Esempio n. 1
0
 def do_query_ids(self,
                  milvus,
                  collection_name,
                  top_k,
                  nq,
                  search_param=None):
     (data_type, collection_size, index_file_size, dimension,
      metric_type) = parser.collection_parser(collection_name)
     base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension,
                                                  data_type)
     vectors = base_query_vectors[0:nq]
     logger.info(
         "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}"
         .format(top_k, nq, len(vectors)))
     query_res = milvus.query(vectors, top_k, search_param=search_param)
     result_ids = []
     result_distances = []
     for result in query_res:
         tmp = []
         tmp_distance = []
         for item in result:
             tmp.append(item.id)
             tmp_distance.append(item.distance)
         result_ids.append(tmp)
         result_distances.append(tmp_distance)
     return result_ids, result_distances
Esempio n. 2
0
 def do_query_ids(self,
                  milvus,
                  collection_name,
                  vec_field_name,
                  top_k,
                  nq,
                  search_param=None,
                  filter_query=None):
     (data_type, collection_size, index_file_size, dimension,
      metric_type) = parser.collection_parser(collection_name)
     base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension,
                                                  data_type)
     query_vectors = base_query_vectors[0:nq]
     logger.info(
         "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}"
         .format(top_k, nq, len(query_vectors)))
     vector_query = {
         "vector": {
             vec_field_name: {
                 "topk": top_k,
                 "query": query_vectors,
                 "metric_type": utils.metric_type_trans(metric_type),
                 "params": search_param
             }
         }
     }
     query_res = milvus.query(vector_query, filter_query=filter_query)
     result_ids = milvus.get_ids(query_res)
     return result_ids
Esempio n. 3
0
 def do_query(self,
              milvus,
              collection_name,
              top_ks,
              nqs,
              run_count=1,
              search_param=None):
     bi_res = []
     (data_type, collection_size, index_file_size, dimension,
      metric_type) = parser.collection_parser(collection_name)
     base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension,
                                                  data_type)
     for nq in nqs:
         tmp_res = []
         vectors = base_query_vectors[0:nq]
         for top_k in top_ks:
             # avg_query_time = 0.0
             min_query_time = 0.0
             logger.info(
                 "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}"
                 .format(top_k, nq, len(vectors)))
             for i in range(run_count):
                 logger.info("Start run query, run %d of %s" %
                             (i + 1, run_count))
                 start_time = time.time()
                 milvus.query(vectors, top_k, search_param=search_param)
                 interval_time = time.time() - start_time
                 if (i == 0) or (min_query_time > interval_time):
                     min_query_time = interval_time
             logger.info("Min query time: %.2f" % min_query_time)
             tmp_res.append(round(min_query_time, 2))
         bi_res.append(tmp_res)
     return bi_res
Esempio n. 4
0
 def do_query(self,
              milvus,
              collection_name,
              vec_field_name,
              top_ks,
              nqs,
              run_count=1,
              search_param=None,
              filter_query=None):
     bi_res = []
     (data_type, collection_size, index_file_size, dimension,
      metric_type) = parser.collection_parser(collection_name)
     base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension,
                                                  data_type)
     for nq in nqs:
         tmp_res = []
         query_vectors = base_query_vectors[0:nq]
         for top_k in top_ks:
             avg_query_time = 0.0
             min_query_time = 0.0
             logger.info(
                 "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}"
                 .format(top_k, nq, len(query_vectors)))
             for i in range(run_count):
                 logger.debug("Start run query, run %d of %s" %
                              (i + 1, run_count))
                 start_time = time.time()
                 vector_query = {
                     "vector": {
                         vec_field_name: {
                             "topk": top_k,
                             "query": query_vectors,
                             "metric_type":
                             utils.metric_type_trans(metric_type),
                             "params": search_param
                         }
                     }
                 }
                 query_res = milvus.query(vector_query,
                                          filter_query=filter_query)
                 interval_time = time.time() - start_time
                 if (i == 0) or (min_query_time > interval_time):
                     min_query_time = interval_time
             logger.info("Min query time: %.2f" % min_query_time)
             tmp_res.append(round(min_query_time, 2))
         bi_res.append(tmp_res)
     return bi_res
Esempio n. 5
0
 def do_query_acc(self,
                  milvus,
                  collection_name,
                  top_k,
                  nq,
                  id_store_name,
                  search_param=None):
     (data_type, collection_size, index_file_size, dimension,
      metric_type) = parser.collection_parser(collection_name)
     base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension,
                                                  data_type)
     vectors = base_query_vectors[0:nq]
     logger.info(
         "Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}"
         .format(top_k, nq, len(vectors)))
     query_res = milvus.query(vectors, top_k, search_param=None)
     # if file existed, cover it
     if os.path.isfile(id_store_name):
         os.remove(id_store_name)
     with open(id_store_name, 'a+') as fd:
         for nq_item in query_res:
             for item in nq_item:
                 fd.write(str(item.id) + '\t')
             fd.write('\n')
Esempio n. 6
0
    def run(self, run_type, collection):
        logger.debug(run_type)
        logger.debug(collection)
        collection_name = collection["collection_name"] if "collection_name" in collection else None
        milvus_instance = MilvusClient(collection_name=collection_name, host=self.host, port=self.port)
        logger.info(milvus_instance.show_collections())
        env_value = milvus_instance.get_server_config()
        logger.debug(env_value)

        if run_type in ["insert_performance", "insert_flush_performance"]:
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                milvus_instance.create_index(index_type, index_param)
                logger.debug(milvus_instance.describe_index())
            res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())
            if build_index is True:
                logger.debug("Start build index for last file")
                milvus_instance.create_index(index_type, index_param)
                logger.debug(milvus_instance.describe_index())

        elif run_type == "delete_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.warning("Table: %s not found" % collection_name)
                return
            length = milvus_instance.count()
            ids = [i for i in range(length)] 
            loops = int(length / ni_per)
            for i in range(loops):
                delete_ids = ids[i*ni_per : i*ni_per+ni_per]
                logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1]))
                milvus_instance.delete(delete_ids)
                milvus_instance.flush()
                logger.debug("Table row counts: %d" % milvus_instance.count())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())

        elif run_type == "build_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            index_type = collection["index_type"]
            index_param = collection["index_param"]
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            search_params = {}
            start_time = time.time()
            # drop index
            logger.debug("Drop index")
            milvus_instance.drop_index()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            milvus_instance.create_index(index_type, index_param)
            logger.debug(milvus_instance.describe_index())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            end_time = time.time()
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug("Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1)))

        elif run_type == "search_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            run_count = collection["run_count"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # for debugging
            # time.sleep(3600)
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.info(mem_usage)
            for search_param in search_params:
                logger.info("Search param: %s" % json.dumps(search_param))
                res = self.do_query(milvus_instance, collection_name, top_ks, nqs, run_count, search_param)
                headers = ["Nq/Top-k"]
                headers.extend([str(top_k) for top_k in top_ks])
                logger.info("Search param: %s" % json.dumps(search_param))
                utils.print_table(headers, nqs, res)
                mem_usage = milvus_instance.get_mem_info()["memory_used"]
                logger.info(mem_usage)

        elif run_type == "locust_search_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ### spawn locust requests
            collection_num = collection["collection_num"]
            task = collection["task"]
            #. generate task code
            task_file = utils.get_unique_name()
            task_file_script = task_file+'.py'
            task_file_csv = task_file+'_stats.csv'
            task_type = task["type"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = task["during_time"]
            def_name = task_type
            task_params = task["params"]
            collection_names = []
            for i in range(collection_num):
                suffix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(5))
                collection_names.append(collection_name + "_" + suffix)
            # collection_names = ['sift_1m_1024_128_l2_Kg6co', 'sift_1m_1024_128_l2_egkBK', 'sift_1m_1024_128_l2_D0wtE',
            #                     'sift_1m_1024_128_l2_9naps', 'sift_1m_1024_128_l2_iJ0jj', 'sift_1m_1024_128_l2_nqUTm',
            #                     'sift_1m_1024_128_l2_GIF0D', 'sift_1m_1024_128_l2_EL2qk', 'sift_1m_1024_128_l2_qLRnC',
            #                     'sift_1m_1024_128_l2_8Ditg']
            # #####
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            for c_name in collection_names:
                milvus_instance = MilvusClient(collection_name=c_name, host=self.host, port=self.port)
                if milvus_instance.exists_collection(collection_name=c_name):
                    milvus_instance.drop(name=c_name)
                    time.sleep(10)
                milvus_instance.create_collection(c_name, dimension, index_file_size, metric_type)
                if build_index is True:
                    index_type = collection["index_type"]
                    index_param = collection["index_param"]
                    milvus_instance.create_index(index_type, index_param)
                    logger.debug(milvus_instance.describe_index())
                res = self.do_insert(milvus_instance, c_name, data_type, dimension, collection_size, ni_per)
                milvus_instance.flush()
                logger.debug("Table row counts: %d" % milvus_instance.count(name=c_name))
                if build_index is True:
                    logger.debug("Start build index for last file")
                    milvus_instance.create_index(index_type, index_param)
                    logger.debug(milvus_instance.describe_index())
            code_str = """
import random
import string
from locust import User, task, between
from locust_task import MilvusTask
from client import MilvusClient

host = '%s'
port = %s
dim = %s
connection_type = '%s'
collection_names = %s
m = MilvusClient(host=host, port=port)


def get_collection_name():
    return random.choice(collection_names)
    
    
def get_client(collection_name):
    if connection_type == 'single':
        return MilvusTask(m=m)
    elif connection_type == 'multi':
        return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name)
        

class QueryTask(User):
    wait_time = between(0.001, 0.002)
        
    @task()
    def %s(self):
        top_k = %s
        X = [[random.random() for i in range(dim)] for i in range(%s)]
        search_param = %s
        collection_name = get_collection_name()
        print(collection_name)
        client = get_client(collection_name)
        client.query(X, top_k, search_param, collection_name=collection_name)
            """ % (self.host, self.port, dimension, connection_type, collection_names, def_name, task_params["top_k"], task_params["nq"], task_params["search_param"])
            with open(task_file_script, 'w+') as fd:
                fd.write(code_str)
            locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % (
                    task_file_script,
                    task_file,
                    clients_num,
                    hatch_rate,
                    during_time)
            logger.info(locust_cmd)
            try:
                res = os.system(locust_cmd)
            except Exception as e:
                logger.error(str(e))
                return
            #. retrieve and collect test statistics
            metric = None
            with open(task_file_csv, newline='') as fd:
                dr = csv.DictReader(fd)
                for row in dr:
                    if row["Name"] != "Aggregated":
                        continue
                    metric = row
            logger.info(metric)
            # clean up temp files

        elif run_type == "search_ids_stability":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            ids_length = collection["ids_length"]
            ids = collection["ids"]
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            g_id = int(ids.split("-")[1])
            l_id = int(ids.split("-")[0])
            g_id_length = int(ids_length.split("-")[1])
            l_id_length = int(ids_length.split("-")[0])

            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug(start_mem_usage)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                ids_num = random.randint(l_id_length, g_id_length)
                l_ids = random.randint(l_id, g_id-ids_num)
                # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)]
                ids_param = [id for id in range(l_ids, l_ids+ids_num)]
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param)))
                result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
            }
            logger.info(metrics)

        elif run_type == "search_performance_concurrents":
            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            hdf5_source_file = collection["source_file"]
            use_single_connection = collection["use_single_connection"]
            concurrents = collection["concurrents"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = self.generate_combinations(collection["search_params"])
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            dataset = utils.get_dataset(hdf5_source_file)
            for concurrent_num in concurrents:
                top_k = top_ks[0] 
                for nq in nqs:
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)
                    query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq]))
                    logger.debug(search_params)
                    for search_param in search_params:
                        logger.info("Search param: %s" % json.dumps(search_param))
                        total_time = 0.0
                        if use_single_connection is True:
                            connections = [MilvusClient(collection_name=collection_name, host=self.host, port=self.port)]
                            with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                                future_results = {executor.submit(
                                    self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)}
                        else:
                            connections = [MilvusClient(collection_name=collection_name, host=self.hos, port=self.port) for i in range(concurrent_num)]
                            with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                                future_results = {executor.submit(
                                    self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)}
                        for future in concurrent.futures.as_completed(future_results):
                            total_time = total_time + future.result()
                        qps_value = total_time / concurrent_num 
                        logger.debug("QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num))
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)

        elif run_type == "ann_accuracy":
            hdf5_source_file = collection["source_file"]
            collection_name = collection["collection_name"]
            index_file_sizes = collection["index_file_sizes"]
            index_types = collection["index_types"]
            index_params = collection["index_params"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)
            # mapping to index param list
            index_params = self.generate_combinations(index_params)

            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            dataset = utils.get_dataset(hdf5_source_file)
            if milvus_instance.exists_collection(collection_name):
                logger.info("Re-create collection: %s" % collection_name)
                milvus_instance.drop()
                time.sleep(DELETE_INTERVAL_TIME)
            true_ids = np.array(dataset["neighbors"])
            for index_file_size in index_file_sizes:
                milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type)
                logger.info(milvus_instance.describe())
                insert_vectors = self.normalize(metric_type, np.array(dataset["train"]))
                logger.debug(len(insert_vectors))
                # Insert batch once
                # milvus_instance.insert(insert_vectors)
                loops = len(insert_vectors) // INSERT_INTERVAL + 1
                for i in range(loops):
                    start = i*INSERT_INTERVAL
                    end = min((i+1)*INSERT_INTERVAL, len(insert_vectors))
                    tmp_vectors = insert_vectors[start:end]
                    if start < end:
                        if not isinstance(tmp_vectors, list):
                            milvus_instance.insert(tmp_vectors.tolist(), ids=[i for i in range(start, end)])
                        else:
                            milvus_instance.insert(tmp_vectors, ids=[i for i in range(start, end)])
                    milvus_instance.flush()
                logger.info("Table: %s, row count: %s" % (collection_name, milvus_instance.count()))
                if milvus_instance.count() != len(insert_vectors):
                    logger.error("Table row count is not equal to insert vectors")
                    return
                for index_type in index_types:
                    for index_param in index_params:
                        logger.debug("Building index with param: %s" % json.dumps(index_param))
                        milvus_instance.create_index(index_type, index_param=index_param)
                        logger.info(milvus_instance.describe_index())
                        logger.info("Start preload collection: %s" % collection_name)
                        milvus_instance.preload_collection()
                        for search_param in search_params:
                            for nq in nqs:
                                query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq]))
                                for top_k in top_ks:
                                    logger.debug("Search nq: %d, top-k: %d, search_param: %s" % (nq, top_k, json.dumps(search_param)))
                                    if not isinstance(query_vectors, list):
                                        result = milvus_instance.query(query_vectors.tolist(), top_k, search_param=search_param)
                                    else:
                                        result = milvus_instance.query(query_vectors, top_k, search_param=search_param)
                                    result_ids = result.id_array
                                    acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids)
                                    logger.info("Query ann_accuracy: %s" % acc_value)


        elif run_type == "stability":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            insert_xb = collection["insert_xb"]
            insert_interval = collection["insert_interval"]
            delete_xb = collection["delete_xb"]
            # flush_interval = collection["flush_interval"]
            # compact_interval = collection["compact_interval"]
            during_time = collection["during_time"]
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.error("Table name: %s not existed" % collection_name)
                return
            g_top_k = int(collection["top_ks"].split("-")[1])
            g_nq = int(collection["nqs"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            l_nq = int(collection["nqs"].split("-")[0])
            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_row_count = milvus_instance.count()
            logger.debug(milvus_instance.describe_index())
            logger.info(start_row_count)
            start_time = time.time()
            i = 0
            ids = []
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
            while time.time() < start_time + during_time * 60:
                i = i + 1
                for _ in range(insert_interval):
                    top_k = random.randint(l_top_k, g_top_k)
                    nq = random.randint(l_nq, g_nq)
                    search_param = {}
                    for k, v in search_params.items():
                        search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                    logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                    result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param)
                count = milvus_instance.count()
                insert_ids = [(count+x) for x in range(len(insert_vectors))]
                ids.extend(insert_ids)
                _, res = milvus_instance.insert(insert_vectors, ids=insert_ids)
                logger.debug("%d, row_count: %d" % (i, milvus_instance.count()))
                milvus_instance.delete(ids[-delete_xb:])
                milvus_instance.flush()
                milvus_instance.compact()
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            end_row_count = milvus_instance.count()
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
                "row_count_increments": end_row_count - start_row_count
            }
            logger.info(metrics)

        elif run_type == "loop_stability":
            # init data
            milvus_instance.clean_db()
            pull_interval = collection["pull_interval"]
            pull_interval_seconds = pull_interval * 60
            collection_num = collection["collection_num"]
            dimension = collection["dimension"] if "dimension" in collection else 128
            insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000
            index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8']
            index_param = {"nlist": 2048}
            collection_names = []
            milvus_instances_map = {}
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
            for i in range(collection_num):
                name = utils.get_unique_name(prefix="collection_")
                collection_names.append(name)
                metric_type = random.choice(["l2", "ip"])
                index_file_size = random.randint(10, 20)
                milvus_instance.create_collection(name, dimension, index_file_size, metric_type)
                milvus_instance = MilvusClient(collection_name=name, host=self.host)
                index_type = random.choice(index_types)
                milvus_instance.create_index(index_type, index_param=index_param)
                logger.info(milvus_instance.describe_index())
                insert_vectors = utils.normalize(metric_type, insert_vectors)
                milvus_instance.insert(insert_vectors)
                milvus_instance.flush()
                milvus_instances_map.update({name: milvus_instance})
                logger.info(milvus_instance.describe_index())
                logger.info(milvus_instance.describe())

            tasks = ["insert_rand", "delete_rand", "query_rand", "flush"]
            i = 1
            while True:
                logger.info("Loop time: %d" % i)
                start_time = time.time()
                while time.time() - start_time < pull_interval_seconds:
                    # choose collection
                    tmp_collection_name = random.choice(collection_names)
                    # choose task from task
                    task_name = random.choice(tasks)
                    logger.info(tmp_collection_name)
                    logger.info(task_name)
                    # execute task
                    task_run = getattr(milvus_instances_map[tmp_collection_name], task_name)
                    task_run()
                # new connection
                for name in collection_names:
                    milvus_instance = MilvusClient(collection_name=name, host=self.host)
                    milvus_instances_map.update({name: milvus_instance})
                i = i + 1
        elif run_type == "locust_mix_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            # ni_per = collection["ni_per"]
            # build_index = collection["build_index"]
            # if milvus_instance.exists_collection():
            #     milvus_instance.drop()
            #     time.sleep(10)
            # milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type)
            # if build_index is True:
            #     index_type = collection["index_type"]
            #     index_param = collection["index_param"]
            #     milvus_instance.create_index(index_type, index_param)
            #     logger.debug(milvus_instance.describe_index())
            # res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            # milvus_instance.flush()
            # logger.debug("Table row counts: %d" % milvus_instance.count())
            # if build_index is True:
            #     logger.debug("Start build index for last file")
            #     milvus_instance.create_index(index_type, index_param)
            #     logger.debug(milvus_instance.describe_index())
            task = collection["tasks"]
            task_file = utils.get_unique_name()
            task_file_script = task_file + '.py'
            task_file_csv = task_file + '_stats.csv'
            task_types = task["types"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = task["during_time"]
            def_strs = ""
            for task_type in task_types:
                _type = task_type["type"]
                weight = task_type["weight"]
                if _type == "flush":
                    def_str = """
    @task(%d)
    def flush(self):
        client = get_client(collection_name)
        client.flush(collection_name=collection_name)
                    """ % weight
                if _type == "compact":
                    def_str = """
    @task(%d)
    def compact(self):
        client = get_client(collection_name)
        client.compact(collection_name)
                    """ % weight
                if _type == "query":
                    def_str = """
    @task(%d)
    def query(self):
        client = get_client(collection_name)
        params = %s
        X = [[random.random() for i in range(dim)] for i in range(params["nq"])]
        client.query(X, params["top_k"], params["search_param"], collection_name=collection_name)
                    """ % (weight, task_type["params"])
                if _type == "insert":
                    def_str = """
    @task(%d)
    def insert(self):
        client = get_client(collection_name)
        params = %s
        ids = [random.randint(10, 1000000) for i in range(params["nb"])]
        X = [[random.random() for i in range(dim)] for i in range(params["nb"])]
        client.insert(X,ids=ids, collection_name=collection_name)
                """ % (weight, task_type["params"])
                if _type == "delete":
                    def_str = """
    @task(%d)
    def delete(self):
        client = get_client(collection_name)
        ids = [random.randint(1, 1000000) for i in range(1)]
        client.delete(ids, collection_name)
                    """ % weight
                def_strs += def_str
                print(def_strs)
                code_str = """
import random
import json
from locust import User, task, between
from locust_task import MilvusTask
from client import MilvusClient

host = '%s'
port = %s
collection_name = '%s'
dim = %s
connection_type = '%s'
m = MilvusClient(host=host, port=port)


def get_client(collection_name):
    if connection_type == 'single':
        return MilvusTask(m=m)
    elif connection_type == 'multi':
        return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name)
        
        
class MixTask(User):
    wait_time = between(0.001, 0.002)
    %s
    """ % (self.host, self.port, collection_name, dimension, connection_type, def_strs)
            with open(task_file_script, "w+") as fd:
                fd.write(code_str)
            locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % (
                task_file_script,
                task_file,
                clients_num,
                hatch_rate,
                during_time)
            logger.info(locust_cmd)
            try:
                res = os.system(locust_cmd)
            except Exception as e:
                logger.error(str(e))
                return

            # . retrieve and collect test statistics
            metric = None
            with open(task_file_csv, newline='') as fd:
                dr = csv.DictReader(fd)
                for row in dr:
                    if row["Name"] != "Aggregated":
                        continue
                    metric = row
            logger.info(metric)

        else:
            logger.warning("Run type not defined")
            return
        logger.debug("Test finished")
Esempio n. 7
0
    def run(self, run_type, collection):
        logger.debug(run_type)
        logger.debug(collection)
        collection_name = collection["collection_name"]
        milvus_instance = MilvusClient(collection_name=collection_name, ip=self.ip)
        self.env_value = milvus_instance.get_server_config()

        # ugly implemention
        self.env_value.pop("logs")

        if run_type == "insert_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.delete()
                time.sleep(10)
            index_info = {}
            search_params = {}
            milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                index_info = {
                    "index_type": index_type,
                    "index_param": index_param
                }
                milvus_instance.create_index(index_type, index_param)
                logger.debug(milvus_instance.describe_index())
            res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            logger.info(res)
            milvus_instance.flush()
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params)
            metric.metrics = {
                "type": run_type,
                "value": {
                    "total_time": res["total_time"],
                    "qps": res["qps"],
                    "ni_time": res["ni_time"]
                } 
            }
            report(metric)
            if build_index is True:
                logger.debug("Start build index for last file")
                milvus_instance.create_index(index_type, index_param)
                logger.debug(milvus_instance.describe_index())

        if run_type == "insert_flush_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            if milvus_instance.exists_collection():
                milvus_instance.delete()
                time.sleep(10)
            index_info = {}
            search_params = {}
            milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type)
            res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            logger.info(res)
            logger.debug(milvus_instance.count())
            start_time = time.time()
            milvus_instance.flush()
            end_time = time.time()
            logger.debug(milvus_instance.count())
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params)
            metric.metrics = {
                "type": run_type,
                "value": {
                    "flush_time": round(end_time - start_time, 1)
                }
            }
            report(metric)

        elif run_type == "build_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            index_type = collection["index_type"]
            index_param = collection["index_param"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            index_info = {
                "index_type": index_type,
                "index_param": index_param
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            search_params = {}
            start_time = time.time()
            # drop index
            logger.debug("Drop index")
            milvus_instance.drop_index()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            milvus_instance.create_index(index_type, index_param)
            logger.debug(milvus_instance.describe_index())
            logger.debug(milvus_instance.count())
            end_time = time.time()
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params)
            metric.metrics = {
                "type": "build_performance",
                "value": {
                    "build_time": round(end_time - start_time, 1),
                    "start_mem_usage": start_mem_usage,
                    "end_mem_usage": end_mem_usage,
                    "diff_mem": end_mem_usage - start_mem_usage
                } 
            }
            report(metric)

        elif run_type == "delete_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            search_params = {}
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            length = milvus_instance.count()
            logger.info(length)
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            ids = [i for i in range(length)]
            loops = int(length / ni_per)
            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_time = time.time()
            for i in range(loops):
                delete_ids = ids[i*ni_per : i*ni_per+ni_per]
                logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1]))
                milvus_instance.delete_vectors(delete_ids)
                milvus_instance.flush()
                logger.debug("Table row counts: %d" % milvus_instance.count())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            milvus_instance.flush()
            end_time = time.time()
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug("Table row counts: %d" % milvus_instance.count())
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params)
            metric.metrics = {
                "type": "delete_performance",
                "value": {
                    "delete_time": round(end_time - start_time, 1),
                    "start_mem_usage": start_mem_usage,
                    "end_mem_usage": end_mem_usage,
                    "diff_mem": end_mem_usage - start_mem_usage
                }
            }
            report(metric)

        elif run_type == "search_performance":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            run_count = collection["run_count"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            # fro debugging
            # time.sleep(3600)
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return

            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.preload_collection()
            logger.info("Start warm up query")
            res = self.do_query(milvus_instance, collection_name, [1], [1], 2, search_param=search_params[0])
            logger.info("End warm up query")
            for search_param in search_params:
                logger.info("Search param: %s" % json.dumps(search_param))
                res = self.do_query(milvus_instance, collection_name, top_ks, nqs, run_count, search_param)
                headers = ["Nq/Top-k"]
                headers.extend([str(top_k) for top_k in top_ks])
                logger.info("Search param: %s" % json.dumps(search_param))
                utils.print_table(headers, nqs, res)
                for index_nq, nq in enumerate(nqs):
                    for index_top_k, top_k in enumerate(top_ks):
                        search_param_group = {
                            "nq": nq,
                            "topk": top_k,
                            "search_param": search_param
                        }
                        search_time = res[index_nq][index_top_k]
                        metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group)
                        metric.metrics = {
                            "type": "search_performance",
                            "value": {
                                "search_time": search_time
                            } 
                        }
                        report(metric)

        elif run_type == "search_ids_stability":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            ids_length = collection["ids_length"]
            ids = collection["ids"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            g_id = int(ids.split("-")[1])
            l_id = int(ids.split("-")[0])
            g_id_length = int(ids_length.split("-")[1])
            l_id_length = int(ids_length.split("-")[0])

            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug(start_mem_usage)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                ids_num = random.randint(l_id_length, g_id_length)
                ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)]
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param)))
                result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {})
            metric.metrics = {
                "type": "search_ids_stability",
                "value": {
                    "during_time": during_time,
                    "start_mem_usage": start_mem_usage,
                    "end_mem_usage": end_mem_usage,
                    "diff_mem": end_mem_usage - start_mem_usage
                }
            }
            report(metric)

        # for sift/deep datasets
        # TODO: enable
        elif run_type == "accuracy":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)

            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.preload_collection()
            true_ids_all = self.get_groundtruth_ids(collection_size)
            for search_param in search_params:
                for top_k in top_ks:
                    for nq in nqs:
                        total = 0
                        search_param_group = {
                            "nq": nq,
                            "topk": top_k,
                            "search_param": search_param
                        }
                        logger.info("Query params: %s" % json.dumps(search_param_group))
                        result_ids, result_distances = self.do_query_ids(milvus_instance, collection_name, top_k, nq, search_param=search_param)
                        acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids)
                        logger.info("Query accuracy: %s" % acc_value)
                        metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group)
                        metric.metrics = {
                            "type": "accuracy",
                            "value": {
                                "acc": acc_value
                            } 
                        }
                        report(metric)

        elif run_type == "ann_accuracy":
            hdf5_source_file = collection["source_file"]
            collection_name = collection["collection_name"]
            index_file_sizes = collection["index_file_sizes"]
            index_types = collection["index_types"]
            index_params = collection["index_params"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)
            # mapping to index param list
            index_params = self.generate_combinations(index_params)

            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            dataset = utils.get_dataset(hdf5_source_file)
            if milvus_instance.exists_collection(collection_name):
                logger.info("Re-create collection: %s" % collection_name)
                milvus_instance.delete()
                time.sleep(DELETE_INTERVAL_TIME)
            true_ids = np.array(dataset["neighbors"])
            for index_file_size in index_file_sizes:
                milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type)
                logger.info(milvus_instance.describe())
                insert_vectors = self.normalize(metric_type, np.array(dataset["train"]))
                # Insert batch once
                # milvus_instance.insert(insert_vectors)
                loops = len(insert_vectors) // INSERT_INTERVAL + 1
                for i in range(loops):
                    start = i*INSERT_INTERVAL
                    end = min((i+1)*INSERT_INTERVAL, len(insert_vectors))
                    tmp_vectors = insert_vectors[start:end]
                    if start < end:
                        if not isinstance(tmp_vectors, list):
                            milvus_instance.insert(tmp_vectors.tolist(), ids=[i for i in range(start, end)])
                        else:
                            milvus_instance.insert(tmp_vectors, ids=[i for i in range(start, end)])
                milvus_instance.flush()
                logger.info("Table: %s, row count: %s" % (collection_name, milvus_instance.count()))
                if milvus_instance.count() != len(insert_vectors):
                    logger.error("Table row count is not equal to insert vectors")
                    return
                for index_type in index_types:
                    for index_param in index_params:
                        logger.debug("Building index with param: %s" % json.dumps(index_param))
                        milvus_instance.create_index(index_type, index_param=index_param)
                        logger.info(milvus_instance.describe_index())
                        logger.info("Start preload collection: %s" % collection_name)
                        milvus_instance.preload_collection()
                        index_info = {
                            "index_type": index_type,
                            "index_param": index_param
                        }
                        logger.debug(index_info)
                        for search_param in search_params:
                            for nq in nqs:
                                query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq]))
                                for top_k in top_ks:
                                    search_param_group = {
                                        "nq": len(query_vectors),
                                        "topk": top_k,
                                        "search_param": search_param 
                                    }
                                    logger.debug(search_param_group)
                                    if not isinstance(query_vectors, list):
                                        result = milvus_instance.query(query_vectors.tolist(), top_k, search_param=search_param)
                                    else:
                                        result = milvus_instance.query(query_vectors, top_k, search_param=search_param)
                                    result_ids = result.id_array
                                    acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids)
                                    logger.info("Query ann_accuracy: %s" % acc_value)
                                    metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group)
                                    metric.metrics = {
                                        "type": "ann_accuracy",
                                        "value": {
                                            "acc": acc_value
                                        } 
                                    }
                                    report(metric)

        elif run_type == "search_stability":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            g_nq = int(collection["nqs"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            l_nq = int(collection["nqs"].split("-")[0])
            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug(start_mem_usage)
            start_row_count = milvus_instance.count()
            logger.debug(milvus_instance.describe_index())
            logger.info(start_row_count)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                nq = random.randint(l_nq, g_nq)
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)]
                logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                result = milvus_instance.query(query_vectors, top_k, search_param=search_param)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {})
            metric.metrics = {
                "type": "search_stability",
                "value": {
                    "during_time": during_time,
                    "start_mem_usage": start_mem_usage,
                    "end_mem_usage": end_mem_usage,
                    "diff_mem": end_mem_usage - start_mem_usage
                } 
            }
            report(metric)

        elif run_type == "stability":
            (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            insert_xb = collection["insert_xb"]
            insert_interval = collection["insert_interval"]
            delete_xb = collection["delete_xb"]
            during_time = collection["during_time"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            g_nq = int(collection["nqs"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            l_nq = int(collection["nqs"].split("-")[0])
            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_row_count = milvus_instance.count()
            logger.debug(milvus_instance.describe_index())
            logger.info(start_row_count)
            start_time = time.time()
            i = 0
            ids = []
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
            while time.time() < start_time + during_time * 60:
                i = i + 1
                for j in range(insert_interval):
                    top_k = random.randint(l_top_k, g_top_k)
                    nq = random.randint(l_nq, g_nq)
                    search_param = {}
                    for k, v in search_params.items():
                        search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                    logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                    result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param)
                count = milvus_instance.count()
                insert_ids = [(count+x) for x in range(len(insert_vectors))]
                ids.extend(insert_ids)
                status, res = milvus_instance.insert(insert_vectors, ids=insert_ids)
                logger.debug("%d, row_count: %d" % (i, milvus_instance.count()))
                milvus_instance.delete_vectors(ids[-delete_xb:])
                milvus_instance.flush()
                milvus_instance.compact()
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            end_row_count = milvus_instance.count()
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {})
            metric.metrics = {
                "type": "stability",
                "value": {
                    "during_time": during_time,
                    "start_mem_usage": start_mem_usage,
                    "end_mem_usage": end_mem_usage,
                    "diff_mem": end_mem_usage - start_mem_usage,
                    "row_count_increments": end_row_count - start_row_count
                } 
            }
            report(metric)

        else:
            logger.warning("Run type not defined")
            return
        logger.debug("Test finished")
Esempio n. 8
0
    def run(self, run_type, collection):
        logger.debug(run_type)
        logger.debug(collection)
        collection_name = collection["collection_name"]
        milvus_instance = MilvusClient(collection_name=collection_name,
                                       ip=self.ip,
                                       port=self.port)
        logger.info(milvus_instance.show_collections())
        env_value = milvus_instance.get_server_config()
        logger.debug(env_value)

        if run_type in ["insert_performance", "insert_flush_performance"]:
            (data_type, collection_size, index_file_size, dimension,
             metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.delete()
                time.sleep(10)
            milvus_instance.create_collection(collection_name, dimension,
                                              index_file_size, metric_type)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                milvus_instance.create_index(index_type, index_param)
                logger.debug(milvus_instance.describe_index())
            res = self.do_insert(milvus_instance, collection_name, data_type,
                                 dimension, collection_size, ni_per)
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())
            if build_index is True:
                logger.debug("Start build index for last file")
                milvus_instance.create_index(index_type, index_param)
                logger.debug(milvus_instance.describe_index())

        elif run_type == "delete_performance":
            (data_type, collection_size, index_file_size, dimension,
             metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.warning("Table: %s not found" % collection_name)
                return
            length = milvus_instance.count()
            ids = [i for i in range(length)]
            loops = int(length / ni_per)
            for i in range(loops):
                delete_ids = ids[i * ni_per:i * ni_per + ni_per]
                logger.debug("Delete %d - %d" %
                             (delete_ids[0], delete_ids[-1]))
                milvus_instance.delete_vectors(delete_ids)
                milvus_instance.flush()
                logger.debug("Table row counts: %d" % milvus_instance.count())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())

        elif run_type == "build_performance":
            (data_type, collection_size, index_file_size, dimension,
             metric_type) = parser.collection_parser(collection_name)
            index_type = collection["index_type"]
            index_param = collection["index_param"]
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            search_params = {}
            start_time = time.time()
            # drop index
            logger.debug("Drop index")
            milvus_instance.drop_index()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            milvus_instance.create_index(index_type, index_param)
            logger.debug(milvus_instance.describe_index())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            end_time = time.time()
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug(
                "Diff memory: %s, current memory usage: %s, build time: %s" %
                ((end_mem_usage - start_mem_usage), end_mem_usage,
                 round(end_time - start_time, 1)))

        elif run_type == "search_performance":
            (data_type, collection_size, index_file_size, dimension,
             metric_type) = parser.collection_parser(collection_name)
            run_count = collection["run_count"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # for debugging
            # time.sleep(3600)
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.info(mem_usage)
            for search_param in search_params:
                logger.info("Search param: %s" % json.dumps(search_param))
                res = self.do_query(milvus_instance, collection_name, top_ks,
                                    nqs, run_count, search_param)
                headers = ["Nq/Top-k"]
                headers.extend([str(top_k) for top_k in top_ks])
                logger.info("Search param: %s" % json.dumps(search_param))
                utils.print_table(headers, nqs, res)
                mem_usage = milvus_instance.get_mem_info()["memory_used"]
                logger.info(mem_usage)

        elif run_type == "search_ids_stability":
            (data_type, collection_size, index_file_size, dimension,
             metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            ids_length = collection["ids_length"]
            ids = collection["ids"]
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            g_id = int(ids.split("-")[1])
            l_id = int(ids.split("-")[0])
            g_id_length = int(ids_length.split("-")[1])
            l_id_length = int(ids_length.split("-")[0])

            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug(start_mem_usage)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                ids_num = random.randint(l_id_length, g_id_length)
                l_ids = random.randint(l_id, g_id - ids_num)
                # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)]
                ids_param = [id for id in range(l_ids, l_ids + ids_num)]
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]),
                                                     int(v.split("-")[1]))
                logger.debug("Query top-k: %d, ids_num: %d, param: %s" %
                             (top_k, ids_num, json.dumps(search_param)))
                result = milvus_instance.query_ids(top_k,
                                                   ids_param,
                                                   search_param=search_param)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
            }
            logger.info(metrics)

        elif run_type == "search_performance_concurrents":
            data_type, dimension, metric_type = parser.parse_ann_collection_name(
                collection_name)
            hdf5_source_file = collection["source_file"]
            use_single_connection = collection["use_single_connection"]
            concurrents = collection["concurrents"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = self.generate_combinations(
                collection["search_params"])
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            dataset = utils.get_dataset(hdf5_source_file)
            for concurrent_num in concurrents:
                top_k = top_ks[0]
                for nq in nqs:
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)
                    query_vectors = self.normalize(
                        metric_type, np.array(dataset["test"][:nq]))
                    logger.debug(search_params)
                    for search_param in search_params:
                        logger.info("Search param: %s" %
                                    json.dumps(search_param))
                        total_time = 0.0
                        if use_single_connection is True:
                            connections = [
                                MilvusClient(collection_name=collection_name,
                                             ip=self.ip,
                                             port=self.port)
                            ]
                            with concurrent.futures.ThreadPoolExecutor(
                                    max_workers=concurrent_num) as executor:
                                future_results = {
                                    executor.submit(self.do_query_qps,
                                                    connections[0],
                                                    query_vectors,
                                                    top_k,
                                                    search_param=search_param):
                                    index
                                    for index in range(concurrent_num)
                                }
                        else:
                            connections = [
                                MilvusClient(collection_name=collection_name,
                                             ip=self.ip,
                                             port=self.port)
                                for i in range(concurrent_num)
                            ]
                            with concurrent.futures.ThreadPoolExecutor(
                                    max_workers=concurrent_num) as executor:
                                future_results = {
                                    executor.submit(self.do_query_qps,
                                                    connections[index],
                                                    query_vectors,
                                                    top_k,
                                                    search_param=search_param):
                                    index
                                    for index in range(concurrent_num)
                                }
                        for future in concurrent.futures.as_completed(
                                future_results):
                            total_time = total_time + future.result()
                        qps_value = total_time / concurrent_num
                        logger.debug(
                            "QPS value: %f, total_time: %f, request_nums: %f" %
                            (qps_value, total_time, concurrent_num))
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)

        elif run_type == "ann_accuracy":
            hdf5_source_file = collection["source_file"]
            collection_name = collection["collection_name"]
            index_file_sizes = collection["index_file_sizes"]
            index_types = collection["index_types"]
            index_params = collection["index_params"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)
            # mapping to index param list
            index_params = self.generate_combinations(index_params)

            data_type, dimension, metric_type = parser.parse_ann_collection_name(
                collection_name)
            dataset = utils.get_dataset(hdf5_source_file)
            if milvus_instance.exists_collection(collection_name):
                logger.info("Re-create collection: %s" % collection_name)
                milvus_instance.delete()
                time.sleep(DELETE_INTERVAL_TIME)
            true_ids = np.array(dataset["neighbors"])
            for index_file_size in index_file_sizes:
                milvus_instance.create_collection(collection_name, dimension,
                                                  index_file_size, metric_type)
                logger.info(milvus_instance.describe())
                insert_vectors = self.normalize(metric_type,
                                                np.array(dataset["train"]))
                logger.debug(len(insert_vectors))
                # Insert batch once
                # milvus_instance.insert(insert_vectors)
                loops = len(insert_vectors) // INSERT_INTERVAL + 1
                for i in range(loops):
                    start = i * INSERT_INTERVAL
                    end = min((i + 1) * INSERT_INTERVAL, len(insert_vectors))
                    tmp_vectors = insert_vectors[start:end]
                    if start < end:
                        if not isinstance(tmp_vectors, list):
                            milvus_instance.insert(
                                tmp_vectors.tolist(),
                                ids=[i for i in range(start, end)])
                        else:
                            milvus_instance.insert(
                                tmp_vectors,
                                ids=[i for i in range(start, end)])
                    milvus_instance.flush()
                logger.info("Table: %s, row count: %s" %
                            (collection_name, milvus_instance.count()))
                if milvus_instance.count() != len(insert_vectors):
                    logger.error(
                        "Table row count is not equal to insert vectors")
                    return
                for index_type in index_types:
                    for index_param in index_params:
                        logger.debug("Building index with param: %s" %
                                     json.dumps(index_param))
                        milvus_instance.create_index(index_type,
                                                     index_param=index_param)
                        logger.info(milvus_instance.describe_index())
                        logger.info("Start preload collection: %s" %
                                    collection_name)
                        milvus_instance.preload_collection()
                        for search_param in search_params:
                            for nq in nqs:
                                query_vectors = self.normalize(
                                    metric_type,
                                    np.array(dataset["test"][:nq]))
                                for top_k in top_ks:
                                    logger.debug(
                                        "Search nq: %d, top-k: %d, search_param: %s"
                                        %
                                        (nq, top_k, json.dumps(search_param)))
                                    if not isinstance(query_vectors, list):
                                        result = milvus_instance.query(
                                            query_vectors.tolist(),
                                            top_k,
                                            search_param=search_param)
                                    else:
                                        result = milvus_instance.query(
                                            query_vectors,
                                            top_k,
                                            search_param=search_param)
                                    result_ids = result.id_array
                                    acc_value = self.get_recall_value(
                                        true_ids[:nq, :top_k].tolist(),
                                        result_ids)
                                    logger.info("Query ann_accuracy: %s" %
                                                acc_value)

        elif run_type == "stability":
            (data_type, collection_size, index_file_size, dimension,
             metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            insert_xb = collection["insert_xb"]
            insert_interval = collection["insert_interval"]
            delete_xb = collection["delete_xb"]
            # flush_interval = collection["flush_interval"]
            # compact_interval = collection["compact_interval"]
            during_time = collection["during_time"]
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.error("Table name: %s not existed" % collection_name)
                return
            g_top_k = int(collection["top_ks"].split("-")[1])
            g_nq = int(collection["nqs"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            l_nq = int(collection["nqs"].split("-")[0])
            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_row_count = milvus_instance.count()
            logger.debug(milvus_instance.describe_index())
            logger.info(start_row_count)
            start_time = time.time()
            i = 0
            ids = []
            insert_vectors = [[random.random() for _ in range(dimension)]
                              for _ in range(insert_xb)]
            query_vectors = [[random.random() for _ in range(dimension)]
                             for _ in range(10000)]
            while time.time() < start_time + during_time * 60:
                i = i + 1
                for j in range(insert_interval):
                    top_k = random.randint(l_top_k, g_top_k)
                    nq = random.randint(l_nq, g_nq)
                    search_param = {}
                    for k, v in search_params.items():
                        search_param[k] = random.randint(
                            int(v.split("-")[0]), int(v.split("-")[1]))
                    logger.debug("Query nq: %d, top-k: %d, param: %s" %
                                 (nq, top_k, json.dumps(search_param)))
                    result = milvus_instance.query(query_vectors[0:nq],
                                                   top_k,
                                                   search_param=search_param)
                count = milvus_instance.count()
                insert_ids = [(count + x) for x in range(len(insert_vectors))]
                ids.extend(insert_ids)
                status, res = milvus_instance.insert(insert_vectors,
                                                     ids=insert_ids)
                logger.debug("%d, row_count: %d" %
                             (i, milvus_instance.count()))
                milvus_instance.delete_vectors(ids[-delete_xb:])
                milvus_instance.flush()
                milvus_instance.compact()
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            end_row_count = milvus_instance.count()
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
                "row_count_increments": end_row_count - start_row_count
            }
            logger.info(metrics)

        else:
            logger.warning("Run type not defined")
            return
        logger.debug("Test finished")
Esempio n. 9
0
    def run(self, run_type, collection):
        logger.debug(run_type)
        logger.debug(collection)
        collection_name = collection["collection_name"] if "collection_name" in collection else None
        milvus_instance = MilvusClient(collection_name=collection_name, host=self.host)

        # TODO: removed
        # self.env_value = milvus_instance.get_server_config()
        # ugly implemention
        # self.env_value = utils.convert_nested(self.env_value)
        # self.env_value.pop("logs")
        # self.env_value.pop("network")
        self.env_value = collection

        if run_type == "insert_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            index_info = {}
            search_params = {}
            vector_type = self.get_vector_type(data_type)
            other_fields = collection["other_fields"] if "other_fields" in collection else None
            milvus_instance.create_collection(dimension, data_type=vector_type,
                                              other_fields=other_fields)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                index_info = {
                    "index_type": index_type,
                    "index_param": index_param
                }
                index_field_name = utils.get_default_field_name(vector_type)
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
                logger.debug(milvus_instance.describe_index())
            res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            flush_time = 0.0
            if "flush" in collection and collection["flush"] == "no":
                logger.debug("No manual flush")
            else:
                start_time = time.time()
                milvus_instance.flush()
                flush_time = time.time() - start_time
                logger.debug(milvus_instance.count())
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name,
                "other_fields": other_fields,
                "ni_per": ni_per
            }
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            total_time = res["total_time"]
            build_time = 0
            if build_index is True:
                logger.debug("Start build index for last file")
                start_time = time.time()
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
                build_time = time.time() - start_time
                total_time = total_time + build_time
            metric.metrics = {
                "type": run_type,
                "value": {
                    "total_time": total_time,
                    "qps": res["qps"],
                    "ni_time": res["ni_time"],
                    "flush_time": flush_time,
                    "build_time": build_time
                }
            }
            report(metric)

        elif run_type == "build_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            index_type = collection["index_type"]
            index_param = collection["index_param"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            index_info = {
                "index_type": index_type,
                "index_param": index_param
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            search_params = {}
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            start_time = time.time()
            # drop index
            logger.debug("Drop index")
            milvus_instance.drop_index(index_field_name)
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            # TODO: need to check
            milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            logger.debug(milvus_instance.describe_index())
            logger.debug(milvus_instance.count())
            end_time = time.time()
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            metric.metrics = {
                "type": "build_performance",
                "value": {
                    "build_time": round(end_time - start_time, 1),
                }
            }
            report(metric)

        elif run_type == "delete_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            auto_flush = collection["auto_flush"] if "auto_flush" in collection else True
            search_params = {}
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.error("Table name: %s not existed" % collection_name)
                return
            length = milvus_instance.count()
            logger.info(length)
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            ids = [i for i in range(length)]
            loops = int(length / ni_per)
            milvus_instance.load_collection()
            # TODO: remove
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_time = time.time()
            # if auto_flush is False:
            #     milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL)
            for i in range(loops):
                delete_ids = ids[i * ni_per: i * ni_per + ni_per]
                logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1]))
                milvus_instance.delete(delete_ids)
                logger.debug("Table row counts: %d" % milvus_instance.count())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            start_flush_time = time.time()
            milvus_instance.flush()
            end_flush_time = time.time()
            end_time = time.time()
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug("Table row counts: %d" % milvus_instance.count())
            # milvus_instance.set_config("storage", "auto_flush_interval", DEFAULT_FLUSH_INTERVAL)
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            delete_time = round(end_time - start_time, 1)
            metric.metrics = {
                "type": "delete_performance",
                "value": {
                    "delete_time": delete_time,
                    "qps": round(collection_size / delete_time, 1)
                }
            }
            if auto_flush is False:
                flush_time = round(end_flush_time - start_flush_time, 1)
                metric.metrics["value"].update({"flush_time": flush_time})
            report(metric)

        elif run_type == "get_ids_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ids_length_per_segment = collection["ids_length_per_segment"]
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            search_params = {}
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            for ids_num in ids_length_per_segment:
                segment_num, get_ids = milvus_instance.get_rand_ids_each_segment(ids_num)
                start_time = time.time()
                get_res = milvus_instance.get_entities(get_ids)
                total_time = time.time() - start_time
                avg_time = total_time / segment_num
                run_params = {"ids_num": ids_num}
                logger.info(
                    "Segment num: %d, ids num per segment: %d, run_time: %f" % (segment_num, ids_num, total_time))
                metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info,
                                             index_info, search_params, run_params=run_params)
                metric.metrics = {
                    "type": run_type,
                    "value": {
                        "total_time": round(total_time, 1),
                        "avg_time": round(avg_time, 1)
                    }
                }
                report(metric)

        elif run_type == "search_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            run_count = collection["run_count"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            # filter_query = collection["filter"] if "filter" in collection else None
            filters = collection["filters"] if "filters" in collection else []
            filter_query = []
            search_params = collection["search_params"]
            fields = self.get_fields(milvus_instance, collection_name)
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
                "fields": fields
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return

            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.load_collection()
            logger.info("Start warm up query")
            res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2,
                                search_param=search_params[0], filter_query=filter_query)
            logger.info("End warm up query")
            for search_param in search_params:
                logger.info("Search param: %s" % json.dumps(search_param))
                if not filters:
                    filters.append(None)
                for filter in filters:
                    filter_param = []
                    if isinstance(filter, dict) and "range" in filter:
                        filter_query.append(eval(filter["range"]))
                        filter_param.append(filter["range"])
                    if isinstance(filter, dict) and "term" in filter:
                        filter_query.append(eval(filter["term"]))
                        filter_param.append(filter["term"])
                    logger.info("filter param: %s" % json.dumps(filter_param))
                    res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count,
                                        search_param, filter_query=filter_query)
                    headers = ["Nq/Top-k"]
                    headers.extend([str(top_k) for top_k in top_ks])
                    logger.info("Search param: %s" % json.dumps(search_param))
                    utils.print_table(headers, nqs, res)
                    for index_nq, nq in enumerate(nqs):
                        for index_top_k, top_k in enumerate(top_ks):
                            search_param_group = {
                                "nq": nq,
                                "topk": top_k,
                                "search_param": search_param,
                                "filter": filter_param
                            }
                            search_time = res[index_nq][index_top_k]
                            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname,
                                                         collection_info, index_info, search_param_group)
                            metric.metrics = {
                                "type": "search_performance",
                                "value": {
                                    "search_time": search_time
                                }
                            }
                            report(metric)

        elif run_type == "locust_insert_stress":
            pass

        elif run_type in ["locust_search_performance", "locust_insert_performance", "locust_mix_performance"]:
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            index_info = {}
            search_params = {}
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=None)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                index_info = {
                    "index_type": index_type,
                    "index_param": index_param
                }
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
                logger.debug(milvus_instance.describe_index())
            if run_type in ["locust_search_performance", "locust_mix_performance"]:
                res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
                if "flush" in collection and collection["flush"] == "no":
                    logger.debug("No manual flush")
                else:
                    milvus_instance.flush()
                if build_index is True:
                    logger.debug("Start build index for last file")
                    milvus_instance.create_index(index_field_name, index_type, metric_type, _async=True,
                                                 index_param=index_param)
                    logger.debug(milvus_instance.describe_index())
                logger.debug("Table row counts: %d" % milvus_instance.count())
                milvus_instance.load_collection()
                logger.info("Start warm up query")
                for i in range(2):
                    res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2,
                                        search_param={"nprobe": 16})
                logger.info("End warm up query")
            real_metric_type = utils.metric_type_trans(metric_type)
            ### spawn locust requests
            task = collection["task"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = utils.timestr_to_int(task["during_time"])
            task_types = task["types"]
            run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time}
            for task_type in task_types:
                run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1})

            # . collect stats
            locust_stats = locust_user.locust_executor(self.host, self.port, collection_name,
                                                       connection_type=connection_type, run_params=run_params)
            logger.info(locust_stats)
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            metric.metrics = {
                "type": run_type,
                "value": locust_stats}
            report(metric)

        elif run_type == "search_ids_stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            ids_length = collection["ids_length"]
            ids = collection["ids"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            g_id = int(ids.split("-")[1])
            l_id = int(ids.split("-")[0])
            g_id_length = int(ids_length.split("-")[1])
            l_id_length = int(ids_length.split("-")[0])

            milvus_instance.load_collection()
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            # logger.debug(start_mem_usage)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                ids_num = random.randint(l_id_length, g_id_length)
                ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)]
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param)))
                result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param)
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         {})
            metric.metrics = {
                "type": "search_ids_stability",
                "value": {
                    "during_time": during_time,
                }
            }
            report(metric)

        # for sift/deep datasets
        # TODO: enable
        elif run_type == "accuracy":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)

            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.load_collection()
            true_ids_all = self.get_groundtruth_ids(collection_size)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            for search_param in search_params:
                headers = ["Nq/Top-k"]
                res = []
                for nq in nqs:
                    for top_k in top_ks:
                        tmp_res = []
                        search_param_group = {
                            "nq": nq,
                            "topk": top_k,
                            "search_param": search_param,
                            "metric_type": metric_type
                        }
                        logger.info("Query params: %s" % json.dumps(search_param_group))
                        result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq,
                                                       search_param=search_param)
                        # mem_used = milvus_instance.get_mem_info()["memory_used"]
                        acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids)
                        logger.info("Query accuracy: %s" % acc_value)
                        tmp_res.append(acc_value)
                        # logger.info("Memory usage: %s" % mem_used)
                        metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info,
                                                     index_info, search_param_group)
                        metric.metrics = {
                            "type": "accuracy",
                            "value": {
                                "acc": acc_value
                            }
                        }
                        report(metric)
                        # logger.info("Memory usage: %s" % mem_used)
                    res.append(tmp_res)
                headers.extend([str(top_k) for top_k in top_ks])
                logger.info("Search param: %s" % json.dumps(search_param))
                utils.print_table(headers, nqs, res)

        elif run_type == "ann_accuracy":
            hdf5_source_file = collection["source_file"]
            collection_name = collection["collection_name"]
            index_types = collection["index_types"]
            index_params = collection["index_params"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)
            # mapping to index param list
            index_params = self.generate_combinations(index_params)

            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            dataset = utils.get_dataset(hdf5_source_file)
            if milvus_instance.exists_collection(collection_name):
                logger.info("Re-create collection: %s" % collection_name)
                milvus_instance.drop()
                time.sleep(DELETE_INTERVAL_TIME)
            true_ids = np.array(dataset["neighbors"])
            vector_type = self.get_vector_type_from_metric(metric_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)

            # re-create collection
            if milvus_instance.exists_collection(collection_name):
                milvus_instance.drop()
                time.sleep(DELETE_INTERVAL_TIME)
            milvus_instance.create_collection(dimension, data_type=vector_type)
            insert_vectors = self.normalize(metric_type, np.array(dataset["train"]))
            if len(insert_vectors) != dataset["train"].shape[0]:
                raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % (
                len(insert_vectors), dataset["train"].shape[0]))
            logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors))
            # Insert batch once
            # milvus_instance.insert(insert_vectors)
            loops = len(insert_vectors) // INSERT_INTERVAL + 1
            for i in range(loops):
                start = i * INSERT_INTERVAL
                end = min((i + 1) * INSERT_INTERVAL, len(insert_vectors))
                if start < end:
                    tmp_vectors = insert_vectors[start:end]
                    ids = [i for i in range(start, end)]
                    if not isinstance(tmp_vectors, list):
                        entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    else:
                        entities = milvus_instance.generate_entities(tmp_vectors, ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    assert res_ids == ids
            milvus_instance.flush()
            res_count = milvus_instance.count()
            logger.info("Table: %s, row count: %d" % (collection_name, res_count))
            if res_count != len(insert_vectors):
                raise Exception("Table row count is not equal to insert vectors")
            for index_type in index_types:
                for index_param in index_params:
                    logger.debug("Building index with param: %s" % json.dumps(index_param))
                    if milvus_instance.get_config("cluster.enable") == "true":
                        milvus_instance.create_index(vec_field_name, index_type, metric_type, _async=True,
                                                     index_param=index_param)
                    else:
                        milvus_instance.create_index(vec_field_name, index_type, metric_type,
                                                     index_param=index_param)
                    logger.info(milvus_instance.describe_index())
                    logger.info("Start load collection: %s" % collection_name)
                    milvus_instance.load_collection()
                    logger.info("End load collection: %s" % collection_name)
                    index_info = {
                        "index_type": index_type,
                        "index_param": index_param
                    }
                    logger.debug(index_info)
                    warm_up = True
                    for search_param in search_params:
                        for nq in nqs:
                            query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq]))
                            if not isinstance(query_vectors, list):
                                query_vectors = query_vectors.tolist()
                            for top_k in top_ks:
                                search_param_group = {
                                    "nq": len(query_vectors),
                                    "topk": top_k,
                                    "search_param": search_param,
                                    "metric_type": metric_type
                                }
                                logger.debug(search_param_group)
                                vector_query = {"vector": {vec_field_name: {
                                    "topk": top_k,
                                    "query": query_vectors,
                                    "metric_type": real_metric_type,
                                    "params": search_param}
                                }}
                                for i in range(2):
                                    result = milvus_instance.query(vector_query)
                                warm_up = False
                                logger.info("End warm up")
                                result = milvus_instance.query(vector_query)
                                result_ids = milvus_instance.get_ids(result)
                                acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids)
                                logger.info("Query ann_accuracy: %s" % acc_value)
                                metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname,
                                                             collection_info, index_info, search_param_group)
                                metric.metrics = {
                                    "type": "ann_accuracy",
                                    "value": {
                                        "acc": acc_value
                                    }
                                }
                                report(metric)

        elif run_type == "search_stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            g_nq = int(collection["nqs"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            l_nq = int(collection["nqs"].split("-")[0])
            milvus_instance.load_collection()
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            # logger.debug(start_mem_usage)
            start_row_count = milvus_instance.count()
            logger.debug(milvus_instance.describe_index())
            logger.info(start_row_count)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                nq = random.randint(l_nq, g_nq)
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)]
                logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                vector_query = {"vector": {vec_field_name: {
                    "topk": top_k,
                    "query": query_vectors[:nq],
                    "metric_type": real_metric_type,
                    "params": search_param}
                }}
                milvus_instance.query(vector_query)
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         {})
            metric.metrics = {
                "type": "search_stability",
                "value": {
                    "during_time": during_time,
                }
            }
            report(metric)

        elif run_type == "loop_stability":
            # init data
            milvus_instance.clean_db()
            pull_interval = collection["pull_interval"]
            collection_num = collection["collection_num"]
            concurrent = collection["concurrent"] if "concurrent" in collection else False
            concurrent_num = collection_num
            dimension = collection["dimension"] if "dimension" in collection else 128
            insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000
            index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8']
            index_param = {"nlist": 256}
            collection_names = []
            milvus_instances_map = {}
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
            ids = [i for i in range(insert_xb)]
            # initialize and prepare
            for i in range(collection_num):
                name = utils.get_unique_name(prefix="collection_%d_" % i)
                collection_names.append(name)
                metric_type = random.choice(["l2", "ip"])
                # default float_vector
                milvus_instance = MilvusClient(collection_name=name, host=self.host)
                milvus_instance.create_collection(dimension, other_fields=None)
                index_type = random.choice(index_types)
                field_name = utils.get_default_field_name()
                milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param)
                logger.info(milvus_instance.describe_index())
                insert_vectors = utils.normalize(metric_type, insert_vectors)
                entities = milvus_instance.generate_entities(insert_vectors, ids)
                res_ids = milvus_instance.insert(entities, ids=ids)
                milvus_instance.flush()
                milvus_instances_map.update({name: milvus_instance})
                logger.info(milvus_instance.describe_index())

                # loop time unit: min -> s
            pull_interval_seconds = pull_interval * 60
            tasks = ["insert_rand", "query_rand", "flush"]
            i = 1
            while True:
                logger.info("Loop time: %d" % i)
                start_time = time.time()
                while time.time() - start_time < pull_interval_seconds:
                    if concurrent:
                        threads = []
                        for name in collection_names:
                            task_name = random.choice(tasks)
                            task_run = getattr(milvus_instances_map[name], task_name)
                            t = threading.Thread(target=task_run, args=())
                            threads.append(t)
                            t.start()
                        for t in threads:
                            t.join()
                        # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                        #     future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)}
                        #     for future in concurrent.futures.as_completed(future_results):
                        #         future.result()
                    else:
                        tmp_collection_name = random.choice(collection_names)
                        task_name = random.choice(tasks)
                        logger.info(tmp_collection_name)
                        logger.info(task_name)
                        task_run = getattr(milvus_instances_map[tmp_collection_name], task_name)
                        task_run()

                logger.debug("Restart server")
                helm_utils.restart_server(self.service_name, namespace)
                # new connection
                # for name in collection_names:
                #     milvus_instance = MilvusClient(collection_name=name, host=self.host)
                #     milvus_instances_map.update({name: milvus_instance})
                time.sleep(30)
                i = i + 1

        elif run_type == "stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            during_time = collection["during_time"]
            operations = collection["operations"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                raise Exception("Table name: %s not existed" % collection_name)
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_row_count = milvus_instance.count()
            logger.info(start_row_count)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
            if "insert" in operations:
                insert_xb = operations["insert"]["xb"]
            if "delete" in operations:
                delete_xb = operations["delete"]["xb"]
            if "query" in operations:
                g_top_k = int(operations["query"]["top_ks"].split("-")[1])
                l_top_k = int(operations["query"]["top_ks"].split("-")[0])
                g_nq = int(operations["query"]["nqs"].split("-")[1])
                l_nq = int(operations["query"]["nqs"].split("-")[0])
                search_params = operations["query"]["search_params"]
            i = 0
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                i = i + 1
                q = self.gen_executors(operations)
                for name in q:
                    try:
                        if name == "insert":
                            insert_ids = random.sample(list(range(collection_size)), insert_xb)
                            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
                            entities = milvus_instance.generate_entities(insert_vectors, insert_ids)
                            milvus_instance.insert(entities, ids=insert_ids)
                        elif name == "delete":
                            delete_ids = random.sample(list(range(collection_size)), delete_xb)
                            milvus_instance.delete(delete_ids)
                        elif name == "query":
                            top_k = random.randint(l_top_k, g_top_k)
                            nq = random.randint(l_nq, g_nq)
                            search_param = {}
                            for k, v in search_params.items():
                                search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                            logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                            vector_query = {"vector": {vec_field_name: {
                                "topk": top_k,
                                "query": query_vectors[:nq],
                                "metric_type": real_metric_type,
                                "params": search_param}
                            }}
                            result = milvus_instance.query(vector_query)
                        elif name in ["flush", "compact"]:
                            func = getattr(milvus_instance, name)
                            func()
                        logger.debug(milvus_instance.count())
                    except Exception as e:
                        logger.error(name)
                        logger.error(str(e))
                        raise
                logger.debug("Loop time: %d" % i)
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            end_row_count = milvus_instance.count()
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         {})
            metric.metrics = {
                "type": "stability",
                "value": {
                    "during_time": during_time,
                    "row_count_increments": end_row_count - start_row_count
                }
            }
            report(metric)

        elif run_type == "debug":
            time.sleep(7200)
            default_insert_vectors = [[random.random() for _ in range(128)] for _ in range(500000)]
            interval = 50000
            for loop in range(1, 7):
                insert_xb = loop * interval
                insert_vectors = default_insert_vectors[:insert_xb]
                insert_ids = [i for i in range(insert_xb)]
                entities = milvus_instance.generate_entities(insert_vectors, insert_ids)
                for j in range(5):
                    milvus_instance.insert(entities, ids=insert_ids)
                    time.sleep(10)

        else:
            raise Exception("Run type not defined")
        logger.debug("All test finished")
Esempio n. 10
0
    def run(self, definition, run_type=None):
        if run_type == "performance":
            for op_type, op_value in definition.items():
                # run docker mode
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None

                if op_type == "insert":
                    if not run_params:
                        logger.debug("No run params")
                        continue
                    for index, param in enumerate(run_params):
                        logger.info("Definition param: %s" % str(param))
                        collection_name = param["collection_name"]
                        volume_name = param["db_path_prefix"]
                        print(collection_name)
                        (data_type, collection_size, index_file_size,
                         dimension, metric_type
                         ) = parser.collection_parser(collection_name)
                        for k, v in param.items():
                            if k.startswith("server."):
                                # Update server config
                                utils.modify_config(k,
                                                    v,
                                                    type="server",
                                                    db_slave=None)
                        container = utils.run_server(self.image,
                                                     test_type="remote",
                                                     volume_name=volume_name,
                                                     db_slave=None)
                        time.sleep(2)
                        milvus = MilvusClient(collection_name)
                        # Check has collection or not
                        if milvus.exists_collection():
                            milvus.delete()
                            time.sleep(10)
                        milvus.create_collection(collection_name, dimension,
                                                 index_file_size, metric_type)
                        # debug
                        # milvus.create_index("ivf_sq8", 16384)
                        res = self.do_insert(milvus, collection_name,
                                             data_type, dimension,
                                             collection_size, param["ni_per"])
                        logger.info(res)
                        # wait for file merge
                        time.sleep(collection_size * dimension / 5000000)
                        # Clear up
                        utils.remove_container(container)

                elif op_type == "query":
                    for index, param in enumerate(run_params):
                        logger.info("Definition param: %s" % str(param))
                        collection_name = param["dataset"]
                        volume_name = param["db_path_prefix"]
                        (data_type, collection_size, index_file_size,
                         dimension, metric_type
                         ) = parser.collection_parser(collection_name)
                        for k, v in param.items():
                            if k.startswith("server."):
                                utils.modify_config(k, v, type="server")
                        container = utils.run_server(self.image,
                                                     test_type="remote",
                                                     volume_name=volume_name,
                                                     db_slave=None)
                        time.sleep(2)
                        milvus = MilvusClient(collection_name)
                        logger.debug(milvus.show_collections())
                        # Check has collection or not
                        if not milvus.exists_collection():
                            logger.warning(
                                "Table %s not existed, continue exec next params ..."
                                % collection_name)
                            continue
                        # parse index info
                        index_types = param["index.index_types"]
                        nlists = param["index.nlists"]
                        # parse top-k, nq, nprobe
                        top_ks, nqs, nprobes = parser.search_params_parser(
                            param)
                        for index_type in index_types:
                            for nlist in nlists:
                                result = milvus.describe_index()
                                logger.info(result)
                                # milvus.drop_index()
                                # milvus.create_index(index_type, nlist)
                                result = milvus.describe_index()
                                logger.info(result)
                                logger.info(milvus.count())
                                # preload index
                                milvus.preload_collection()
                                logger.info("Start warm up query")
                                res = self.do_query(milvus, collection_name,
                                                    [1], [1], 1, 1)
                                logger.info("End warm up query")
                                # Run query test
                                for nprobe in nprobes:
                                    logger.info(
                                        "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                        % (index_type, nlist, metric_type,
                                           nprobe))
                                    res = self.do_query(
                                        milvus, collection_name, top_ks, nqs,
                                        nprobe, run_count)
                                    headers = ["Nq/Top-k"]
                                    headers.extend(
                                        [str(top_k) for top_k in top_ks])
                                    utils.print_collection(headers, nqs, res)
                        utils.remove_container(container)

        elif run_type == "insert_performance":
            for op_type, op_value in definition.items():
                # run docker mode
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None
                if not run_params:
                    logger.debug("No run params")
                    continue
                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    collection_name = param["collection_name"]
                    volume_name = param["db_path_prefix"]
                    print(collection_name)
                    (data_type, collection_size, index_file_size, dimension,
                     metric_type) = parser.collection_parser(collection_name)
                    for k, v in param.items():
                        if k.startswith("server."):
                            # Update server config
                            utils.modify_config(k,
                                                v,
                                                type="server",
                                                db_slave=None)
                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(collection_name)
                    # Check has collection or not
                    if milvus.exists_collection():
                        milvus.delete()
                        time.sleep(10)
                    milvus.create_collection(collection_name, dimension,
                                             index_file_size, metric_type)
                    # debug
                    # milvus.create_index("ivf_sq8", 16384)
                    res = self.do_insert(milvus, collection_name, data_type,
                                         dimension, collection_size,
                                         param["ni_per"])
                    logger.info(res)
                    # wait for file merge
                    time.sleep(collection_size * dimension / 5000000)
                    # Clear up
                    utils.remove_container(container)

        elif run_type == "search_performance":
            for op_type, op_value in definition.items():
                # run docker mode
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None
                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    collection_name = param["dataset"]
                    volume_name = param["db_path_prefix"]
                    (data_type, collection_size, index_file_size, dimension,
                     metric_type) = parser.collection_parser(collection_name)
                    for k, v in param.items():
                        if k.startswith("server."):
                            utils.modify_config(k, v, type="server")
                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(collection_name)
                    logger.debug(milvus.show_collections())
                    # Check has collection or not
                    if not milvus.exists_collection():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % collection_name)
                        continue
                    # parse index info
                    index_types = param["index.index_types"]
                    nlists = param["index.nlists"]
                    # parse top-k, nq, nprobe
                    top_ks, nqs, nprobes = parser.search_params_parser(param)
                    for index_type in index_types:
                        for nlist in nlists:
                            result = milvus.describe_index()
                            logger.info(result)
                            # milvus.drop_index()
                            # milvus.create_index(index_type, nlist)
                            result = milvus.describe_index()
                            logger.info(result)
                            logger.info(milvus.count())
                            # preload index
                            milvus.preload_collection()
                            logger.info("Start warm up query")
                            res = self.do_query(milvus, collection_name, [1],
                                                [1], 1, 1)
                            logger.info("End warm up query")
                            # Run query test
                            for nprobe in nprobes:
                                logger.info(
                                    "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                    % (index_type, nlist, metric_type, nprobe))
                                res = self.do_query(milvus, collection_name,
                                                    top_ks, nqs, nprobe,
                                                    run_count)
                                headers = ["Nq/Top-k"]
                                headers.extend(
                                    [str(top_k) for top_k in top_ks])
                                utils.print_collection(headers, nqs, res)
                    utils.remove_container(container)

        elif run_type == "accuracy":
            """
            {
                "dataset": "random_50m_1024_512", 
                "index.index_types": ["flat", ivf_flat", "ivf_sq8"],
                "index.nlists": [16384],
                "nprobes": [1, 32, 128], 
                "nqs": [100],
                "top_ks": [1, 64], 
                "server.use_blas_threshold": 1100, 
                "server.cpu_cache_capacity": 256
            }
            """
            for op_type, op_value in definition.items():
                if op_type != "query":
                    logger.warning(
                        "invalid operation: %s in accuracy test, only support query operation"
                        % op_type)
                    break
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None

                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    collection_name = param["dataset"]
                    sift_acc = False
                    if "sift_acc" in param:
                        sift_acc = param["sift_acc"]
                    (data_type, collection_size, index_file_size, dimension,
                     metric_type) = parser.collection_parser(collection_name)
                    for k, v in param.items():
                        if k.startswith("server."):
                            utils.modify_config(k, v, type="server")
                    volume_name = param["db_path_prefix"]
                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(collection_name)
                    # Check has collection or not
                    if not milvus.exists_collection():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % collection_name)
                        continue

                    # parse index info
                    index_types = param["index.index_types"]
                    nlists = param["index.nlists"]
                    # parse top-k, nq, nprobe
                    top_ks, nqs, nprobes = parser.search_params_parser(param)
                    if sift_acc is True:
                        # preload groundtruth data
                        true_ids_all = self.get_groundtruth_ids(
                            collection_size)
                    acc_dict = {}
                    for index_type in index_types:
                        for nlist in nlists:
                            result = milvus.describe_index()
                            logger.info(result)
                            milvus.create_index(index_type, nlist)
                            # preload index
                            milvus.preload_collection()
                            # Run query test
                            for nprobe in nprobes:
                                logger.info(
                                    "index_type: %s, nlist: %s, metric_type: %s, nprobe: %s"
                                    % (index_type, nlist, metric_type, nprobe))
                                for top_k in top_ks:
                                    for nq in nqs:
                                        result_ids = []
                                        id_prefix = "%s_index_%s_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
                                                    (collection_name, index_type, nlist, metric_type, nprobe, top_k, nq)
                                        if sift_acc is False:
                                            self.do_query_acc(
                                                milvus, collection_name, top_k,
                                                nq, nprobe, id_prefix)
                                            if index_type != "flat":
                                                # Compute accuracy
                                                base_name = "%s_index_flat_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
                                                    (collection_name, nlist, metric_type, nprobe, top_k, nq)
                                                avg_acc = self.compute_accuracy(
                                                    base_name, id_prefix)
                                                logger.info(
                                                    "Query: <%s> accuracy: %s"
                                                    % (id_prefix, avg_acc))
                                        else:
                                            result_ids, result_distances = self.do_query_ids(
                                                milvus, collection_name, top_k,
                                                nq, nprobe)
                                            debug_file_ids = "0.5.3_result_ids"
                                            debug_file_distances = "0.5.3_result_distances"
                                            with open(debug_file_ids,
                                                      "w+") as fd:
                                                total = 0
                                                for index, item in enumerate(
                                                        result_ids):
                                                    true_item = true_ids_all[:
                                                                             nq, :
                                                                             top_k].tolist(
                                                                             )[index]
                                                    tmp = set(
                                                        item).intersection(
                                                            set(true_item))
                                                    total = total + len(tmp)
                                                    fd.write(
                                                        "query: N-%d, intersection: %d, total: %d\n"
                                                        % (index, len(tmp),
                                                           total))
                                                    fd.write("%s\n" %
                                                             str(item))
                                                    fd.write("%s\n" %
                                                             str(true_item))
                                            acc_value = self.get_recall_value(
                                                true_ids_all[:nq, :top_k].
                                                tolist(), result_ids)
                                            logger.info(
                                                "Query: <%s> accuracy: %s" %
                                                (id_prefix, acc_value))
                    # # print accuracy collection
                    # headers = [collection_name]
                    # headers.extend([str(top_k) for top_k in top_ks])
                    # utils.print_collection(headers, nqs, res)

                    # remove container, and run next definition
                    logger.info("remove container, and run next definition")
                    utils.remove_container(container)

        elif run_type == "stability":
            for op_type, op_value in definition.items():
                if op_type != "query":
                    logger.warning(
                        "invalid operation: %s in accuracy test, only support query operation"
                        % op_type)
                    break
                run_count = op_value["run_count"]
                run_params = op_value["params"]
                container = None
                for index, param in enumerate(run_params):
                    logger.info("Definition param: %s" % str(param))
                    collection_name = param["dataset"]
                    index_type = param["index_type"]
                    volume_name = param["db_path_prefix"]
                    (data_type, collection_size, index_file_size, dimension,
                     metric_type) = parser.collection_parser(collection_name)

                    # set default test time
                    if "during_time" not in param:
                        during_time = 100  # seconds
                    else:
                        during_time = int(param["during_time"]) * 60
                    # set default query process num
                    if "query_process_num" not in param:
                        query_process_num = 10
                    else:
                        query_process_num = int(param["query_process_num"])

                    for k, v in param.items():
                        if k.startswith("server."):
                            utils.modify_config(k, v, type="server")

                    container = utils.run_server(self.image,
                                                 test_type="remote",
                                                 volume_name=volume_name,
                                                 db_slave=None)
                    time.sleep(2)
                    milvus = MilvusClient(collection_name)
                    # Check has collection or not
                    if not milvus.exists_collection():
                        logger.warning(
                            "Table %s not existed, continue exec next params ..."
                            % collection_name)
                        continue

                    start_time = time.time()
                    insert_vectors = [[
                        random.random() for _ in range(dimension)
                    ] for _ in range(10000)]
                    i = 0
                    while time.time() < start_time + during_time:
                        i = i + 1
                        processes = []
                        # do query
                        # for i in range(query_process_num):
                        #     milvus_instance = MilvusClient(collection_name)
                        #     top_k = random.choice([x for x in range(1, 100)])
                        #     nq = random.choice([x for x in range(1, 100)])
                        #     nprobe = random.choice([x for x in range(1, 1000)])
                        #     # logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
                        #     p = Process(target=self.do_query, args=(milvus_instance, collection_name, [top_k], [nq], [nprobe], run_count, ))
                        #     processes.append(p)
                        #     p.start()
                        #     time.sleep(0.1)
                        # for p in processes:
                        #     p.join()
                        milvus_instance = MilvusClient(collection_name)
                        top_ks = random.sample([x for x in range(1, 100)], 3)
                        nqs = random.sample([x for x in range(1, 1000)], 3)
                        nprobe = random.choice([x for x in range(1, 500)])
                        res = self.do_query(milvus, collection_name, top_ks,
                                            nqs, nprobe, run_count)
                        if i % 10 == 0:
                            status, res = milvus_instance.insert(
                                insert_vectors,
                                ids=[x for x in range(len(insert_vectors))])
                            if not status.OK():
                                logger.error(status)
                            # status = milvus_instance.drop_index()
                            # if not status.OK():
                            #     logger.error(status)
                            # index_type = random.choice(["flat", "ivf_flat", "ivf_sq8"])
                            milvus_instance.create_index(index_type, 16384)
                            result = milvus.describe_index()
                            logger.info(result)
                            # milvus_instance.create_index("ivf_sq8", 16384)
                    utils.remove_container(container)

        else:
            logger.warning("Run type: %s not supported" % run_type)
Esempio n. 11
0
    def run(self, run_type, collection):
        logger.debug(run_type)
        logger.debug(collection)
        collection_name = collection["collection_name"] if "collection_name" in collection else None
        milvus_instance = MilvusClient(collection_name=collection_name, host=self.host, port=self.port)
        logger.info(milvus_instance.show_collections())
        # TODO:
        # self.env_value = milvus_instance.get_server_config()
        # ugly implemention
        # self.env_value = utils.convert_nested(self.env_value)
        # self.env_value.pop("logs")
        # self.env_value.pop("network")
        # logger.info(self.env_value)

        if run_type in ["insert_performance", "insert_flush_performance"]:
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            vector_type = self.get_vector_type(data_type)
            other_fields = collection["other_fields"] if "other_fields" in collection else None
            milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                index_field_name = utils.get_default_field_name(vector_type)
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())
            if build_index is True:
                logger.debug("Start build index for last file")
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)

        elif run_type == "delete_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            auto_flush = collection["auto_flush"] if "auto_flush" in collection else True
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.error("Table: %s not found" % collection_name)
                return
            length = milvus_instance.count() 
            ids = [i for i in range(length)] 
            loops = int(length / ni_per)
            if auto_flush is False:
                milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL)
            for i in range(loops):
                delete_ids = ids[i*ni_per: i*ni_per+ni_per]
                logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1]))
                milvus_instance.delete(delete_ids)
                logger.debug("Table row counts: %d" % milvus_instance.count())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())

        elif run_type == "build_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            index_type = collection["index_type"]
            index_param = collection["index_param"]
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            # drop index
            logger.debug("Drop index")
            milvus_instance.drop_index(index_field_name)
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_time = time.time()
            milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            end_time = time.time()
            logger.debug("Table row counts: %d" % milvus_instance.count())
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug("Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1)))

        elif run_type == "search_performance":
            (data_type, collection_size,  dimension, metric_type) = parser.collection_parser(collection_name)
            run_count = collection["run_count"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            filter_query = []
            filters = collection["filters"] if "filters" in collection else []
            # pdb.set_trace()
            # ranges = collection["range"] if "range" in collection else None
            # terms = collection["term"] if "term" in collection else None
            # if ranges:
            #     filter_query.append(eval(ranges))
            # if terms:
            #     filter_query.append(eval(terms))
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            # for debugging
            # time.sleep(3600)
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.info(mem_usage)
            for search_param in search_params:
                logger.info("Search param: %s" % json.dumps(search_param))
                filter_param = []
                if not filters:
                    filters.append(None)
                for filter in filters:
                    if isinstance(filter, dict) and "range" in filter:
                        filter_query.append(eval(filter["range"]))
                        filter_param.append(filter["range"])
                    if isinstance(filter, dict) and "term" in filter:
                        filter_query.append(eval(filter["term"]))
                        filter_param.append(filter["term"])
                    logger.info("filter param: %s" % json.dumps(filter_param))
                    res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count, search_param, filter_query)
                    headers = ["Nq/Top-k"]
                    headers.extend([str(top_k) for top_k in top_ks])
                    logger.info("Search param: %s" % json.dumps(search_param))
                    utils.print_table(headers, nqs, res)
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)

        elif run_type == "locust_search_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            # if build_index is True:
            #     index_type = collection["index_type"]
            #     index_param = collection["index_param"]
            # # TODO: debug
            # if milvus_instance.exists_collection():
            #     milvus_instance.drop()
            #     time.sleep(10)
            # other_fields = collection["other_fields"] if "other_fields" in collection else None
            # milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields)
            # milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            # res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            # milvus_instance.flush()
            # logger.debug("Table row counts: %d" % milvus_instance.count())
            # if build_index is True:
            #     logger.debug("Start build index for last file")
            #     milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            real_metric_type = utils.metric_type_trans(metric_type)
            ### spawn locust requests
            task = collection["task"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = utils.timestr_to_int(task["during_time"])
            task_types = task["types"]
            # """
            # task: 
            #     connection_num: 1
            #     clients_num: 100
            #     hatch_rate: 2
            #     during_time: 5m
            #     types:
            #     -
            #         type: query
            #         weight: 1
            #         params:
            #         top_k: 10
            #         nq: 1
            #         # filters:
            #         #   -
            #         #     range:
            #         #       int64:
            #         #         LT: 0
            #         #         GT: 1000000
            #         search_param:
            #             nprobe: 16
            # """
            run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time}
            for task_type in task_types:
                run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1})

            #. collect stats
            locust_stats = locust_user.locust_executor(self.host, self.port, collection_name, connection_type=connection_type, run_params=run_params)
            logger.info(locust_stats)

        elif run_type == "search_ids_stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            ids_length = collection["ids_length"]
            ids = collection["ids"]
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            g_id = int(ids.split("-")[1])
            l_id = int(ids.split("-")[0])
            g_id_length = int(ids_length.split("-")[1])
            l_id_length = int(ids_length.split("-")[0])

            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug(start_mem_usage)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                ids_num = random.randint(l_id_length, g_id_length)
                l_ids = random.randint(l_id, g_id-ids_num)
                # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)]
                ids_param = [id for id in range(l_ids, l_ids+ids_num)]
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param)))
                result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
            }
            logger.info(metrics)

        elif run_type == "search_performance_concurrents":
            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            hdf5_source_file = collection["source_file"]
            use_single_connection = collection["use_single_connection"]
            concurrents = collection["concurrents"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = self.generate_combinations(collection["search_params"])
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            dataset = utils.get_dataset(hdf5_source_file)
            for concurrent_num in concurrents:
                top_k = top_ks[0] 
                for nq in nqs:
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)
                    query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) 
                    logger.debug(search_params)
                    for search_param in search_params:
                        logger.info("Search param: %s" % json.dumps(search_param))
                        total_time = 0.0
                        if use_single_connection is True:
                            connections = [MilvusClient(collection_name=collection_name, host=self.host, port=self.port)]
                            with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                                future_results = {executor.submit(
                                    self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)}
                        else:
                            connections = [MilvusClient(collection_name=collection_name, host=self.hos, port=self.port) for i in range(concurrent_num)]
                            with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                                future_results = {executor.submit(
                                    self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)}
                        for future in concurrent.futures.as_completed(future_results):
                            total_time = total_time + future.result()
                        qps_value = total_time / concurrent_num 
                        logger.debug("QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num))
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)

        elif run_type == "ann_accuracy":
            hdf5_source_file = collection["source_file"]
            collection_name = collection["collection_name"]
            index_types = collection["index_types"]
            index_params = collection["index_params"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)
            # mapping to index param list
            index_params = self.generate_combinations(index_params)
            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            dataset = utils.get_dataset(hdf5_source_file)
            true_ids = np.array(dataset["neighbors"])
            vector_type = self.get_vector_type_from_metric(metric_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)

            # re-create collection
            if milvus_instance.exists_collection(collection_name):
                milvus_instance.drop()
                time.sleep(DELETE_INTERVAL_TIME)
            milvus_instance.create_collection(dimension, data_type=vector_type)
            insert_vectors = self.normalize(metric_type, np.array(dataset["train"]))
            if len(insert_vectors) != dataset["train"].shape[0]:
                raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % (len(insert_vectors), dataset["train"].shape[0]))
            logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors))
            # insert batch once
            # milvus_instance.insert(insert_vectors)
            loops = len(insert_vectors) // INSERT_INTERVAL + 1
            for i in range(loops):
                start = i*INSERT_INTERVAL
                end = min((i+1)*INSERT_INTERVAL, len(insert_vectors))
                if start < end:
                    tmp_vectors = insert_vectors[start:end]
                    ids = [i for i in range(start, end)]
                    if not isinstance(tmp_vectors, list):
                        entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    else:
                        entities = milvus_instance.generate_entities(tmp_vectors, ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    assert res_ids == ids
            milvus_instance.flush()
            res_count = milvus_instance.count()
            logger.info("Table: %s, row count: %d" % (collection_name, res_count))
            if res_count != len(insert_vectors):
                raise Exception("Table row count is not equal to insert vectors")
            for index_type in index_types:
                for index_param in index_params:
                    logger.debug("Building index with param: %s, metric_type: %s" % (json.dumps(index_param), metric_type))
                    milvus_instance.create_index(vec_field_name, index_type, metric_type, index_param=index_param)
                    logger.info("Start preload collection: %s" % collection_name)
                    milvus_instance.preload_collection()
                    for search_param in search_params:
                        for nq in nqs:
                            query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq]))
                            if not isinstance(query_vectors, list):
                                query_vectors = query_vectors.tolist()
                            for top_k in top_ks:
                                logger.debug("Search nq: %d, top-k: %d, search_param: %s, metric_type: %s" % (nq, top_k, json.dumps(search_param), metric_type))
                                vector_query = {"vector": {vec_field_name: {
                                    "topk": top_k,
                                    "query": query_vectors,
                                    "metric_type": real_metric_type,
                                    "params": search_param}
                                }}
                                result = milvus_instance.query(vector_query)
                                result_ids = milvus_instance.get_ids(result)
                                # pdb.set_trace()
                                acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids)
                                logger.info("Query ann_accuracy: %s" % acc_value)

        elif run_type == "accuracy":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)

            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.preload_collection()
            true_ids_all = self.get_groundtruth_ids(collection_size)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            for search_param in search_params:
                headers = ["Nq/Top-k"]
                res = []
                for nq in nqs:
                    tmp_res = []
                    for top_k in top_ks:
                        search_param_group = {
                            "nq": nq,
                            "topk": top_k,
                            "search_param": search_param,
                            "metric_type": metric_type
                        }
                        logger.info("Query params: %s" % json.dumps(search_param_group))
                        result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq, search_param=search_param)
                        mem_used = milvus_instance.get_mem_info()["memory_used"]
                        acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids)
                        logger.info("Query accuracy: %s" % acc_value)
                        tmp_res.append(acc_value)
                        logger.info("Memory usage: %s" % mem_used)
                    res.append(tmp_res)
                headers.extend([str(top_k) for top_k in top_ks])
                logger.info("Search param: %s" % json.dumps(search_param))
                utils.print_table(headers, nqs, res)

        elif run_type == "stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            during_time = collection["during_time"]
            operations = collection["operations"]
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                raise Exception("Table name: %s not existed" % collection_name)
            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_row_count = milvus_instance.count()
            logger.info(start_row_count)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
            if "insert" in operations:
                insert_xb = operations["insert"]["xb"]
            if "delete" in operations:
                delete_xb = operations["delete"]["xb"]
            if "query" in operations:
                g_top_k = int(operations["query"]["top_ks"].split("-")[1])
                l_top_k = int(operations["query"]["top_ks"].split("-")[0])
                g_nq = int(operations["query"]["nqs"].split("-")[1])
                l_nq = int(operations["query"]["nqs"].split("-")[0])
                search_params = operations["query"]["search_params"]
            i = 0
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                i = i + 1
                q = self.gen_executors(operations)
                for name in q:
                    try:
                        if name == "insert":
                            insert_ids = random.sample(list(range(collection_size)), insert_xb)
                            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
                            entities = milvus_instance.generate_entities(insert_vectors, insert_ids)
                            milvus_instance.insert(entities, ids=insert_ids)
                        elif name == "delete":
                            delete_ids = random.sample(list(range(collection_size)), delete_xb)
                            milvus_instance.delete(delete_ids)
                        elif name == "query":
                            top_k = random.randint(l_top_k, g_top_k)
                            nq = random.randint(l_nq, g_nq)
                            search_param = {}
                            for k, v in search_params.items():
                                search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                            logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                            vector_query = {"vector": {vec_field_name: {
                                "topk": top_k,
                                "query": query_vectors[:nq],
                                "metric_type": real_metric_type,
                                "params": search_param}
                            }}
                            result = milvus_instance.query(vector_query)
                        elif name in ["flush", "compact"]:
                            func = getattr(milvus_instance, name)
                            func()
                        logger.debug(milvus_instance.count())
                    except Exception as e:
                        logger.error(name)
                        logger.error(str(e))
                        raise
                logger.debug("Loop time: %d" % i)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            end_row_count = milvus_instance.count()
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
                "row_count_increments": end_row_count - start_row_count
            }
            logger.info(metrics)

        elif run_type == "loop_stability":
            # init data
            milvus_instance.clean_db()
            pull_interval = collection["pull_interval"]
            collection_num = collection["collection_num"]
            concurrent = collection["concurrent"] if "concurrent" in collection else False
            concurrent_num = collection_num
            dimension = collection["dimension"] if "dimension" in collection else 128
            insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000
            index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8']
            index_param = {"nlist": 256}
            collection_names = []
            milvus_instances_map = {}
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
            ids = [i for i in range(insert_xb)]
            # initialize and prepare
            for i in range(collection_num):
                name = utils.get_unique_name(prefix="collection_%d_" % i)
                collection_names.append(name)
                metric_type = random.choice(["l2", "ip"])
                # default float_vector
                milvus_instance = MilvusClient(collection_name=name, host=self.host)
                milvus_instance.create_collection(dimension, other_fields=None)
                index_type = random.choice(index_types)
                field_name = utils.get_default_field_name()
                milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param)
                logger.info(milvus_instance.describe_index())
                insert_vectors = utils.normalize(metric_type, insert_vectors)
                entities = milvus_instance.generate_entities(insert_vectors, ids)
                res_ids = milvus_instance.insert(entities, ids=ids)
                milvus_instance.flush()
                milvus_instances_map.update({name: milvus_instance})
                logger.info(milvus_instance.describe_index())

            # loop time unit: min -> s
            pull_interval_seconds = pull_interval * 60
            tasks = ["insert_rand", "delete_rand", "query_rand", "flush", "compact"]
            i = 1
            while True:
                logger.info("Loop time: %d" % i)
                start_time = time.time()
                while time.time() - start_time < pull_interval_seconds:
                    if concurrent:
                        threads = []
                        for name in collection_names:
                            task_name = random.choice(tasks)
                            task_run = getattr(milvus_instances_map[name], task_name)
                            t = threading.Thread(target=task_run, args=())
                            threads.append(t)
                            t.start()
                        for t in threads:
                            t.join()
                        # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                        #     future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)}
                        #     for future in concurrent.futures.as_completed(future_results):
                        #         future.result()
                    else:
                        tmp_collection_name = random.choice(collection_names)
                        task_name = random.choice(tasks)
                        logger.info(tmp_collection_name)
                        logger.info(task_name)
                        task_run = getattr(milvus_instances_map[tmp_collection_name], task_name)
                        task_run()
                # new connection
                # for name in collection_names:
                #     milvus_instance = MilvusClient(collection_name=name, host=self.host)
                #     milvus_instances_map.update({name: milvus_instance})
                i = i + 1

        elif run_type == "locust_mix_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            # drop exists collection
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            # create collection
            other_fields = collection["other_fields"] if "other_fields" in collection else None
            milvus_instance.create_collection(dimension, data_type=DataType.FLOAT_VECTOR, collection_name=collection_name, other_fields=other_fields)
            logger.info(milvus_instance.get_info())
            # insert entities
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(ni_per)]
            insert_ids = random.sample(list(range(collection_size)), ni_per)
            insert_vectors = utils.normalize(metric_type, insert_vectors)
            entities = milvus_instance.generate_entities(insert_vectors, insert_ids, collection_name)
            milvus_instance.insert(entities, ids=insert_ids)
            # flush
            milvus_instance.flush()
            logger.info(milvus_instance.get_stats())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            # create index
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                logger.debug("Start build index for last file")
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param)
                logger.debug(milvus_instance.describe_index())
            # locust
            task = collection["tasks"]
            task_file = utils.get_unique_name()
            task_file_script = task_file + '.py'
            task_file_csv = task_file + '_stats.csv'
            task_types = task["types"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = task["during_time"]
            def_strs = ""
            # define def str
            for task_type in task_types:
                type = task_type["type"]
                weight = task_type["weight"]
                if type == "flush":
                    def_str = """
    @task(%d)
    def flush(self):
        client = get_client(collection_name)
        client.flush(collection_name=collection_name)
                        """ % weight
                if type == "compact":
                    def_str = """
    @task(%d)
    def compact(self):
        client = get_client(collection_name)
        client.compact(collection_name)
                        """ % weight
                if type == "query":
                    def_str = """
    @task(%d)
    def query(self):
        client = get_client(collection_name)
        params = %s
        X = [[random.random() for i in range(dim)] for i in range(params["nq"])]
        vector_query = {"vector": {"%s": {
        "topk": params["top_k"], 
        "query": X, 
        "metric_type": "%s", 
        "params": params["search_param"]}}}
        client.query(vector_query, filter_query=params["filters"], collection_name=collection_name)
                        """ % (weight, task_type["params"], index_field_name, utils.metric_type_trans(metric_type))
                if type == "insert":
                    def_str = """
    @task(%d)
    def insert(self):
        client = get_client(collection_name)
        params = %s
        insert_ids = random.sample(list(range(100000)), params["nb"])
        insert_vectors = [[random.random() for _ in range(dim)] for _ in range(params["nb"])]
        insert_vectors = utils.normalize("l2", insert_vectors)
        entities = generate_entities(insert_vectors, insert_ids)
        client.insert(entities,ids=insert_ids, collection_name=collection_name)
                    """ % (weight, task_type["params"])
                if type == "delete":
                    def_str = """
    @task(%d)
    def delete(self):
        client = get_client(collection_name)
        ids = [random.randint(1, 1000000) for i in range(1)]
        client.delete(ids, collection_name)
                        """ % weight
                def_strs += def_str
                print(def_strs)
                # define locust code str
                code_str = """
import random
import json
from locust import User, task, between
from locust_task import MilvusTask
from client import MilvusClient
import utils

host = '%s'
port = %s
collection_name = '%s'
dim = %s
connection_type = '%s'
m = MilvusClient(host=host, port=port)


def get_client(collection_name):
    if connection_type == 'single':
        return MilvusTask(m=m)
    elif connection_type == 'multi':
        return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name)
  
        
def generate_entities(vectors, ids):
    return m.generate_entities(vectors, ids, collection_name)


class MixTask(User):
    wait_time = between(0.001, 0.002)
    %s
        """ % (self.host, self.port, collection_name, dimension, connection_type, def_strs)
            with open(task_file_script, "w+") as fd:
                fd.write(code_str)
            locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % (
                task_file_script,
                task_file,
                clients_num,
                hatch_rate,
                during_time)
            logger.info(locust_cmd)
            try:
                res = os.system(locust_cmd)
            except Exception as e:
                logger.error(str(e))
                return

            # . retrieve and collect test statistics
            metric = None
            with open(task_file_csv, newline='') as fd:
                dr = csv.DictReader(fd)
                for row in dr:
                    if row["Name"] != "Aggregated":
                        continue
                    metric = row
            logger.info(metric)

        else:
            raise Exception("Run type not defined")
        logger.debug("All test finished")