Esempio n. 1
0
def show_all_particles(this, faustId, nParticles, s):
    """
    @params: this, a dpmp object
    @params: faustId, ID of the faust scan, only used for the filename of the picture
    @params: nParticles, how many particles to show
    @params: step, only used for the filename of the picture
    """
    ms = [
        Mesh(v=this.scanMesh.v,
             f=this.scanMesh.f).set_vertex_colors('firebrick')
    ]
    for i in range(0, nParticles):
        for part in this.body.partSet:
            P = particles.particle_to_points(this, this.b[part]['x'][:, i],
                                             part)
            ms.append(
                Mesh(v=P, f=this.body.partFaces[part]).set_vertex_colors(
                    this.body.colors[part]))

    mv = MeshViewer()
    #mv.set_background_color(np.array([1.0, 1.0, 1.0]))
    mv.set_static_meshes(ms)
    time.sleep(4)
    mv.save_snapshot('particles_' + faustId + '_' + str(s) + '.png',
                     blocking=True)
Esempio n. 2
0
def show_all_particles(this, faustId, nParticles, s):
    """
    @params: this, a dpmp object
    @params: faustId, ID of the faust scan, only used for the filename of the picture
    @params: nParticles, how many particles to show
    @params: step, only used for the filename of the picture
    """
    ms = [Mesh(v=this.scanMesh.v, f=this.scanMesh.f).set_vertex_colors('firebrick')]
    for i in range(0, nParticles):
        for part in this.body.partSet:
            P = particles.particle_to_points(this, this.b[part]['x'][:,i], part)
            ms.append(Mesh(v=P, f=this.body.partFaces[part]).set_vertex_colors(this.body.colors[part]))

    mv = MeshViewer()
    #mv.set_background_color(np.array([1.0, 1.0, 1.0]))
    mv.set_static_meshes(ms)
    time.sleep(4)
    mv.save_snapshot('particles_'+faustId+'_'+str(s)+'.png', blocking=True)
Esempio n. 3
0
def move_with_LM(this, i, x):
    """
    Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm
    (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon)
    """

    proposedParticle = x
    xk = x.copy()
    r, t = particles.get_pose_params(this.particleIdx[i], xk)
    z = particles.get_pose_def_params(this.particleIdx[i], xk)
    q = np.concatenate([r, t, z])
    qprev = q
    k = 1
    eprev = np.inf
    eprev2 = np.inf
    finito = False
    I = np.eye(len(q))
    Lambda = 0.1 
    B  = this.body.posePCA[i]['B']
    nB_p = len(z)
    B = B[:,0:nB_p]
    nP = B.shape[0]/3
    Jz = [None]*nB_p

    D0 = np.zeros((nP, 3, nB_p))
    while (k<this.LMsteps) and not finito:
        xk[this.particleIdx[i]['rIdx']] = q[0:3]
        xk[this.particleIdx[i]['OIdx']] = q[3:6]
        xk[this.particleIdx[i]['zPoseIdx']] = q[6:]
        P = particles.particle_to_points(this, xk, i)
        P = P[0::this.resolStep,:]
        r = q[0:3]
        R, Jr = cv2.Rodrigues(r)

        out = this.kdtree.query(P)
        M = this.kdpoints[out[1],:]

        # Residuals
        e = P - M
        ex = e[:,0]
        ey = e[:,1]
        ez = e[:,2]
        Px = P[:,0]
        Py = P[:,1]
        Pz = P[:,2]

        # Jacobian
        J4 = 2*ex
        J5 = 2*ey
        J6 = 2*ez
        J1 = J4*(Jr[0,0]*Px + Jr[0,1]*Py + Jr[0,2]*Pz) + J5*(Jr[0,3]*Px + Jr[0,4]*Py + Jr[0,5]*Pz) + J6*(Jr[0,6]*Px + Jr[0,7]*Py + Jr[0,8]*Pz)
        J2 = J4*(Jr[1,0]*Px + Jr[1,1]*Py + Jr[1,2]*Pz) + J5*(Jr[1,3]*Px + Jr[1,4]*Py + Jr[1,5]*Pz) + J6*(Jr[1,6]*Px + Jr[1,7]*Py + Jr[1,8]*Pz)
        J3 = J4*(Jr[2,0]*Px + Jr[2,1]*Py + Jr[2,2]*Pz) + J5*(Jr[2,3]*Px + Jr[2,4]*Py + Jr[2,5]*Pz) + J6*(Jr[2,6]*Px + Jr[2,7]*Py + Jr[2,8]*Pz)

        # Partial derivatives of the residuals with respect to the PCA coefficients
        A = B*z
        D0[:,0,:] = A[0::3,:]
        D0[:,1,:] = A[1::3,:]
        D0[:,2,:] = A[2::3,:]

        D = D0[0::this.resolStep,:,:]
    
        for l in xrange(nB_p): 
            D[:,:,l] = np.squeeze(D[:,:,l])*np.matrix(R)
            Jz[l] = J4*D[:,0,l]+J5*D[:,1,l]+J6*D[:,2,l];

        J = np.vstack([J1, J2, J3, J4, J5, J6, Jz])
        e = np.sum(e**2, axis=1)
        J = np.matrix(J)
        dq = - (J*J.T+Lambda*I).I*J*np.matrix(e).T
        q = np.array((q+dq.flatten()))[0]
        e = np.mean(e)
        if e > eprev:
            Lambda = Lambda*10
            q = qprev.copy()
        else:
            Lambda = Lambda/10
            eprev2 = eprev
            eprev = e
            qprev = q.copy()
        k = k+1
        finito = abs(eprev - eprev2) < 1e-6

    proposedParticle = particles.set_pose_params(this.particleIdx[i], proposedParticle, q[0:3], q[3:6])

    return proposedParticle
Esempio n. 4
0
def move_with_LM_only_pose(this, i, x):
    """
    Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm
    (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon)
    """

    proposedParticle = x
    xk = x.copy()
    r, t = particles.get_pose_params(this.particleIdx[i], xk)
    q = np.concatenate([r, t])
    qprev = q
    k = 1
    eprev = np.inf
    eprev2 = np.inf
    finito = False
    I = np.eye(len(q))
    Lambda = 0.1 

    while (k<this.LMsteps) and not finito:
        xk[this.particleIdx[i]['rIdx']] = q[0:3]
        xk[this.particleIdx[i]['OIdx']] = q[3:6]
        P = particles.particle_to_points(this, xk, i)
        P = P[0::this.resolStep,:]
        r = q[0:3]
        R, Jr = cv2.Rodrigues(r)

        out = this.kdtree.query(P)
        M = this.kdpoints[out[1],:]

        # Residuals
        e = P - M
        ex = e[:,0]
        ey = e[:,1]
        ez = e[:,2]
        Px = P[:,0]
        Py = P[:,1]
        Pz = P[:,2]

        # Jacobian
        J1 = 2*ex*(Jr[0,0]*Px + Jr[0,1]*Py + Jr[0,2]*Pz) + 2*ey*(Jr[0,3]*Px + Jr[0,4]*Py + Jr[0,5]*Pz) + 2*ez*(Jr[0,6]*Px + Jr[0,7]*Py + Jr[0,8]*Pz)
        J2 = 2*ex*(Jr[1,0]*Px + Jr[1,1]*Py + Jr[1,2]*Pz) + 2*ey*(Jr[1,3]*Px + Jr[1,4]*Py + Jr[1,5]*Pz) + 2*ez*(Jr[1,6]*Px + Jr[1,7]*Py + Jr[1,8]*Pz)
        J3 = 2*ex*(Jr[2,0]*Px + Jr[2,1]*Py + Jr[2,2]*Pz) + 2*ey*(Jr[2,3]*Px + Jr[2,4]*Py + Jr[2,5]*Pz) + 2*ez*(Jr[2,6]*Px + Jr[2,7]*Py + Jr[2,8]*Pz)

        J4 = 2*ex
        J5 = 2*ey
        J6 = 2*ez
        J = np.vstack([J1, J2, J3, J4, J5, J6])
        e = np.sum(e**2, axis=1)
        J = np.matrix(J)
        dq = - (J*J.T+Lambda*I).I*J*np.matrix(e).T
        q = np.array((q+dq.flatten()))[0]
        e = np.mean(e)
        if e > eprev:
            Lambda = Lambda*10
            q = qprev.copy()
        else:
            Lambda = Lambda/10
            eprev2 = eprev
            eprev = e
            qprev = q.copy()
        k = k+1
        finito = abs(eprev - eprev2) < 1e-6
    proposedParticle = particles.set_pose_params(this.particleIdx[i], proposedParticle, q[0:3], q[3:6])

    return proposedParticle
Esempio n. 5
0
def sample_from_nbr(this, i, x, p_i):
    """
    Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model.
    """
     
    #pa = this.body.parent[i]
    #ch = this.body.child[i]
 
    r_min = this.body.rmin
    r_max = this.body.rmax

    ks = np.where(this.A[:,i] >=0)[0]

    nNbrs = len(ks)
    assert nNbrs > 0

    num_x = x.shape[1] 
    x_per_nbr = np.max([1, int(num_x / nNbrs)])
    
    A = xrange(x_per_nbr,num_x+1,x_per_nbr)
    try:
        I_nbr = np.min(np.where(p_i<=np.array(A))[0])
    except:
        I_nbr = 0
    k = ks[I_nbr]

    # Select the neighbor particle at random
    num_x = this.b[k]['x'].shape[1]
    I_k = np.random.randint(0,num_x,1)[0]
    x_k = this.b[k]['x'][:,I_k]

    a = k
    b = i
    proposedParticle = np.zeros(this.nodeDim[b])

    za = particles.get_pose_def_params(this.particleIdx[a], x_k)
    na = len(za)
    mu = this.body.poseDefModelA2B[a][b]['mu']
    C = this.body.poseDefModelA2B[a][b]['C']

    # Indexes of the conditioning variables
    if npr.rand()>0.5 or k != this.body.parent[b]: 
        cInd = xrange(0,na)
        X = za
        movedType = MT_NBR_Z_PARENT_COND
    else:
        l = np.prod(mu.shape)
        cInd = np.concatenate((xrange(0,na), xrange(l-3,l)))
        if k == this.body.parent[b]:
            alpha = npr.rand(3)
            r_rel = r_min[b,:] + alpha * (r_max[b,:] - r_min[b,:])
            X = np.concatenate((za, r_rel))
            movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND

    nb = this.nB[b] 
    # Indexes of the resulting variables
    rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a]+nb)

    mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C, np.expand_dims(X, axis=1))
    proposedParticle = particles.set_pose_def_params(this.particleIdx[b], proposedParticle, mu_ab)

    # For the shape parameters, we propagate the same shape
    zs = particles.get_shape_params(this.particleIdx[a], x_k)
    proposedParticle = particles.set_shape_params(this.particleIdx[b], proposedParticle, zs)

    # Get the neighbor points in world frame
    Paw = particles.particle_to_points(this, x_k, a)

    # Get the points of the proposed particle
    Pb = ba.get_part_mesh(this.body, b, mu_ab, zs)

    # Compute the alignment
    R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None)	

    # Add some noise to the spring
    if this.springSigma != 0:
        T = npr.normal(T, this.springSigma)

    r, _ = cv2.Rodrigues(R)
    proposedParticle = particles.set_pose_params(this.particleIdx[b], proposedParticle, r, T)

    return proposedParticle, movedType
Esempio n. 6
0
def move_with_LM(this, i, x):
    """
    Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm
    (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon)
    """

    proposedParticle = x
    xk = x.copy()
    r, t = particles.get_pose_params(this.particleIdx[i], xk)
    z = particles.get_pose_def_params(this.particleIdx[i], xk)
    q = np.concatenate([r, t, z])
    qprev = q
    k = 1
    eprev = np.inf
    eprev2 = np.inf
    finito = False
    I = np.eye(len(q))
    Lambda = 0.1
    B = this.body.posePCA[i]['B']
    nB_p = len(z)
    B = B[:, 0:nB_p]
    nP = B.shape[0] / 3
    Jz = [None] * nB_p

    D0 = np.zeros((nP, 3, nB_p))
    while (k < this.LMsteps) and not finito:
        xk[this.particleIdx[i]['rIdx']] = q[0:3]
        xk[this.particleIdx[i]['OIdx']] = q[3:6]
        xk[this.particleIdx[i]['zPoseIdx']] = q[6:]
        P = particles.particle_to_points(this, xk, i)
        P = P[0::this.resolStep, :]
        r = q[0:3]
        R, Jr = cv2.Rodrigues(r)

        out = this.kdtree.query(P)
        M = this.kdpoints[out[1], :]

        # Residuals
        e = P - M
        ex = e[:, 0]
        ey = e[:, 1]
        ez = e[:, 2]
        Px = P[:, 0]
        Py = P[:, 1]
        Pz = P[:, 2]

        # Jacobian
        J4 = 2 * ex
        J5 = 2 * ey
        J6 = 2 * ez
        J1 = J4 * (Jr[0, 0] * Px + Jr[0, 1] * Py + Jr[0, 2] * Pz) + J5 * (
            Jr[0, 3] * Px + Jr[0, 4] * Py + Jr[0, 5] * Pz) + J6 * (
                Jr[0, 6] * Px + Jr[0, 7] * Py + Jr[0, 8] * Pz)
        J2 = J4 * (Jr[1, 0] * Px + Jr[1, 1] * Py + Jr[1, 2] * Pz) + J5 * (
            Jr[1, 3] * Px + Jr[1, 4] * Py + Jr[1, 5] * Pz) + J6 * (
                Jr[1, 6] * Px + Jr[1, 7] * Py + Jr[1, 8] * Pz)
        J3 = J4 * (Jr[2, 0] * Px + Jr[2, 1] * Py + Jr[2, 2] * Pz) + J5 * (
            Jr[2, 3] * Px + Jr[2, 4] * Py + Jr[2, 5] * Pz) + J6 * (
                Jr[2, 6] * Px + Jr[2, 7] * Py + Jr[2, 8] * Pz)

        # Partial derivatives of the residuals with respect to the PCA coefficients
        A = B * z
        D0[:, 0, :] = A[0::3, :]
        D0[:, 1, :] = A[1::3, :]
        D0[:, 2, :] = A[2::3, :]

        D = D0[0::this.resolStep, :, :]

        for l in xrange(nB_p):
            D[:, :, l] = np.squeeze(D[:, :, l]) * np.matrix(R)
            Jz[l] = J4 * D[:, 0, l] + J5 * D[:, 1, l] + J6 * D[:, 2, l]

        J = np.vstack([J1, J2, J3, J4, J5, J6, Jz])
        e = np.sum(e**2, axis=1)
        J = np.matrix(J)
        dq = -(J * J.T + Lambda * I).I * J * np.matrix(e).T
        q = np.array((q + dq.flatten()))[0]
        e = np.mean(e)
        if e > eprev:
            Lambda = Lambda * 10
            q = qprev.copy()
        else:
            Lambda = Lambda / 10
            eprev2 = eprev
            eprev = e
            qprev = q.copy()
        k = k + 1
        finito = abs(eprev - eprev2) < 1e-6

    proposedParticle = particles.set_pose_params(this.particleIdx[i],
                                                 proposedParticle, q[0:3],
                                                 q[3:6])

    return proposedParticle
Esempio n. 7
0
def move_with_LM_only_pose(this, i, x):
    """
    Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm
    (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon)
    """

    proposedParticle = x
    xk = x.copy()
    r, t = particles.get_pose_params(this.particleIdx[i], xk)
    q = np.concatenate([r, t])
    qprev = q
    k = 1
    eprev = np.inf
    eprev2 = np.inf
    finito = False
    I = np.eye(len(q))
    Lambda = 0.1

    while (k < this.LMsteps) and not finito:
        xk[this.particleIdx[i]['rIdx']] = q[0:3]
        xk[this.particleIdx[i]['OIdx']] = q[3:6]
        P = particles.particle_to_points(this, xk, i)
        P = P[0::this.resolStep, :]
        r = q[0:3]
        R, Jr = cv2.Rodrigues(r)

        out = this.kdtree.query(P)
        M = this.kdpoints[out[1], :]

        # Residuals
        e = P - M
        ex = e[:, 0]
        ey = e[:, 1]
        ez = e[:, 2]
        Px = P[:, 0]
        Py = P[:, 1]
        Pz = P[:, 2]

        # Jacobian
        J1 = 2 * ex * (
            Jr[0, 0] * Px + Jr[0, 1] * Py + Jr[0, 2] * Pz) + 2 * ey * (
                Jr[0, 3] * Px + Jr[0, 4] * Py + Jr[0, 5] * Pz) + 2 * ez * (
                    Jr[0, 6] * Px + Jr[0, 7] * Py + Jr[0, 8] * Pz)
        J2 = 2 * ex * (
            Jr[1, 0] * Px + Jr[1, 1] * Py + Jr[1, 2] * Pz) + 2 * ey * (
                Jr[1, 3] * Px + Jr[1, 4] * Py + Jr[1, 5] * Pz) + 2 * ez * (
                    Jr[1, 6] * Px + Jr[1, 7] * Py + Jr[1, 8] * Pz)
        J3 = 2 * ex * (
            Jr[2, 0] * Px + Jr[2, 1] * Py + Jr[2, 2] * Pz) + 2 * ey * (
                Jr[2, 3] * Px + Jr[2, 4] * Py + Jr[2, 5] * Pz) + 2 * ez * (
                    Jr[2, 6] * Px + Jr[2, 7] * Py + Jr[2, 8] * Pz)

        J4 = 2 * ex
        J5 = 2 * ey
        J6 = 2 * ez
        J = np.vstack([J1, J2, J3, J4, J5, J6])
        e = np.sum(e**2, axis=1)
        J = np.matrix(J)
        dq = -(J * J.T + Lambda * I).I * J * np.matrix(e).T
        q = np.array((q + dq.flatten()))[0]
        e = np.mean(e)
        if e > eprev:
            Lambda = Lambda * 10
            q = qprev.copy()
        else:
            Lambda = Lambda / 10
            eprev2 = eprev
            eprev = e
            qprev = q.copy()
        k = k + 1
        finito = abs(eprev - eprev2) < 1e-6
    proposedParticle = particles.set_pose_params(this.particleIdx[i],
                                                 proposedParticle, q[0:3],
                                                 q[3:6])

    return proposedParticle
Esempio n. 8
0
def sample_from_nbr(this, i, x, p_i):
    """
    Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model.
    """

    #pa = this.body.parent[i]
    #ch = this.body.child[i]

    r_min = this.body.rmin
    r_max = this.body.rmax

    ks = np.where(this.A[:, i] >= 0)[0]

    nNbrs = len(ks)
    assert nNbrs > 0

    num_x = x.shape[1]
    x_per_nbr = np.max([1, int(num_x / nNbrs)])

    A = xrange(x_per_nbr, num_x + 1, x_per_nbr)
    try:
        I_nbr = np.min(np.where(p_i <= np.array(A))[0])
    except:
        I_nbr = 0
    k = ks[I_nbr]

    # Select the neighbor particle at random
    num_x = this.b[k]['x'].shape[1]
    I_k = np.random.randint(0, num_x, 1)[0]
    x_k = this.b[k]['x'][:, I_k]

    a = k
    b = i
    proposedParticle = np.zeros(this.nodeDim[b])

    za = particles.get_pose_def_params(this.particleIdx[a], x_k)
    na = len(za)
    mu = this.body.poseDefModelA2B[a][b]['mu']
    C = this.body.poseDefModelA2B[a][b]['C']

    # Indexes of the conditioning variables
    if npr.rand() > 0.5 or k != this.body.parent[b]:
        cInd = xrange(0, na)
        X = za
        movedType = MT_NBR_Z_PARENT_COND
    else:
        l = np.prod(mu.shape)
        cInd = np.concatenate((xrange(0, na), xrange(l - 3, l)))
        if k == this.body.parent[b]:
            alpha = npr.rand(3)
            r_rel = r_min[b, :] + alpha * (r_max[b, :] - r_min[b, :])
            X = np.concatenate((za, r_rel))
            movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND

    nb = this.nB[b]
    # Indexes of the resulting variables
    rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a] + nb)

    mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C,
                                                  np.expand_dims(X, axis=1))
    proposedParticle = particles.set_pose_def_params(this.particleIdx[b],
                                                     proposedParticle, mu_ab)

    # For the shape parameters, we propagate the same shape
    zs = particles.get_shape_params(this.particleIdx[a], x_k)
    proposedParticle = particles.set_shape_params(this.particleIdx[b],
                                                  proposedParticle, zs)

    # Get the neighbor points in world frame
    Paw = particles.particle_to_points(this, x_k, a)

    # Get the points of the proposed particle
    Pb = ba.get_part_mesh(this.body, b, mu_ab, zs)

    # Compute the alignment
    R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None)

    # Add some noise to the spring
    if this.springSigma != 0:
        T = npr.normal(T, this.springSigma)

    r, _ = cv2.Rodrigues(R)
    proposedParticle = particles.set_pose_params(this.particleIdx[b],
                                                 proposedParticle, r, T)

    return proposedParticle, movedType