def show_all_particles(this, faustId, nParticles, s): """ @params: this, a dpmp object @params: faustId, ID of the faust scan, only used for the filename of the picture @params: nParticles, how many particles to show @params: step, only used for the filename of the picture """ ms = [ Mesh(v=this.scanMesh.v, f=this.scanMesh.f).set_vertex_colors('firebrick') ] for i in range(0, nParticles): for part in this.body.partSet: P = particles.particle_to_points(this, this.b[part]['x'][:, i], part) ms.append( Mesh(v=P, f=this.body.partFaces[part]).set_vertex_colors( this.body.colors[part])) mv = MeshViewer() #mv.set_background_color(np.array([1.0, 1.0, 1.0])) mv.set_static_meshes(ms) time.sleep(4) mv.save_snapshot('particles_' + faustId + '_' + str(s) + '.png', blocking=True)
def show_all_particles(this, faustId, nParticles, s): """ @params: this, a dpmp object @params: faustId, ID of the faust scan, only used for the filename of the picture @params: nParticles, how many particles to show @params: step, only used for the filename of the picture """ ms = [Mesh(v=this.scanMesh.v, f=this.scanMesh.f).set_vertex_colors('firebrick')] for i in range(0, nParticles): for part in this.body.partSet: P = particles.particle_to_points(this, this.b[part]['x'][:,i], part) ms.append(Mesh(v=P, f=this.body.partFaces[part]).set_vertex_colors(this.body.colors[part])) mv = MeshViewer() #mv.set_background_color(np.array([1.0, 1.0, 1.0])) mv.set_static_meshes(ms) time.sleep(4) mv.save_snapshot('particles_'+faustId+'_'+str(s)+'.png', blocking=True)
def move_with_LM(this, i, x): """ Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon) """ proposedParticle = x xk = x.copy() r, t = particles.get_pose_params(this.particleIdx[i], xk) z = particles.get_pose_def_params(this.particleIdx[i], xk) q = np.concatenate([r, t, z]) qprev = q k = 1 eprev = np.inf eprev2 = np.inf finito = False I = np.eye(len(q)) Lambda = 0.1 B = this.body.posePCA[i]['B'] nB_p = len(z) B = B[:,0:nB_p] nP = B.shape[0]/3 Jz = [None]*nB_p D0 = np.zeros((nP, 3, nB_p)) while (k<this.LMsteps) and not finito: xk[this.particleIdx[i]['rIdx']] = q[0:3] xk[this.particleIdx[i]['OIdx']] = q[3:6] xk[this.particleIdx[i]['zPoseIdx']] = q[6:] P = particles.particle_to_points(this, xk, i) P = P[0::this.resolStep,:] r = q[0:3] R, Jr = cv2.Rodrigues(r) out = this.kdtree.query(P) M = this.kdpoints[out[1],:] # Residuals e = P - M ex = e[:,0] ey = e[:,1] ez = e[:,2] Px = P[:,0] Py = P[:,1] Pz = P[:,2] # Jacobian J4 = 2*ex J5 = 2*ey J6 = 2*ez J1 = J4*(Jr[0,0]*Px + Jr[0,1]*Py + Jr[0,2]*Pz) + J5*(Jr[0,3]*Px + Jr[0,4]*Py + Jr[0,5]*Pz) + J6*(Jr[0,6]*Px + Jr[0,7]*Py + Jr[0,8]*Pz) J2 = J4*(Jr[1,0]*Px + Jr[1,1]*Py + Jr[1,2]*Pz) + J5*(Jr[1,3]*Px + Jr[1,4]*Py + Jr[1,5]*Pz) + J6*(Jr[1,6]*Px + Jr[1,7]*Py + Jr[1,8]*Pz) J3 = J4*(Jr[2,0]*Px + Jr[2,1]*Py + Jr[2,2]*Pz) + J5*(Jr[2,3]*Px + Jr[2,4]*Py + Jr[2,5]*Pz) + J6*(Jr[2,6]*Px + Jr[2,7]*Py + Jr[2,8]*Pz) # Partial derivatives of the residuals with respect to the PCA coefficients A = B*z D0[:,0,:] = A[0::3,:] D0[:,1,:] = A[1::3,:] D0[:,2,:] = A[2::3,:] D = D0[0::this.resolStep,:,:] for l in xrange(nB_p): D[:,:,l] = np.squeeze(D[:,:,l])*np.matrix(R) Jz[l] = J4*D[:,0,l]+J5*D[:,1,l]+J6*D[:,2,l]; J = np.vstack([J1, J2, J3, J4, J5, J6, Jz]) e = np.sum(e**2, axis=1) J = np.matrix(J) dq = - (J*J.T+Lambda*I).I*J*np.matrix(e).T q = np.array((q+dq.flatten()))[0] e = np.mean(e) if e > eprev: Lambda = Lambda*10 q = qprev.copy() else: Lambda = Lambda/10 eprev2 = eprev eprev = e qprev = q.copy() k = k+1 finito = abs(eprev - eprev2) < 1e-6 proposedParticle = particles.set_pose_params(this.particleIdx[i], proposedParticle, q[0:3], q[3:6]) return proposedParticle
def move_with_LM_only_pose(this, i, x): """ Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon) """ proposedParticle = x xk = x.copy() r, t = particles.get_pose_params(this.particleIdx[i], xk) q = np.concatenate([r, t]) qprev = q k = 1 eprev = np.inf eprev2 = np.inf finito = False I = np.eye(len(q)) Lambda = 0.1 while (k<this.LMsteps) and not finito: xk[this.particleIdx[i]['rIdx']] = q[0:3] xk[this.particleIdx[i]['OIdx']] = q[3:6] P = particles.particle_to_points(this, xk, i) P = P[0::this.resolStep,:] r = q[0:3] R, Jr = cv2.Rodrigues(r) out = this.kdtree.query(P) M = this.kdpoints[out[1],:] # Residuals e = P - M ex = e[:,0] ey = e[:,1] ez = e[:,2] Px = P[:,0] Py = P[:,1] Pz = P[:,2] # Jacobian J1 = 2*ex*(Jr[0,0]*Px + Jr[0,1]*Py + Jr[0,2]*Pz) + 2*ey*(Jr[0,3]*Px + Jr[0,4]*Py + Jr[0,5]*Pz) + 2*ez*(Jr[0,6]*Px + Jr[0,7]*Py + Jr[0,8]*Pz) J2 = 2*ex*(Jr[1,0]*Px + Jr[1,1]*Py + Jr[1,2]*Pz) + 2*ey*(Jr[1,3]*Px + Jr[1,4]*Py + Jr[1,5]*Pz) + 2*ez*(Jr[1,6]*Px + Jr[1,7]*Py + Jr[1,8]*Pz) J3 = 2*ex*(Jr[2,0]*Px + Jr[2,1]*Py + Jr[2,2]*Pz) + 2*ey*(Jr[2,3]*Px + Jr[2,4]*Py + Jr[2,5]*Pz) + 2*ez*(Jr[2,6]*Px + Jr[2,7]*Py + Jr[2,8]*Pz) J4 = 2*ex J5 = 2*ey J6 = 2*ez J = np.vstack([J1, J2, J3, J4, J5, J6]) e = np.sum(e**2, axis=1) J = np.matrix(J) dq = - (J*J.T+Lambda*I).I*J*np.matrix(e).T q = np.array((q+dq.flatten()))[0] e = np.mean(e) if e > eprev: Lambda = Lambda*10 q = qprev.copy() else: Lambda = Lambda/10 eprev2 = eprev eprev = e qprev = q.copy() k = k+1 finito = abs(eprev - eprev2) < 1e-6 proposedParticle = particles.set_pose_params(this.particleIdx[i], proposedParticle, q[0:3], q[3:6]) return proposedParticle
def sample_from_nbr(this, i, x, p_i): """ Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model. """ #pa = this.body.parent[i] #ch = this.body.child[i] r_min = this.body.rmin r_max = this.body.rmax ks = np.where(this.A[:,i] >=0)[0] nNbrs = len(ks) assert nNbrs > 0 num_x = x.shape[1] x_per_nbr = np.max([1, int(num_x / nNbrs)]) A = xrange(x_per_nbr,num_x+1,x_per_nbr) try: I_nbr = np.min(np.where(p_i<=np.array(A))[0]) except: I_nbr = 0 k = ks[I_nbr] # Select the neighbor particle at random num_x = this.b[k]['x'].shape[1] I_k = np.random.randint(0,num_x,1)[0] x_k = this.b[k]['x'][:,I_k] a = k b = i proposedParticle = np.zeros(this.nodeDim[b]) za = particles.get_pose_def_params(this.particleIdx[a], x_k) na = len(za) mu = this.body.poseDefModelA2B[a][b]['mu'] C = this.body.poseDefModelA2B[a][b]['C'] # Indexes of the conditioning variables if npr.rand()>0.5 or k != this.body.parent[b]: cInd = xrange(0,na) X = za movedType = MT_NBR_Z_PARENT_COND else: l = np.prod(mu.shape) cInd = np.concatenate((xrange(0,na), xrange(l-3,l))) if k == this.body.parent[b]: alpha = npr.rand(3) r_rel = r_min[b,:] + alpha * (r_max[b,:] - r_min[b,:]) X = np.concatenate((za, r_rel)) movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND nb = this.nB[b] # Indexes of the resulting variables rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a]+nb) mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C, np.expand_dims(X, axis=1)) proposedParticle = particles.set_pose_def_params(this.particleIdx[b], proposedParticle, mu_ab) # For the shape parameters, we propagate the same shape zs = particles.get_shape_params(this.particleIdx[a], x_k) proposedParticle = particles.set_shape_params(this.particleIdx[b], proposedParticle, zs) # Get the neighbor points in world frame Paw = particles.particle_to_points(this, x_k, a) # Get the points of the proposed particle Pb = ba.get_part_mesh(this.body, b, mu_ab, zs) # Compute the alignment R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None) # Add some noise to the spring if this.springSigma != 0: T = npr.normal(T, this.springSigma) r, _ = cv2.Rodrigues(R) proposedParticle = particles.set_pose_params(this.particleIdx[b], proposedParticle, r, T) return proposedParticle, movedType
def move_with_LM(this, i, x): """ Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon) """ proposedParticle = x xk = x.copy() r, t = particles.get_pose_params(this.particleIdx[i], xk) z = particles.get_pose_def_params(this.particleIdx[i], xk) q = np.concatenate([r, t, z]) qprev = q k = 1 eprev = np.inf eprev2 = np.inf finito = False I = np.eye(len(q)) Lambda = 0.1 B = this.body.posePCA[i]['B'] nB_p = len(z) B = B[:, 0:nB_p] nP = B.shape[0] / 3 Jz = [None] * nB_p D0 = np.zeros((nP, 3, nB_p)) while (k < this.LMsteps) and not finito: xk[this.particleIdx[i]['rIdx']] = q[0:3] xk[this.particleIdx[i]['OIdx']] = q[3:6] xk[this.particleIdx[i]['zPoseIdx']] = q[6:] P = particles.particle_to_points(this, xk, i) P = P[0::this.resolStep, :] r = q[0:3] R, Jr = cv2.Rodrigues(r) out = this.kdtree.query(P) M = this.kdpoints[out[1], :] # Residuals e = P - M ex = e[:, 0] ey = e[:, 1] ez = e[:, 2] Px = P[:, 0] Py = P[:, 1] Pz = P[:, 2] # Jacobian J4 = 2 * ex J5 = 2 * ey J6 = 2 * ez J1 = J4 * (Jr[0, 0] * Px + Jr[0, 1] * Py + Jr[0, 2] * Pz) + J5 * ( Jr[0, 3] * Px + Jr[0, 4] * Py + Jr[0, 5] * Pz) + J6 * ( Jr[0, 6] * Px + Jr[0, 7] * Py + Jr[0, 8] * Pz) J2 = J4 * (Jr[1, 0] * Px + Jr[1, 1] * Py + Jr[1, 2] * Pz) + J5 * ( Jr[1, 3] * Px + Jr[1, 4] * Py + Jr[1, 5] * Pz) + J6 * ( Jr[1, 6] * Px + Jr[1, 7] * Py + Jr[1, 8] * Pz) J3 = J4 * (Jr[2, 0] * Px + Jr[2, 1] * Py + Jr[2, 2] * Pz) + J5 * ( Jr[2, 3] * Px + Jr[2, 4] * Py + Jr[2, 5] * Pz) + J6 * ( Jr[2, 6] * Px + Jr[2, 7] * Py + Jr[2, 8] * Pz) # Partial derivatives of the residuals with respect to the PCA coefficients A = B * z D0[:, 0, :] = A[0::3, :] D0[:, 1, :] = A[1::3, :] D0[:, 2, :] = A[2::3, :] D = D0[0::this.resolStep, :, :] for l in xrange(nB_p): D[:, :, l] = np.squeeze(D[:, :, l]) * np.matrix(R) Jz[l] = J4 * D[:, 0, l] + J5 * D[:, 1, l] + J6 * D[:, 2, l] J = np.vstack([J1, J2, J3, J4, J5, J6, Jz]) e = np.sum(e**2, axis=1) J = np.matrix(J) dq = -(J * J.T + Lambda * I).I * J * np.matrix(e).T q = np.array((q + dq.flatten()))[0] e = np.mean(e) if e > eprev: Lambda = Lambda * 10 q = qprev.copy() else: Lambda = Lambda / 10 eprev2 = eprev eprev = e qprev = q.copy() k = k + 1 finito = abs(eprev - eprev2) < 1e-6 proposedParticle = particles.set_pose_params(this.particleIdx[i], proposedParticle, q[0:3], q[3:6]) return proposedParticle
def move_with_LM_only_pose(this, i, x): """ Modify the particle x by running few iterations of the Levenberg-Marquardt algorithm (see Robust Registration of 2D and 3D Point Sets, A. Fitzgibbon) """ proposedParticle = x xk = x.copy() r, t = particles.get_pose_params(this.particleIdx[i], xk) q = np.concatenate([r, t]) qprev = q k = 1 eprev = np.inf eprev2 = np.inf finito = False I = np.eye(len(q)) Lambda = 0.1 while (k < this.LMsteps) and not finito: xk[this.particleIdx[i]['rIdx']] = q[0:3] xk[this.particleIdx[i]['OIdx']] = q[3:6] P = particles.particle_to_points(this, xk, i) P = P[0::this.resolStep, :] r = q[0:3] R, Jr = cv2.Rodrigues(r) out = this.kdtree.query(P) M = this.kdpoints[out[1], :] # Residuals e = P - M ex = e[:, 0] ey = e[:, 1] ez = e[:, 2] Px = P[:, 0] Py = P[:, 1] Pz = P[:, 2] # Jacobian J1 = 2 * ex * ( Jr[0, 0] * Px + Jr[0, 1] * Py + Jr[0, 2] * Pz) + 2 * ey * ( Jr[0, 3] * Px + Jr[0, 4] * Py + Jr[0, 5] * Pz) + 2 * ez * ( Jr[0, 6] * Px + Jr[0, 7] * Py + Jr[0, 8] * Pz) J2 = 2 * ex * ( Jr[1, 0] * Px + Jr[1, 1] * Py + Jr[1, 2] * Pz) + 2 * ey * ( Jr[1, 3] * Px + Jr[1, 4] * Py + Jr[1, 5] * Pz) + 2 * ez * ( Jr[1, 6] * Px + Jr[1, 7] * Py + Jr[1, 8] * Pz) J3 = 2 * ex * ( Jr[2, 0] * Px + Jr[2, 1] * Py + Jr[2, 2] * Pz) + 2 * ey * ( Jr[2, 3] * Px + Jr[2, 4] * Py + Jr[2, 5] * Pz) + 2 * ez * ( Jr[2, 6] * Px + Jr[2, 7] * Py + Jr[2, 8] * Pz) J4 = 2 * ex J5 = 2 * ey J6 = 2 * ez J = np.vstack([J1, J2, J3, J4, J5, J6]) e = np.sum(e**2, axis=1) J = np.matrix(J) dq = -(J * J.T + Lambda * I).I * J * np.matrix(e).T q = np.array((q + dq.flatten()))[0] e = np.mean(e) if e > eprev: Lambda = Lambda * 10 q = qprev.copy() else: Lambda = Lambda / 10 eprev2 = eprev eprev = e qprev = q.copy() k = k + 1 finito = abs(eprev - eprev2) < 1e-6 proposedParticle = particles.set_pose_params(this.particleIdx[i], proposedParticle, q[0:3], q[3:6]) return proposedParticle
def sample_from_nbr(this, i, x, p_i): """ Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model. """ #pa = this.body.parent[i] #ch = this.body.child[i] r_min = this.body.rmin r_max = this.body.rmax ks = np.where(this.A[:, i] >= 0)[0] nNbrs = len(ks) assert nNbrs > 0 num_x = x.shape[1] x_per_nbr = np.max([1, int(num_x / nNbrs)]) A = xrange(x_per_nbr, num_x + 1, x_per_nbr) try: I_nbr = np.min(np.where(p_i <= np.array(A))[0]) except: I_nbr = 0 k = ks[I_nbr] # Select the neighbor particle at random num_x = this.b[k]['x'].shape[1] I_k = np.random.randint(0, num_x, 1)[0] x_k = this.b[k]['x'][:, I_k] a = k b = i proposedParticle = np.zeros(this.nodeDim[b]) za = particles.get_pose_def_params(this.particleIdx[a], x_k) na = len(za) mu = this.body.poseDefModelA2B[a][b]['mu'] C = this.body.poseDefModelA2B[a][b]['C'] # Indexes of the conditioning variables if npr.rand() > 0.5 or k != this.body.parent[b]: cInd = xrange(0, na) X = za movedType = MT_NBR_Z_PARENT_COND else: l = np.prod(mu.shape) cInd = np.concatenate((xrange(0, na), xrange(l - 3, l))) if k == this.body.parent[b]: alpha = npr.rand(3) r_rel = r_min[b, :] + alpha * (r_max[b, :] - r_min[b, :]) X = np.concatenate((za, r_rel)) movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND nb = this.nB[b] # Indexes of the resulting variables rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a] + nb) mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C, np.expand_dims(X, axis=1)) proposedParticle = particles.set_pose_def_params(this.particleIdx[b], proposedParticle, mu_ab) # For the shape parameters, we propagate the same shape zs = particles.get_shape_params(this.particleIdx[a], x_k) proposedParticle = particles.set_shape_params(this.particleIdx[b], proposedParticle, zs) # Get the neighbor points in world frame Paw = particles.particle_to_points(this, x_k, a) # Get the points of the proposed particle Pb = ba.get_part_mesh(this.body, b, mu_ab, zs) # Compute the alignment R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None) # Add some noise to the spring if this.springSigma != 0: T = npr.normal(T, this.springSigma) r, _ = cv2.Rodrigues(R) proposedParticle = particles.set_pose_params(this.particleIdx[b], proposedParticle, r, T) return proposedParticle, movedType