Esempio n. 1
0
def event(event):
    if event.type == pygame.QUIT:
        global running
        running = False
    # key control
    if event.type == pygame.KEYDOWN:
        if event.key == pygame.K_SPACE:  #regen map
            r.world.worldGen()
            r.world.randpoints()
            r.renderTick()
        elif event.key == pygame.K_RETURN:
            r.renderTick()
            p.findpath()
            #r.renderTick()
            r.world.worldGen()
            r.world.randpoints()
Esempio n. 2
0
    def path_possible(self, target):
        ''' checks whether a path is possible
		args: 
			nprray[2]: target - target coordinates
		return:
			True if possible, false if not
		'''

        current_pos = self.current_position()
        current_pos = (int(current_pos[0]), int(current_pos[1]))
        #obstacle_grid = args['obstacle_grid']
        obstacle_grid = self.driving_grid
        reduced_obstacle_grid = self.reduced_driving_grid

        rr, cc = ellipse(target[0],
                         target[1],
                         9,
                         9,
                         shape=self.driving_grid.shape)
        for i in range(len(rr)):
            obstacle_grid[bound(rr[i]), bound(cc[i])] = 0
            reduced_obstacle_grid[bound(rr[i]), bound(cc[i])] = 0

        rad = self.current_angle()
        robot_state = np.array([current_pos[0], current_pos[1], rad])
        robot_extent_global = np.array([[0, 0], [0, 0], [0, 0], [0, 0]])
        for i in range(len(self.extent)):
            robot_extent_global[i] = np.rint(
                (transform_local_coords(robot_state, self.extent[i])))
        robot_extent_global = np.transpose(robot_extent_global)
        rr, cc = polygon(robot_extent_global[0], robot_extent_global[1])
        for i in range(len(rr)):
            obstacle_grid[bound(rr[i]), bound(cc[i])] = 0
            reduced_obstacle_grid[bound(rr[i]), bound(cc[i])] = 0

        other_bot = convert_to_grid_coords(
            self.robot_data[(self.robot_id + 1) % 2][1:3])
        rr, cc = ellipse(int(other_bot[0]),
                         int(other_bot[1]),
                         12,
                         12,
                         shape=self.driving_grid.shape)
        for i in range(len(rr)):
            obstacle_grid[bound(rr[i]), bound(cc[i])] = 1
            reduced_obstacle_grid[bound(rr[i]), bound(cc[i])] = 1
            #obstacle_grid[rr, cc] = 0
            #reduced_obstacle_grid[rr, cc] = 0
        #print(obstacle_grid[args['target'][0], args['target'][1]])
        path_temp = findpath(current_pos, target, obstacle_grid)

        if path_temp:
            return True
        else:
            return False
Esempio n. 3
0
	def smart_path(self, obstacle_grid, target):
		current_pos = self.current_position()
		current_pos = (int(current_pos[0]), int(current_pos[1]))
		path_temp = findpath(current_pos, target, obstacle_grid)
		if path_temp:
			if len(path_temp) > 1:
				path = bspline(np.asarray(path_temp), int(np.sqrt((current_pos[0] - target[0])**2 + (current_pos[1] - target[1])**2)/2), 9)
				return path
			else:
				return np.array(path_temp)
		else:
			return np.array([None])
Esempio n. 4
0
    def smart_path(self, obstacle_grid, target):
        ''' generates the A* path to a target
		args: 
			nparray: obstacle_grid
			nparray: target - target location
		returns:
			nparray: path - returns None if there is no path
		'''

        current_pos = self.current_position()
        current_pos = (int(current_pos[0]), int(current_pos[1]))
        path_temp = findpath(current_pos, target, obstacle_grid)
        if path_temp:
            if len(path_temp) > 1:
                path = bspline(
                    np.asarray(path_temp),
                    int(
                        np.sqrt((current_pos[0] - target[0])**2 +
                                (current_pos[1] - target[1])**2) / 2), 9)
                return path
            else:
                return np.array(path_temp)
        else:
            return np.array([None])
Esempio n. 5
0
            final_grid[rr, cc] = 0

            rr, cc = rectangle((1, 65), (13, 78), shape=final_grid.shape)
            final_grid[rr, cc] = 0

            final_grid = pad_grid(final_grid, 1)

            final_grid = block_padding(blocks, final_grid)

            current_pos0 = convert_to_grid_coords(robot_data[0][1:3])
            current_pos0 = (int(current_pos0[0]), int(current_pos0[1]))
            rr, cc = ellipse(int(blocks[block_i][0]), int(blocks[block_i][1]),
                             9, 9)
            final_grid[rr, cc] = 0
            path_temp = findpath(
                current_pos0,
                (int(blocks[block_i][0]), int(blocks[block_i][1])), final_grid)

            if path_temp:
                path0 = path_temp
                #print(np.asarray(path0))
                path0 = bspline(
                    np.asarray(path_temp),
                    int(
                        np.sqrt((current_pos0[0] - blocks[block_i][0])**2 +
                                (current_pos0[1] - blocks[block_i][1])**2) /
                        2), 9)

            if path0.any():
                if len(path0) > 5:
                    set_robot_state(
Esempio n. 6
0
 def findpath(self, start, end):
     return pathfinder.findpath(self.generatepassablemap(), start, end)
Esempio n. 7
0
 def findpath(self, start, end):
     return pathfinder.findpath(self.generatepassablemap(), start, end)
Esempio n. 8
0
    def go_to_target(self, args):

        if "speed" in args:
            speed = args['speed']
        else:
            speed = 1.5

        if 'look_at' in args:
            look_at = args['look_at']
        else:
            look_at = True

        current_pos = self.current_position()
        current_pos = (int(current_pos[0]), int(current_pos[1]))
        #obstacle_grid = args['obstacle_grid']
        obstacle_grid = self.driving_grid
        reduced_obstacle_grid = self.reduced_driving_grid

        if args['block'] == True:
            rr, cc = ellipse(args['target'][0],
                             args['target'][1],
                             9,
                             9,
                             shape=self.driving_grid.shape)
            for i in range(len(rr)):
                obstacle_grid[bound(rr[i]), bound(cc[i])] = 0
                reduced_obstacle_grid[bound(rr[i]), bound(cc[i])] = 0

        if args['empty'] == True:
            rad = blue_bot.current_angle()
            robot_state = np.array([current_pos[0], current_pos[1], rad])
            robot_extent_global = np.array([[0, 0], [0, 0], [0, 0], [0, 0]])
            for i in range(len(robot_extent)):
                robot_extent_global[i] = np.rint(
                    (transform_local_coords(robot_state, robot_extent[i])))
            robot_extent_global = np.transpose(robot_extent_global)
            rr, cc = polygon(robot_extent_global[0], robot_extent_global[1])
            for i in range(len(rr)):
                obstacle_grid[bound(rr[i]), bound(cc[i])] = 0
                reduced_obstacle_grid[bound(rr[i]), bound(cc[i])] = 0
            #obstacle_grid[rr, cc] = 0
            #reduced_obstacle_grid[rr, cc] = 0
        #print(obstacle_grid[args['target'][0], args['target'][1]])
        path_temp = findpath(current_pos, args['target'], obstacle_grid)
        #print(path_temp)
        if path_temp:
            if len(path_temp) > 1:
                path = bspline(
                    np.asarray(path_temp),
                    int(
                        np.sqrt((current_pos[0] - args['target'][0])**2 +
                                (current_pos[1] - args['target'][1])**2) / 2),
                    9)
                self.current_path = path
                if np.sign(speed) * len(path) > np.sign(
                        speed) * args['early_stop']:
                    set_robot_state(
                        self.robot_id,
                        robot_motion(robot_data[self.robot_id][1:4], path[1],
                                     speed, 1), args['grip'])
                else:
                    if look_at:
                        motion = robot_motion(
                            self.robot_data[self.robot_id][1:4],
                            args['target'],
                            0,
                            1,
                            info=True)
                        set_robot_state(self.robot_id, [
                            np.sign(motion[2]) * 0.4, -np.sign(motion[2]) * 0.4
                        ], args['grip'])
                        if np.abs(motion[2]) < 0.1:
                            self.set_state('idle', grip=args['grip'])
                            self.current_path = []
                    else:
                        self.set_state('idle', grip=args['grip'])
                        self.current_path = []
            else:
                self.set_state('idle', grip=args['grip'])
                self.current_path = []
        else:
            #print(args['target'])
            obstacle_count = 0
            if len(self.current_path) > 0:
                for i in range(
                        len(self.current_path
                            ) if len(self.current_path) <= 6 else 6):
                    if obstacle_grid[int(self.current_path[i][0]),
                                     int(self.current_path[i][1])] == 1:
                        obstacle_count = obstacle_count + 1
            print(obstacle_count)

            if obstacle_count >= 3:
                print('no path possible ... reducing driving grid')

                path_temp = findpath(current_pos, args['target'],
                                     reduced_obstacle_grid)
                #print(path_temp)
                if path_temp:
                    if len(path_temp) > 1:
                        path = bspline(
                            np.asarray(path_temp),
                            int(
                                np.sqrt(
                                    (current_pos[0] - args['target'][0])**2 +
                                    (current_pos[1] - args['target'][1])**2) /
                                2), 9)
                        self.current_path = path
                        if np.sign(speed) * len(path) > np.sign(
                                speed) * args['early_stop']:
                            set_robot_state(
                                self.robot_id,
                                robot_motion(robot_data[self.robot_id][1:4],
                                             path[1], speed, 1), args['grip'])
                        else:
                            if look_at:
                                motion = robot_motion(
                                    self.robot_data[self.robot_id][1:4],
                                    args['target'],
                                    0,
                                    1,
                                    info=True)
                                set_robot_state(self.robot_id, [
                                    np.sign(motion[2]) * 0.4,
                                    -np.sign(motion[2]) * 0.4
                                ], args['grip'])
                                if np.abs(motion[2]) < 0.1:
                                    self.set_state('idle', grip=args['grip'])
                                    self.current_path = []
                            else:
                                self.set_state('idle', grip=args['grip'])
                                self.current_path = []
                    else:
                        self.set_state('idle', grip=args['grip'])
                        self.current_path = []
                else:
                    print('no reduced path possible, state set to: "blocked"')
                    self.set_state('blocked', grip=args['grip'])
                    self.current_path = []

            else:
                print('returning to path')