Esempio n. 1
0
 def _group_channels(url_list, order):
     """
     given a list of img urls, this will group them into the same well and
     site, per plate
     Arguments:
     -----------
     order : boolean
         sort channel numbers into numerical order
     """
     grouped_list = []
     urls = [parse.img_filename(i) for i in url_list]
     tmp_df = pd.DataFrame(list(url_list), columns=["img_url"])
     tmp_df["plate_name"] = [parse.plate_name(i) for i in url_list]
     tmp_df["plate_num"] = [parse.plate_num(i) for i in url_list]
     # get_well and get_site use the image URL rather than the full path
     tmp_df["well"] = [parse.img_well(i) for i in urls]
     tmp_df["site"] = [parse.img_site(i) for i in urls]
     grouped_df = tmp_df.groupby(
         ["plate_name", "plate_num", "well", "site"])
     if order is True:
         # order by channel
         for _, group in grouped_df:
             grouped = list(group["img_url"])
             channel_nums = [parse.img_channel(i) for i in grouped]
             # create tuple(path, channel_number) and sort by channel_number
             sort_im = sorted(zip(grouped, channel_nums),
                              key=lambda x: x[1])
             # return only the file-paths back from the list of tuples
             grouped_list.append([i[0] for i in sort_im])
     elif order is False:
         for _, group in grouped_df:
             grouped_list.append(list(group["img_url"]))
     else:
         raise ValueError("order needs to be a boolean")
     return grouped_list
Esempio n. 2
0
    def keep_channels(img_list, channels):
        """
        given a list of image paths, this will keep specified channel numbers,
        and remove all others.

        Parameters:
        -----------
        img_list : list
            list of image URLs
        channels : list of integers
            list of channel numbers to keep

        Returns:
        --------
        list of image URLs
        """
        # find if img_urls are full paths or just filenames
        if utils.is_full_path(img_list[0]):
            just_file_path = [parse.img_filename(i) for i in img_list]
        else:
            just_file_path = img_list
        channel_nums = [parse.img_channel(i) for i in just_file_path]
        # make sure we zip the original img_list, *not* just_file_path
        ch_img_tup = zip(channel_nums, img_list)
        filtered_tup = [i for i in ch_img_tup if i[0] in channels]
        _, img_urls = zip(*filtered_tup)
        return img_urls
Esempio n. 3
0
def test_ImageDict_keep_channels():
    channels_to_keep = [1, 2, 3]
    ImgDict = image_prep.ImageDict()
    ans = ImgDict.keep_channels(IMG_URLS, channels_to_keep)
    # parse channel numbers out of ans
    img_names = [parse.img_filename(f) for f in ans]
    img_channels = [parse.img_channel(name) for name in img_names]
    for channel in img_channels:
        assert channel in channels_to_keep
Esempio n. 4
0
def test_ImageDict_remove_channels():
    channels_to_remove = [4, 5]
    ImgDict = image_prep.ImageDict()
    ans = ImgDict.remove_channels(IMG_URLS, channels_to_remove)
    # parse channel numbers out of ans
    img_names = [parse.img_filename(f) for f in ans]
    img_channels = [parse.img_channel(name) for name in img_names]
    for channel in img_channels:
        assert channel not in channels_to_remove
Esempio n. 5
0
def _well_site_table(img_list):
    """return pandas dataframe with metadata columns"""
    final_files = [_parse.img_filename(i) for i in img_list]
    df_img = _pd.DataFrame({
        "img_paths":
        img_list,
        "Metadata_well": [_parse.img_well(i) for i in final_files],
        "Metadata_site": [_parse.img_site(i) for i in final_files]
    })
    return df_img
Esempio n. 6
0
    def get_wells(img_list, wells_to_get, plate=None):
        """
        given a list of image paths, this will return the images matching
        the well or wells given in well

        Parameters:
        -----------
        img_list : list
            list of image URLs
        well : string or list of strings
            which well(s) to select
        plate: string or list of strings (default = None)
            get wells per specified plate(s)
        """
        # parse wells from metadata
        if plate is None:
            # ignore plate labels, get all matching wells
            wells = [parse.img_well(path) for path in img_list]
            combined = zip(img_list, wells)
            if isinstance(wells_to_get, list):
                wanted_images = []
                for i in wells_to_get:
                    for path, parsed_well in combined:
                        if i == parsed_well:
                            wanted_images.append(path)
            elif isinstance(wells_to_get, str):
                wanted_images = []
                for path, parsed_well in combined:
                    if wells_to_get == parsed_well:
                        wanted_images.append(path)
            return wanted_images
        else:
            # get wells per specified plate(s)
            wanted_images = []
            if isinstance(wells_to_get, str):
                wells_to_get = [wells_to_get]
            if isinstance(plate, str):
                plate = [plate]
            urls = [parse.img_filename(i) for i in img_list]
            tmp_df = pd.DataFrame(list(img_list), columns=["img_url"])
            tmp_df["plate_name"] = [parse.plate_name(i) for i in img_list]
            tmp_df["well"] = [parse.img_well(i) for i in urls]
            tmp_df["site"] = [parse.img_site(i) for i in urls]
            grouping_cols = ["plate_name"]
            grouped_df = tmp_df.groupby(grouping_cols)
            for name, group in grouped_df:
                if name in plate:
                    # get only wells that match well
                    tmp_urls = group[group.well.isin(
                        wells_to_get)].img_url.tolist()
                    wanted_images.extend(tmp_urls)
            return wanted_images
Esempio n. 7
0
def create_long_loaddata(img_list):
    """
    create a dataframe of image paths with metadata columns
    """
    just_filenames = [_parse.img_filename(i) for i in img_list]
    df_img = _pd.DataFrame({
        "URL":
        just_filenames,
        "path": [_parse.path(i) for i in img_list],
        "Metadata_platename": [_parse.plate_name(i) for i in img_list],
        "Metadata_well": [_parse.img_well(i) for i in just_filenames],
        "Metadata_site": [_parse.img_site(i) for i in just_filenames],
        "Metadata_channel": [_parse.img_channel(i) for i in just_filenames],
        "Metadata_platenum": [_parse.plate_num(i) for i in img_list]
    })
    return df_img
Esempio n. 8
0
def test_img_channel():
    filename = parse.img_filename(EXAMPLE_PATH)
    new_filename = parse.img_filename(NEW_EXAMPLE_PATH)
    assert parse.img_channel(filename) == 1
    assert parse.img_channel(new_filename) == 1
Esempio n. 9
0
def test_img_site():
    filename = parse.img_filename(EXAMPLE_PATH)
    new_filename = parse.img_filename(NEW_EXAMPLE_PATH)
    assert parse.img_site(filename) == 1
    assert parse.img_site(new_filename) == 1
Esempio n. 10
0
def test_img_well():
    filename = parse.img_filename(EXAMPLE_PATH)
    new_filename = parse.img_filename(NEW_EXAMPLE_PATH)
    assert parse.img_well(filename) == "B02"
    assert parse.img_well(new_filename) == "B02"
Esempio n. 11
0
def test_img_filename():
    expected = "val screen_B02_s1_w1_thumb62D4A363-7C7E-40D0-8A9E-55EC6681574D.tif"
    assert parse.img_filename(EXAMPLE_PATH) == expected
    assert parse.img_filename(NEW_EXAMPLE_PATH) == expected