def test_histogram(self): images = xp.array([[[0, 1, 1, 3], [3, 1, 2, 2], [2, 0, 1, 2], [0, 1, 1, 1]], [[2, 0, 1, 2], [1, 3, 0, 1], [2, 2, 2, 3], [1, 3, 3, 1]]]) expected = xp.array([[1, 2, 0, 1, 0, 1, 2, 1, 2, 1, 1, 0, 0, 3, 1, 0], [1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 0, 1, 1, 2]]) pcanet = PCANet(None, None, None, None, None, None, n_l2_output=2, filter_shape_pooling=2, step_shape_pooling=2) assert_array_equal(pcanet.histogram(images), expected) images = xp.array([[[1, 0, 1], [2, 0, 0], [1, 3, 3]], [[2, 0, 0], [1, 1, 1], [3, 0, 1]]]) expected = xp.array([[2, 1, 1, 0, 3, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 2], [1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 3, 0, 0]]) pcanet = PCANet(None, None, None, None, None, None, n_l2_output=2, filter_shape_pooling=2, step_shape_pooling=1) assert_array_equal(pcanet.histogram(images), expected)
def test_histogram(self): image = np.array([[0, 1, 1, 3], [3, 1, 2, 2], [2, 0, 1, 2], [2, 0, 1, 2], [1, 3, 0, 1], [2, 2, 2, 3]]) expected = np.array([2, 2, 1, 1, 0, 2, 3, 1, 1, 1, 3, 1, 1, 2, 2, 1]) pcanet = PCANet(None, None, None, None, None, None, n_l2_output=2, block_shape=(3, 2)) # assume that n_l1_output = 2 assert_array_equal(pcanet.histogram(image), expected)