector_type) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) if len(insert_vectors) != dataset["train"].shape[0]: raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % (len(insert_vectors), dataset["train"].shape[0])) logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors)) # insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i*INSERT_INTERVAL end = min((i+1)*INSERT_INTERVAL, len(insert_vectors)) if start < end: tmp_vectors = insert_vectors[start:end] ids = [i for i in range(start, end)] if not isinstance(tmp_vectors, list): entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids) res_ids = milvus_instance.insert(entities, ids=ids) else: entities = milvus_instance.generate_entities(tmp_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) assert res_ids == ids milvus_instance.flush() res_count = milvus_instance.count() logger.info("Table: %s, row count: %d" % (collection_name, res_count)) if res_count != len(insert_vectors): raise Exception("Table row count is not equal to insert vectors") for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s, metric_type: %s" % (json.dumps(index_param), metric_type)) milvus_instance.create_index(vec_field_name, index_type, metric_type, index_param=index_param) logger.info("Start preload collection: %s" % collection_name) milvus_instance.preload_collection() for search_param in search_params: for nq in nqs: query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) if not isinstance(query_vectors, list): query_vectors = query_vectors.tolist() for top_k in top_ks: logger.debug("Search nq: %d, top-k: %d, search_param: %s, metric_type: %s" % (nq, top_k, json.dumps(search_param), metric_type)) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": real_metric_type, "params": search_param} }} result = milvus_instance.query(vector_query) result_ids = milvus_instance.get_ids(result) # pdb.set_trace() acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) elif run_type == "accuracy": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) top_ks = collection["top_ks"] nqs = collection["nqs"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.preload_collection() true_ids_all = self.get_groundtruth_ids(collection_size) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) for search_param in search_params: headers = ["Nq/Top-k"] res = [] for nq in nqs: tmp_res = [] for top_k in top_ks: search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param, "metric_type": metric_type } logger.info("Query params: %s" % json.dumps(search_param_group)) result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq, search_param=search_param) mem_used = milvus_instance.get_mem_info()["memory_used"] acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids) logger.info("Query accuracy: %s" % acc_value) tmp_res.append(acc_value) logger.info("Memory usage: %s" % mem_used) res.append(tmp_res) headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) elif run_type == "stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) during_time = collection["during_time"] operations = collection["operations"] if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) raise Exception("Table name: %s not existed" % collection_name) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.info(start_row_count) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] if "insert" in operations: insert_xb = operations["insert"]["xb"] if "delete" in operations: delete_xb = operations["delete"]["xb"] if "query" in operations: g_top_k = int(operations["query"]["top_ks"].split("-")[1]) l_top_k = int(operations["query"]["top_ks"].split("-")[0]) g_nq = int(operations["query"]["nqs"].split("-")[1]) l_nq = int(operations["query"]["nqs"].split("-")[0]) search_params = operations["query"]["search_params"] i = 0 start_time = time.time() while time.time() < start_time + during_time * 60: i = i + 1 q = self.gen_executors(operations) for name in q: try: if name == "insert": insert_ids = random.sample(list(range(collection_size)), insert_xb) insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] entities = milvus_instance.generate_entities(insert_vectors, insert_ids) milvus_instance.insert(entities, ids=insert_ids) elif name == "delete": delete_ids = random.sample(list(range(collection_size)), delete_xb) milvus_instance.delete(delete_ids) elif name == "query": top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors[:nq], "metric_type": real_metric_type, "params": search_param} }} result = milvus_instance.query(vector_query) elif name in ["flush", "compact"]: func = getattr(milvus_instance, name) func() logger.debug(milvus_instance.count()) except Exception as e: logger.error(name) logger.error(str(e)) raise logger.debug("Loop time: %d" % i) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, "row_count_increments": end_row_count - start_row_count } logger.info(metrics) elif run_type == "loop_stability": # init data milvus_instance.clean_db() pull_interval = collection["pull_interval"] collection_num = collection["collection_num"] concurrent = collection["concurrent"] if "concurrent" in collection else False concurrent_num = collection_num dimension = collection["dimension"] if "dimension" in collection else 128 insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000 index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8'] index_param = {"nlist": 256} collection_names = [] milvus_instances_map = {} insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] ids = [i for i in range(insert_xb)] # initialize and prepare for i in range(collection_num): name = utils.get_unique_name(prefix="collection_%d_" % i) collection_names.append(name) metric_type = random.choice(["l2", "ip"]) # default float_vector milvus_instance = MilvusClient(collection_name=name, host=self.host) milvus_instance.create_collection(dimension, other_fields=None) index_type = random.choice(index_types) field_name = utils.get_default_field_name() milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param) logger.info(milvus_instance.describe_index()) insert_vectors = utils.normalize(metric_type, insert_vectors) entities = milvus_instance.generate_entities(insert_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) milvus_instance.flush() milvus_instances_map.update({name: milvus_instance}) logger.info(milvus_instance.describe_index()) # loop time unit: min -> s pull_interval_seconds = pull_interval * 60 tasks = ["insert_rand", "delete_rand", "query_rand", "flush", "compact"] i = 1 while True: logger.info("Loop time: %d" % i) start_time = time.time() while time.time() - start_time < pull_interval_seconds: if concurrent: threads = [] for name in collection_names: task_name = random.choice(tasks) task_run = getattr(milvus_instances_map[name], task_name) t = threading.Thread(target=task_run, args=()) threads.append(t) t.start() for t in threads: t.join() # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: # future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)} # for future in concurrent.futures.as_completed(future_results): # future.result() else: tmp_collection_name = random.choice(collection_names) task_name = random.choice(tasks) logger.info(tmp_collection_name) logger.info(task_name) task_run = getattr(milvus_instances_map[tmp_collection_name], task_name) task_run() # new connection # for name in collection_names: # milvus_instance = MilvusClient(collection_name=name, host=self.host) # milvus_instances_map.update({name: milvus_instance}) i = i + 1 elif run_type == "locust_mix_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) # drop exists collection if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) # create collection other_fields = collection["other_fields"] if "other_fields" in collection else None milvus_instance.create_collection(dimension, data_type=DataType.FLOAT_VECTOR, collection_name=collection_name, other_fields=other_fields) logger.info(milvus_instance.get_info()) # insert entities insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(ni_per)] insert_ids = random.sample(list(range(collection_size)), ni_per) insert_vectors = utils.normalize(metric_type, insert_vectors) entities = milvus_instance.generate_entities(insert_vectors, insert_ids, collection_name) milvus_instance.insert(entities, ids=insert_ids) # flush milvus_instance.flush() logger.info(milvus_instance.get_stats()) logger.debug("Table row counts: %d" % milvus_instance.count()) # create index if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] logger.debug("Start build index for last file") milvus_instance.create_index(index_field_name, index_type, metric_type, index_param) logger.debug(milvus_instance.describe_index()) # locust task = collection["tasks"] task_file = utils.get_unique_name() task_file_script = task_file + '.py' task_file_csv = task_file + '_stats.csv' task_types = task["types"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = task["during_time"] def_strs = "" # define def str for task_type in task_types: type = task_type["type"] weight = task_type["weight"] if type == "flush": def_str = """ @task(%d) def flush(self): client = get_client(collection_name) client.flush(collection_name=collection_name) """ % weight if type == "compact": def_str = """ @task(%d) def compact(self): client = get_client(collection_name) client.compact(collection_name) """ % weight if type == "query": def_str = """ @task(%d) def query(self): client = get_client(collection_name) params = %s X = [[random.random() for i in range(dim)] for i in range(params["nq"])] vector_query = {"vector": {"%s": { "topk": params["top_k"], "query": X, "metric_type": "%s", "params": params["search_param"]}}} client.query(vector_query, filter_query=params["filters"], collection_name=collection_name) """ % (weight, task_type["params"], index_field_name, utils.metric_type_trans(metric_type)) if type == "insert": def_str = """ @task(%d) def insert(self): client = get_client(collection_name) params = %s insert_ids = random.sample(list(range(100000)), params["nb"]) insert_vectors = [[random.random() for _ in range(dim)] for _ in range(params["nb"])] insert_vectors = utils.normalize("l2", insert_vectors) entities = generate_entities(insert_vectors, insert_ids) client.insert(entities,ids=insert_ids, collection_name=collection_name) """ % (weight, task_type["params"]) if type == "delete": def_str = """ @task(%d) def delete(self): client = get_client(collection_name) ids = [random.randint(1, 1000000) for i in range(1)] client.delete(ids, collection_name) """ % weight def_strs += def_str print(def_strs) # define locust code str code_str = """ import random import json from locust import User, task, between from locust_task import MilvusTask from client import MilvusClient import utils host = '%s' port = %s collection_name = '%s' dim = %s connection_type = '%s' m = MilvusClient(host=host, port=port) def get_client(collection_name): if connection_type == 'single': return MilvusTask(m=m) elif connection_type == 'multi': return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) def generate_entities(vectors, ids): return m.generate_entities(vectors, ids, collection_name) class MixTask(User): wait_time = between(0.001, 0.002) %s """ % (self.host, self.port, collection_name, dimension, connection_type, def_strs) with open(task_file_script, "w+") as fd: fd.write(code_str) locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( task_file_script, task_file, clients_num, hatch_rate, during_time) logger.info(locust_cmd) try: res = os.system(locust_cmd) except Exception as e: logger.error(str(e)) return # . retrieve and collect test statistics metric = None with open(task_file_csv, newline='') as fd: dr = csv.DictReader(fd) for row in dr: if row["Name"] != "Aggregated": continue metric = row logger.info(metric) else: raise Exception("Run type not defined") logger.debug("All test finished")