def test_nonsmooth(self):

        import numpy as np

        import parsimony.utils.consts as consts
        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions.losses as losses
        import parsimony.functions.penalties as penalties
        import parsimony.functions.nesterov as nesterov
        import parsimony.utils.start_vectors as start_vectors
        import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv

        start_vector = start_vectors.RandomStartVector(normalise=True)

        np.random.seed(42)

        n, p = 75, 100

        penalty_start = 0

        alpha = 0.9
        Sigma = alpha * np.eye(p, p) \
              + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        beta = start_vector.get_vector(p)
        beta[np.abs(beta) < 0.1] = 0.0

        l = 0.618
        k = 0.0
        g = 0.0

        A = np.eye(p)
        A = [A, A, A]
        snr = 100.0
        X, y, beta_star = l1_l2_tv.load(l, k, g, beta, M, e, A, snr=snr)

        function = CombinedFunction()
        function.add_function(losses.LinearRegression(X, y,
#                                                   penalty_start=penalty_start,
                                                   mean=False))
#        A = nesterov.l1.A_from_variables(p, penalty_start=penalty_start)
#        function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
#                                            penalty_start=penalty_start))
        function.add_prox(penalties.L1(l, penalty_start=penalty_start))

        fista = proximal.FISTA(eps=consts.TOLERANCE, max_iter=7800)
        beta = fista.run(function, beta)

        assert np.linalg.norm(beta - beta_star) < 5e-2
    def test_smooth_2D_l1(self):

        from parsimony.functions import CombinedFunction
        import parsimony.functions as functions
        import parsimony.functions.nesterov.grouptv as grouptv
        import parsimony.datasets.simulate.l1_l2_grouptvmu as l1_l2_grouptvmu
        import parsimony.utils.weights as weights

        np.random.seed(1337)

        n, p = 10, 18
        shape = (1, 3, 6)

        l = 0.618
        k = 0.0
        g = 1.618

        start_vector = weights.ZerosWeights()
        beta = start_vector.get_weights(p)

        rects = [[(0, 1), (0, 3)], [(1, 2), (3, 6)]]

        beta = np.reshape(beta, shape[1:])
        beta[0:2, 0:4] = 1.0
        beta[1:3, 3:6] = 2.0
        beta[1, 3] = 1.5
        beta = np.reshape(beta, (p, 1))

        alpha = 1.0
        Sigma = alpha * np.eye(p, p) \
              + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        snr = 100.0

        A = grouptv.linear_operator_from_rects(rects, shape)
        mu_min = 5e-8
        X, y, beta_star = l1_l2_grouptvmu.load(l=l, k=k, g=g, beta=beta,
                                               M=M, e=e, A=A, mu=mu_min,
                                               snr=snr)

        eps = 1e-5
        max_iter = 10000

        beta_start = start_vector.get_weights(p)

        mus = [5e-2, 5e-4, 5e-6, 5e-8]
        fista = FISTA(eps=eps, max_iter=max_iter / len(mus))

        beta_parsimony = beta_start
        for mu in mus:
            function = CombinedFunction()
            function.add_loss(functions.losses.LinearRegression(X, y,
                                                                mean=False))
            function.add_penalty(grouptv.GroupTotalVariation(l=g,
                                                             A=A, mu=mu,
                                                             penalty_start=0))

            function.add_prox(functions.penalties.L1(l=l, penalty_start=0))

            beta_parsimony = fista.run(function, beta_parsimony)

        berr = np.linalg.norm(beta_parsimony - beta_star)
#        print "berr:", berr
        assert berr < 5e-2

        f_parsimony = function.f(beta_parsimony)
        f_star = function.f(beta_star)
        ferr = abs(f_parsimony - f_star)
#        print "ferr:", ferr
        assert ferr < 5e-5
    def test_combo_overlapping_nonsmooth(self):

        import numpy as np
        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions as functions
        import parsimony.functions.nesterov.gl as gl
        import parsimony.datasets.simulate.l1_l2_gl as l1_l2_gl
        import parsimony.utils.start_vectors as start_vectors

        np.random.seed(42)

        # Note that p must be even!
        n, p = 25, 30
        groups = [range(0, 2 * p / 3), range(p / 3, p)]
        weights = [1.5, 0.5]

        A = gl.A_from_groups(p, groups=groups, weights=weights)

        l = 0.618
        k = 1.0 - l
        g = 2.718

        start_vector = start_vectors.RandomStartVector(normalise=True)
        beta = start_vector.get_vector(p)

        alpha = 1.0
        Sigma = alpha * np.eye(p, p) \
              + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        snr = 100.0

        X, y, beta_star = l1_l2_gl.load(l, k, g, beta, M, e, A, snr=snr)

        eps = 1e-8
        max_iter = 10000

        beta_start = start_vector.get_vector(p)

        mus = [5e-0, 5e-2, 5e-4, 5e-6, 5e-8]
        fista = proximal.FISTA(eps=eps, max_iter=max_iter / len(mus))

        beta_parsimony = beta_start
        for mu in mus:
#            function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
#                                                        A=A, mu=mu,
#                                                        penalty_start=0)

            function = CombinedFunction()
            function.add_function(functions.losses.LinearRegression(X, y,
                                                               mean=False))
            function.add_penalty(functions.penalties.L2Squared(l=k))
            function.add_penalty(gl.GroupLassoOverlap(l=g, A=A, mu=mu,
                                                      penalty_start=0))
            function.add_prox(functions.penalties.L1(l=l))

            beta_parsimony = fista.run(function, beta_parsimony)

        berr = np.linalg.norm(beta_parsimony - beta_star)
#        print berr
        assert berr < 5e-3

        f_parsimony = function.f(beta_parsimony)
        f_star = function.f(beta_star)
#        print abs(f_parsimony - f_star)
        assert abs(f_parsimony - f_star) < 5e-6
    def test_combo_smooth(self):

        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions as functions
        import parsimony.functions.nesterov.tv as tv
        import parsimony.datasets.simulate.l1_l2_tvmu as l1_l2_tvmu
        import parsimony.utils.start_vectors as start_vectors

        np.random.seed(42)

        px = 4
        py = 4
        pz = 4
        shape = (pz, py, px)
        n, p = 50, np.prod(shape)

        l = 0.618
        k = 1.0 - l
        g = 1.1

        start_vector = start_vectors.RandomStartVector(normalise=True)
        beta = start_vector.get_vector(p)

        alpha = 1.0
        Sigma = alpha * np.eye(p, p) \
              + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        snr = 100.0

        A = tv.linear_operator_from_shape(shape)
        mu_min = 5e-8
        X, y, beta_star = l1_l2_tvmu.load(l=l, k=k, g=g, beta=beta, M=M, e=e,
                                          A=A, mu=mu_min, snr=snr)

        eps = 1e-8
        max_iter = 5300

        beta_start = start_vector.get_vector(p)

        mus = [5e-2, 5e-4, 5e-6, 5e-8]
        fista = proximal.FISTA(eps=eps, max_iter=max_iter / len(mus))

        beta_parsimony = beta_start
        for mu in mus:
#            function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
#                                                        A=A, mu=mu,
#                                                        penalty_start=0)

            function = CombinedFunction()
            function.add_function(functions.losses.LinearRegression(X, y,
                                                               mean=False))
            function.add_penalty(tv.TotalVariation(l=g, A=A, mu=mu,
                                                   penalty_start=0))
            function.add_penalty(functions.penalties.L2Squared(l=k))
            function.add_prox(functions.penalties.L1(l=l))

            beta_parsimony = fista.run(function, beta_parsimony)

        berr = np.linalg.norm(beta_parsimony - beta_star)
#        print "berr:", berr
        assert berr < 5e-3

        f_parsimony = function.f(beta_parsimony)
        f_star = function.f(beta_star)
        ferr = abs(f_parsimony - f_star)
#        print "ferr:", ferr
        assert ferr < 5e-5
    def test_combo_overlapping_nonsmooth(self):

        import numpy as np
        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions as functions
        import parsimony.functions.nesterov.gl as gl
        import parsimony.datasets.simulate.l1_l2_gl as l1_l2_gl
        import parsimony.utils.weights as weights

        np.random.seed(42)

        # Note that p must be even!
        n, p = 25, 30
        groups = [list(range(0, 2 * int(p / 3))), list(range(int(p / 3), p))]
        group_weights = [1.5, 0.5]

        A = gl.linear_operator_from_groups(p,
                                           groups=groups,
                                           weights=group_weights)

        l = 0.618
        k = 1.0 - l
        g = 2.718

        start_vector = weights.RandomUniformWeights(normalise=True)
        beta = start_vector.get_weights(p)

        alpha = 1.0
        Sigma = alpha * np.eye(p, p) \
              + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        snr = 100.0

        X, y, beta_star = l1_l2_gl.load(l, k, g, beta, M, e, A, snr=snr)

        eps = 1e-8
        max_iter = 10000

        beta_start = start_vector.get_weights(p)

        mus = [5e-0, 5e-2, 5e-4, 5e-6, 5e-8]
        fista = proximal.FISTA(eps=eps, max_iter=max_iter / len(mus))

        beta_parsimony = beta_start
        for mu in mus:
            #            function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
            #                                                        A=A, mu=mu,
            #                                                        penalty_start=0)

            function = CombinedFunction()
            function.add_loss(
                functions.losses.LinearRegression(X, y, mean=False))
            function.add_penalty(functions.penalties.L2Squared(l=k))
            function.add_penalty(
                gl.GroupLassoOverlap(l=g, A=A, mu=mu, penalty_start=0))
            function.add_prox(functions.penalties.L1(l=l))

            beta_parsimony = fista.run(function, beta_parsimony)

        berr = np.linalg.norm(beta_parsimony - beta_star)
        #        print berr
        assert berr < 5e-3

        f_parsimony = function.f(beta_parsimony)
        f_star = function.f(beta_star)
        #        print abs(f_parsimony - f_star)
        assert abs(f_parsimony - f_star) < 5e-6
Esempio n. 6
0
    def test_nonsmooth(self):

        import numpy as np

        import parsimony.utils.consts as consts
        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions.losses as losses
        import parsimony.functions.nesterov as nesterov
        import parsimony.utils.start_vectors as start_vectors
        import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv

        start_vector = start_vectors.RandomStartVector(normalise=True)

        np.random.seed(42)

        n, p = 75, 100

        alpha = 0.9
        V = np.random.randn(p, p)
        Sigma = alpha * np.eye(p, p) \
            + (1.0 - alpha) * np.dot(V.T, V)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        beta_start = start_vector.get_vector(p)
        beta_start[np.abs(beta_start) < 0.1] = 0.0

        l = 0.618
        k = 0.0
        g = 0.0

        A = np.eye(p)
        A = [A, A, A]
        snr = 100.0
        X, y, beta_star = l1_l2_tv.load(l, k, g, beta_start, M, e, A, snr=snr)

        beta = beta_start

        for mu in [5e-2, 5e-3, 5e-4, 5e-5]:
            function = CombinedFunction()
            function.add_loss(losses.LinearRegression(X, y, mean=False))

            A = nesterov.l1.linear_operator_from_variables(p, penalty_start=0)
            function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu,
                                                penalty_start=0))

            fista = proximal.FISTA(eps=consts.TOLERANCE, max_iter=2300)
            beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
#        print "berr:", berr
#        assert berr < 5e-2
        assert_less(berr, 5e-2, "The found regression vector is not correct.")

        # Test proximal operator
        beta = beta_start
        function = CombinedFunction()
        function.add_loss(losses.LinearRegression(X, y, mean=False))
        A = nesterov.l1.linear_operator_from_variables(p, penalty_start=0)
#        function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
#                                            penalty_start=penalty_start))
        function.add_prox(nesterov.l1.L1(l, A=A, mu=5e-5, penalty_start=0))

        fista = proximal.FISTA(eps=consts.TOLERANCE, max_iter=2000)
        beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
#        print "berr:", berr
#        assert berr < 5e-0
        assert_less(berr, 5e-0, "The found regression vector is not correct.")
Esempio n. 7
0
    def test_smoothed_l1tv(self):

        import numpy as np

        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions as functions
        import parsimony.functions.penalties as penalties
        import parsimony.functions.nesterov.tv as tv
        import parsimony.functions.nesterov.l1tv as l1tv
        import parsimony.utils.start_vectors as start_vectors
        import parsimony.datasets.simulate as simulate

        np.random.seed(42)

        px = 10
        py = 1
        pz = 1
        shape = (pz, py, px)
        n, p = 5, np.prod(shape)

        l = 0.618
        k = 0.01
        g = 1.1

        start_vector = start_vectors.RandomStartVector(normalise=True)
        beta = start_vector.get_vector(p)

        alpha = 1.0
        Sigma = alpha * np.eye(p, p) \
            + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        snr = 100.0

        mu = 5e-3

        A = tv.linear_operator_from_shape(shape)
#        X, y, beta_star = l1_l2_tvmu.load(l=l, k=k, g=g, beta=beta, M=M, e=e,
#                                        A=A, mu=mu, snr=snr)

        funs = [simulate.grad.L1(l),
                simulate.grad.L2Squared(k),
                simulate.grad.TotalVariation(g, A)]
        lr = simulate.LinearRegressionData(funs, M, e, snr=snr,
                                           intercept=False)

        X, y, beta_star = lr.load(beta)

        eps = 1e-8
        max_iter = 810

        alg = proximal.FISTA(eps=eps, max_iter=max_iter)

        function = CombinedFunction()
        function.add_loss(functions.losses.LinearRegression(X, y, mean=False))
        function.add_penalty(penalties.L2Squared(l=k))
        A = l1tv.linear_operator_from_shape(shape, p)
        function.add_prox(l1tv.L1TV(l, g, A=A, mu=mu, penalty_start=0))
#        A = tv.linear_operator_from_shape(shape)
#        function.add_penalty(tv.TotalVariation(l=g, A=A, mu=mu,
#                                               penalty_start=0))
#        function.add_prox(penalties.L1(l=l))

        beta_start = start_vector.get_vector(p)
        beta = alg.run(function, beta_start)

        berr = np.linalg.norm(beta - beta_star)
#        print "berr:", berr
#        assert berr < 5e-1
        assert_less(berr, 5e-1, "The found regression vector is not correct.")

        f_parsimony = function.f(beta)
        f_star = function.f(beta_star)
        ferr = abs(f_parsimony - f_star)
#        print "ferr:", ferr
#        assert ferr < 5e-3
        assert_less(ferr, 5e-3, "The found regression vector is not correct.")
Esempio n. 8
0
    def test_nonsmooth(self):

        import numpy as np

        import parsimony.utils.consts as consts
        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions.losses as losses
        import parsimony.functions.penalties as penalties
        import parsimony.functions.nesterov as nesterov
        import parsimony.utils.start_vectors as start_vectors
        import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv

        start_vector = start_vectors.RandomStartVector(normalise=True)

        np.random.seed(42)

        n, p = 75, 100

        alpha = 0.9
        Sigma = alpha * np.eye(p, p) \
              + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        beta_start = start_vector.get_vector(p)
        beta_start[np.abs(beta_start) < 0.1] = 0.0

        l = 0.618
        k = 0.0
        g = 0.0

        A = np.eye(p)
        A = [A, A, A]
        snr = 100.0
        X, y, beta_star = l1_l2_tv.load(l, k, g, beta_start, M, e, A, snr=snr)

        beta = beta_start

        for mu in [5e-2, 5e-3, 5e-4, 5e-5]:
            function = CombinedFunction()
            function.add_function(losses.LinearRegression(X, y, mean=False))

            A = nesterov.l1.linear_operator_from_variables(p, penalty_start=0)
            function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu,
                                                penalty_start=0))

            fista = proximal.FISTA(eps=consts.TOLERANCE, max_iter=910)
            beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
        #        print "berr:", berr
        assert berr < 5e-2

        # Test proximal operator
        beta = beta_start
        function = CombinedFunction()
        function.add_function(losses.LinearRegression(X, y, mean=False))
        A = nesterov.l1.linear_operator_from_variables(p, penalty_start=0)
        #        function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
        #                                            penalty_start=penalty_start))
        function.add_prox(nesterov.l1.L1(l, A=A, mu=5e-5, penalty_start=0))

        fista = proximal.FISTA(eps=consts.TOLERANCE, max_iter=800)
        beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
        #        print "berr:", berr
        assert berr < 5e-0
Esempio n. 9
0
    def test_smoothed_l1tv(self):

        import numpy as np

        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions as functions
        import parsimony.functions.penalties as penalties
        import parsimony.functions.nesterov.tv as tv
        import parsimony.functions.nesterov.l1tv as l1tv
        import parsimony.datasets.simulate.l1_l2_tvmu as l1_l2_tvmu
        import parsimony.utils.start_vectors as start_vectors
        import parsimony.datasets.simulate as simulate

        np.random.seed(42)

        px = 10
        py = 1
        pz = 1
        shape = (pz, py, px)
        n, p = 5, np.prod(shape)

        l = 0.618
        k = 0.01
        g = 1.1

        start_vector = start_vectors.RandomStartVector(normalise=True)
        beta = start_vector.get_vector(p)

        alpha = 1.0
        Sigma = alpha * np.eye(p, p) \
              + (1.0 - alpha) * np.random.randn(p, p)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        snr = 100.0

        mu = 5e-3

        A = tv.linear_operator_from_shape(shape)
        #        X, y, beta_star = l1_l2_tvmu.load(l=l, k=k, g=g, beta=beta, M=M, e=e,
        #                                        A=A, mu=mu, snr=snr)

        funs = [
            simulate.grad.L1(l),
            simulate.grad.L2Squared(k),
            simulate.grad.TotalVariation(g, A)
        ]
        lr = simulate.LinearRegressionData(funs,
                                           M,
                                           e,
                                           snr=snr,
                                           intercept=False)

        X, y, beta_star = lr.load(beta)

        eps = 1e-8
        max_iter = 810

        alg = proximal.FISTA(eps=eps, max_iter=max_iter)

        function = CombinedFunction()
        function.add_function(
            functions.losses.LinearRegression(X, y, mean=False))
        function.add_penalty(penalties.L2Squared(l=k))
        A = l1tv.linear_operator_from_shape(shape, p)
        function.add_prox(l1tv.L1TV(l, g, A=A, mu=mu, penalty_start=0))
        #        A = tv.linear_operator_from_shape(shape)
        #        function.add_penalty(tv.TotalVariation(l=g, A=A, mu=mu,
        #                                               penalty_start=0))
        #        function.add_prox(penalties.L1(l=l))

        beta_start = start_vector.get_vector(p)
        beta = alg.run(function, beta_start)

        berr = np.linalg.norm(beta - beta_star)
        #        print "berr:", berr
        assert berr < 5e-1

        f_parsimony = function.f(beta)
        f_star = function.f(beta_star)
        ferr = abs(f_parsimony - f_star)
        #        print "ferr:", ferr
        assert ferr < 5e-3
    def test_smoothed(self):

        import numpy as np
        import scipy.sparse

        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions.losses as losses
        import parsimony.functions.nesterov as nesterov
        import parsimony.utils.weights as weights
        import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv

        start_vector = weights.RandomUniformWeights(normalise=True)

        np.random.seed(42)

        n, p = 75, 100

        penalty_start = 0

        alpha = 0.9
        V = np.random.randn(p, p)
        Sigma = alpha * np.eye(p, p) \
            + (1.0 - alpha) * np.dot(V.T, V)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        beta = start_vector.get_weights(p)
        beta[np.abs(beta) < 0.1] = 0.0

        l = 0.618
        k = 0.0
        g = 0.0

        mu_min = 0.001  # consts.TOLERANCE

        A = scipy.sparse.eye(p)
        # A = np.eye(p)
        A = [A, A, A]
        snr = 100.0
        X, y, beta_star = l1_l2_tv.load(l, k, g, beta, M, e, A, snr=snr)

        function = CombinedFunction()
        function.add_loss(losses.LinearRegression(X, y, mean=False))
        A = nesterov.l1.linear_operator_from_variables(p,
                                                       penalty_start=penalty_start)
        function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
                                            penalty_start=penalty_start))
#        function.add_prox(penalties.L1(l, penalty_start=penalty_start))

        fista = proximal.FISTA(eps=mu_min, max_iter=23500)
        beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
#        print "berr:", berr
#        assert berr < 5
        assert_less(berr, 5.0, "The found regression vector is not correct.")

        # Test proximal operator
        function = CombinedFunction()
        function.add_loss(losses.LinearRegression(X, y, mean=False))
        A = nesterov.l1.linear_operator_from_variables(p,
                                                       penalty_start=penalty_start)
        function.add_prox(nesterov.l1.L1(l, A=A, mu=mu_min,
                                         penalty_start=penalty_start))

        fista = proximal.FISTA(eps=mu_min, max_iter=20000)
        beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
#        print "berr:", berr
#        assert berr < 0.1
        assert_less(berr, 0.1, "The found regression vector is not correct.")
Esempio n. 11
0
    def test_smoothed(self):

        import numpy as np

        from parsimony.functions import CombinedFunction
        import parsimony.algorithms.proximal as proximal
        import parsimony.functions.losses as losses
        import parsimony.functions.nesterov as nesterov
        import parsimony.utils.start_vectors as start_vectors
        import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv

        start_vector = start_vectors.RandomStartVector(normalise=True)

        np.random.seed(42)

        n, p = 75, 100

        penalty_start = 0

        alpha = 0.9
        V = np.random.randn(p, p)
        Sigma = alpha * np.eye(p, p) \
            + (1.0 - alpha) * np.dot(V.T, V)
        mean = np.zeros(p)
        M = np.random.multivariate_normal(mean, Sigma, n)
        e = np.random.randn(n, 1)

        beta = start_vector.get_vector(p)
        beta[np.abs(beta) < 0.1] = 0.0

        l = 0.618
        k = 0.0
        g = 0.0

        mu_min = 0.001  # consts.TOLERANCE

        A = np.eye(p)
        A = [A, A, A]
        snr = 100.0
        X, y, beta_star = l1_l2_tv.load(l, k, g, beta, M, e, A, snr=snr)

        function = CombinedFunction()
        function.add_loss(losses.LinearRegression(X, y, mean=False))
        A = nesterov.l1.linear_operator_from_variables(
            p, penalty_start=penalty_start)
        function.add_penalty(
            nesterov.l1.L1(l, A=A, mu=mu_min, penalty_start=penalty_start))
        #        function.add_prox(penalties.L1(l, penalty_start=penalty_start))

        fista = proximal.FISTA(eps=mu_min, max_iter=23500)
        beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
        #        print "berr:", berr
        #        assert berr < 5
        assert_less(berr, 5.0, "The found regression vector is not correct.")

        # Test proximal operator
        function = CombinedFunction()
        function.add_loss(losses.LinearRegression(X, y, mean=False))
        A = nesterov.l1.linear_operator_from_variables(
            p, penalty_start=penalty_start)
        function.add_prox(
            nesterov.l1.L1(l, A=A, mu=mu_min, penalty_start=penalty_start))

        fista = proximal.FISTA(eps=mu_min, max_iter=20000)
        beta = fista.run(function, beta)

        berr = np.linalg.norm(beta - beta_star)
        #        print "berr:", berr
        #        assert berr < 0.1
        assert_less(berr, 0.1, "The found regression vector is not correct.")