def download_TransformedFeature_histograms(
        featureName, NNtype, numVisible, numHidden, numFolders,
        numFilesPerFolder, batchSize, learningRate, learningRateBoostFactor,
        corruptionLevel, timeStacking, frequencyStandardisation):

    # Load weights, biases, feature offset and feature scaling
    weights, biases = get_NN_WeightsAndBiases(NNtype, featureName, batchSize,
                                              learningRate,
                                              learningRateBoostFactor,
                                              corruptionLevel, timeStacking,
                                              frequencyStandardisation,
                                              numVisible, numHidden)

    featureOffset, featureScaling = get_NN_featureOffsetAndScaling(
        featureName, numFolders, numFilesPerFolder, timeStacking, numVisible,
        frequencyStandardisation)

    # Get histogram of transformed features
    hist = transformedFeatureFrequenciesHistogram(featureName,
                                                  weights,
                                                  biases,
                                                  featureOffset,
                                                  featureScaling,
                                                  timeStacking,
                                                  numFolders,
                                                  numFilesPerFolder,
                                                  numBins=100)

    # Save histogram
    resultsPath = transferPath + 'feature histograms/'
    createPath(resultsPath)
    pickle.dump(hist, open(resultsPath + featureName +
                           '_crpt_%i_nin_%i_nhdn_%i_basz_%i_lnrt_%0.2f' \
                           % (corruptionLevel, numVisible, numHidden, batchSize, learningRate) +
                           '_transformed_features_frequency_histograms.pkl', 'wb'))
def download_Feature_histograms(
        featureNames=[
            'chroma', 'constantQspec', 'mfcc', 'logfreqspec', 'CENS_dsf2_wl41',
            'logfreqspec-dA-256v-12h-FENS_dsf2_dswl41'
        ],
        transformedFeatureNames=['logfreqspec-dA-256v-12h-FENS_dsf2_dswl41']):

    resultsPath = transferPath + 'feature histograms/'
    createPath(resultsPath)

    for featureName in featureNames:
        featureHist = featureFrequenciesHistogram(featureName, 20, 5)
        pickle.dump(
            featureHist,
            open(resultsPath + featureName + '_frequency_histograms.pkl',
                 'wb'))

    for featureName in transformedFeatureNames:
        featureHist = featureFrequenciesHistogram(featureName,
                                                  20,
                                                  5,
                                                  featureFileType='.pkl')
        pickle.dump(
            featureHist,
            open(
                resultsPath + featureName +
                '_transformed_features_frequency_histograms.pkl', 'wb'))
Esempio n. 3
0
def moveResultsFiles(subFolder):
    
    NCDdest = NCDpath + subFolder + '/'
    runHistDest = runHistoryPath + subFolder + '/'
    createPath(NCDdest)
    createPath(runHistDest)
    moveFiles(NCDpath, NCDdest, '.pkl.res')
    moveFiles(runHistoryPath, runHistDest, '.pkl')
                
    return NCDdest
def download_NN_training_results(NNtype='dA'):

    trainingPath = '%straining_results/%s/' % (NNpath, NNtype)
    resultsFolders = getFolderNames(trainingPath, orderAlphabetically=True)
    outputPath = transferPath + 'NN training results/'
    createPath(outputPath)
    for folder in resultsFolders:
        resultsPath = trainingPath + folder + '/'
        resultsFn = resultsPath + 'training_records.pkl'
        if os.path.exists(resultsFn):
            shutil.copyfile(resultsFn, outputPath + folder + '.pkl')
Esempio n. 5
0
                runDict = {'featureName': featureName,
                           'method': CRPmethod, 
                           'numFilesPerFolder': numFilesPerFolder,
                           'networkType': NNtype}
                for key in setting.keys():
                    runDict[key] = setting[key]
                runTime = str(datetime.now()).replace(':', '-')
                pickle.dump(runDict, open(runHistoryPath + runTime + '.pkl', 'wb'))
                
                # Convert NCD files into a dataframe
                dfNCDs = convertNCDfiles(dataFrameFileName = runTime)

                # Create subfolders and move results files into them
                NCDdest = NCDpath + subFolder + '/'
                runHistDest = runHistoryPath + subFolder + '/'
                createPath(NCDdest)
                createPath(runHistDest)
                moveFiles(NCDpath, NCDdest, '.pkl.res')
                moveFiles(runHistoryPath, runHistDest, '.pkl')
                
                # Get the overall MAP of the run and add to the setting
                MAPresult = getDataFrameMAPresult(dfNCDs)
                if MAPresult is not None:
                    print 'Mean Average Precision: %0.3f\n' % MAPresult
                else:
                    print 'No MAP result found!'
                setting['Mean Average Precision'] = MAPresult

            # Increment the number of runs
            numRuns += len(nextSettings)
            
Esempio n. 6
0
from create_ncds_val_test import createNCDfiles
from ncd_processing import convertNCDfiles
from getResults2 import getDataFrameMAPresult
from NNs import get_NN_NCD_params
from MAPhelpers import cleanCRPfolder, cleanNCDfolder

# Test some settings on the validation set, i.e. all the remaining files in the
# training folder. The results should be slightly better than would get on a test
# set since the pieces are the same and only the performances differ.

numProcesses = 10
settingsFileName = '/u7.swansea/s11/abpg162/project/run_settings/Run Settings Template.csv'
settingsDicts = loadRunSettingsList(settingsFileName)

# Create folder for results
createPath(NCDpath + 'validation runs')

# Initialise
processPool = Pool(numProcesses)

for settingsDict in settingsDicts:

    resultsFn = '/u7.swansea/s11/abpg162/project/results_files/validation/' + settingsDict[
        'Run Name'] + '.pkl'
    if not os.path.exists(resultsFn):

        cleanCRPfolder()
        cleanNCDfolder()
        startDateTime = datetime.now()

        # load weights etc. if this is for a neural net run
Esempio n. 7
0
NNtype = None
learningRate = 0.05
learningRateBoostFactor = 1.5
batchSize = 40
numVisibles = [12]
numHiddens = [12]
corruptionLevels = [0]
timeStacking = 1
freqStd = False

stopRunningAt = datetime(2015, 9, 23, 23)

###############################################################################

# Create folder for results
createPath(NCDpath + subFolder)

# Create a dictionary of settings to optimise over
settingsDict = {
    'Dimension': CRPdimensions,
    'DownSample Factor': downSampleFactors,
    'Neighbourhood Size': CRPneighbourhoodSizes,
    'Sequence Length': sequenceLengths,
    'Time Delay': CRPtimeDelays
}

if NNtype is not None:
    settingsDict['dA Num Hidden Units'] = numHiddens
    settingsDict['dA Num Visible Units'] = numVisibles
    settingsDict['dA Corruption Level'] = corruptionLevels
NNtype = 'dA'
learningRate = 0.05
learningRateBoostFactor = 1.5
batchSize = 40
numVisibles = [48]
numHiddens = [12]
corruptionLevels = [0, 10, 20, 30, 40, 50, 60, 70]
timeStacking = 1
freqStd = True

stopRunningAt = datetime(2015, 9, 19, 1)

###############################################################################

# Create folder for results
createPath(NCDpath + subFolder)
createPath(runHistoryPath + subFolder)

# Create a dictionary of settings to optimise over
settingsDict = {
    'Dimension': CRPdimensions,
    'DownSample Factor': downSampleFactors,
    'Neighbourhood Size': CRPneighbourhoodSizes,
    'Sequence Length': sequenceLengths,
    'Time Delay': CRPtimeDelays,
    'FENS Window Length': FENSwindowLengths,
    'FENS Downsampling': FENSdownsamplings,
    'FENS Normalisation Threshold': FENSnormalisationThresholds,
    'FENS Quantisation Step Base': FENSquantisationStepBases,
    'FENS Quantisation Step Power': FENSquantisationStepPowers,
    'FENS Quantisation Weight 1': FENSquantisationWeights1,
Esempio n. 9
0
from create_ncds_val_test import createNCDfiles
from ncd_processing import convertNCDfiles
from getResults2 import getDataFrameMAPresult
from NNs import get_NN_NCD_params
from MAPhelpers import cleanCRPfolder, cleanNCDfolder

# Test some settings on the validation set, i.e. all the remaining files in the
# training folder. The results should be slightly better than would get on a test
# set since the pieces are the same and only the performances differ.

numProcesses = 10
settingsFileName = '/u7.swansea/s11/abpg162/project/run_settings/Run Settings - Test.csv'
settingsDicts = loadRunSettingsList(settingsFileName)

# Create folder for results
createPath(NCDpath + 'test runs')

# Initialise
processPool = Pool(numProcesses)

for settingsDict in settingsDicts:

    resultsFn = '/u7.swansea/s11/abpg162/project/results_files/test/' + settingsDict[
        'Run Name'] + '.pkl'
    if not os.path.exists(resultsFn):

        cleanCRPfolder()
        cleanNCDfolder()
        startDateTime = datetime.now()

        # load weights etc. if this is for a neural net run