Esempio n. 1
0
    def __init__(s):

        #---------------------------------------------------------------------
        # Interface
        #---------------------------------------------------------------------

        s.in_val = InPort(1)
        s.in_a = InPort(16)
        s.in_b = InPort(16)
        s.in_result = InPort(16)

        s.out_val = OutPort(1)
        s.out_a = OutPort(16)
        s.out_b = OutPort(16)
        s.out_result = OutPort(16)

        #---------------------------------------------------------------------
        # Structural composition
        #---------------------------------------------------------------------

        # Right shift

        s.rshifter = m = RightLogicalShifter(16)
        s.connect_dict({
            m.in_: s.in_b,
            m.shamt: 1,
            m.out: s.out_b,
        })

        # Left shifter

        s.lshifter = m = LeftLogicalShifter(16)
        s.connect_dict({
            m.in_: s.in_a,
            m.shamt: 1,
            m.out: s.out_a,
        })

        # Adder

        s.add = m = Adder(16)
        s.connect_dict({
            m.in0: s.in_a,
            m.in1: s.in_result,
        })

        # Result mux

        s.result_mux = m = Mux(16, 2)
        s.connect_dict({
            m.sel: s.in_b[0],
            m.in_[0]: s.in_result,
            m.in_[1]: s.add.out,
            m.out: s.out_result
        })

        # Connect the valid bits

        s.connect(s.in_val, s.out_val)
Esempio n. 2
0
  def __init__ ( s ):
   
    s.req_msg_data   = InPort (1)
    s.resp_msg_data  = OutPort(32)
    s.sel            = InPort (1)
    s.en             = InPort (1)

    # Input Mux    
    s.reg_out = Wire(32)

    s.mux = m = Mux( 32, 2)
    s.connect_dict({
      m.sel     : s.sel,
      m.in_[0]  : 0,
      m.in_[1]  : s.reg_out
    })
    

    # Output Register
    s.adder_out = Wire(32)    

    s.reg = m = RegEn( 32 )
    s.connect_dict({
      m.en      : s.en,
      m.in_     : s.adder_out,
      m.out     : s.reg_out
    })

    # Zero Extender   
    s.zext = m = ZeroExtender( 1, 32 )
    s.connect_dict({
      m.in_     : s.req_msg_data
    })

    # Adder    
    s.add = m = Adder( 32 )
    s.connect_dict({
      m.in0     : s.zext.out,
      m.in1     : s.mux.out,
      m.cin     : 0,
      m.out     : s.adder_out
    })

    # Connect to output port
    s.connect( s.reg_out, s.resp_msg_data )
    def __init__(s):

        # Interface
        s.req_msg_data = InPort(DATA_NBITS)
        s.resp_msg_data = OutPort(DISTANCE_NBITS)
        s.req_msg_type = InPort(TYPE_NBITS)
        s.resp_msg_type = OutPort(TYPE_NBITS)
        s.req_msg_digit = InPort(DIGIT_NBITS)
        s.resp_msg_digit = OutPort(DIGIT_NBITS)

        # Control signals (ctrl -> dpath)
        s.en_test = InPort(1)
        s.en_train = InPort(1)
        s.en_out = InPort(1)
        s.sel_out = InPort(1)
        s.sel = InPort(6)

        # Input Mux for Test Data
        s.in_test = Wire(DATA_NBITS)
        s.mux_in_test = m = Mux(DATA_NBITS, 2)
        s.connect_dict({
            m.sel: s.req_msg_type,
            m.in_[0]: s.in_test,
            m.in_[1]: s.req_msg_data,
            m.out: s.in_test
        })

        # Input Mux for Train Data
        s.in_train = Wire(DATA_NBITS)
        s.mux_in_train = m = Mux(DATA_NBITS, 2)
        s.connect_dict({
            m.sel: s.req_msg_type,
            m.in_[0]: s.req_msg_data,
            m.in_[1]: s.in_train,
            m.out: s.in_train
        })

        # Register for Test Data
        s.out_test = Wire(DATA_NBITS)
        s.reg_test = m = RegEn(DATA_NBITS)
        s.connect_dict({m.en: s.en_test, m.in_: s.in_test, m.out: s.out_test})

        # Register for Train Data
        s.out_train = Wire(DATA_NBITS)
        s.reg_train = m = RegEn(DATA_NBITS)
        s.connect_dict({
            m.en: s.en_train,
            m.in_: s.in_train,
            m.out: s.out_train
        })

        # 49-1 Mux for Test Data
        s.data_test = Wire(1)
        s.mux_test = m = Mux(1, 49)
        for i in range(49):
            s.connect(m.in_[i], s.out_test[i])
        s.connect(m.sel, s.sel)
        s.connect(m.out, s.data_test)

        # 49-1 Mux for Train Data
        s.data_train = Wire(1)
        s.mux_train = m = Mux(1, 49)
        for i in range(49):
            s.connect(m.in_[i], s.out_train[i])
        s.connect(m.sel, s.sel)
        s.connect(m.out, s.data_train)

        # Comparator
        s.is_not_equal = Wire(1)
        s.is_equal = Wire(1)
        s.comp = m = EqComparator(1)
        s.connect_dict({
            m.in0: s.data_test,
            m.in1: s.data_train,
            m.out: s.is_equal
        })

        @s.combinational
        def not_value():
            s.is_not_equal.value = ~s.is_equal

        # Zero Extender
        s.zext = m = ZeroExtender(1, DISTANCE_NBITS)
        s.connect_dict({m.in_: s.is_not_equal})

        # Input Mux for Adder
        s.reg_out = Wire(DISTANCE_NBITS)
        s.mux_add = m = Mux(DISTANCE_NBITS, 2)
        s.connect_dict({m.sel: s.sel_out, m.in_[0]: 0, m.in_[1]: s.reg_out})

        # Adder
        s.add = m = Adder(DISTANCE_NBITS)
        s.connect_dict({m.in0: s.zext.out, m.in1: s.mux_add.out, m.cin: 0})

        # Output Register
        s.reg = m = RegEn(DISTANCE_NBITS)
        s.connect_dict({m.en: s.en_out, m.in_: s.add.out, m.out: s.reg_out})

        # Connect to output port
        s.connect(s.reg_out, s.resp_msg_data)
        s.connect(0, s.resp_msg_type)
        s.connect(s.req_msg_digit, s.resp_msg_digit)
Esempio n. 4
0
    def __init__(s):

        #==================================================================
        # Interfaces
        #==================================================================

        s.req_msg_a = InPort(32)
        s.req_msg_b = InPort(32)
        s.resp_msg = OutPort(32)

        # Control signals

        s.a_mux_sel = InPort(A_MUX_SEL_NBITS)
        s.b_mux_sel = InPort(B_MUX_SEL_NBITS)
        s.result_mux_sel = InPort(RES_MUX_SEL_NBITS)
        s.add_mux_sel = InPort(ADD_MUX_SEL_NBITS)
        s.result_en = InPort(1)
        s.result_sign = InPort(OUT_MUX_SEL_NBITS)

        # Status signals

        s.b_lsb = OutPort(1)
        s.a_msb = OutPort(1)
        s.b_msb = OutPort(1)

        s.to_ctrl_shamt = OutPort(6)

        # shamt input to shifters, calculated by ShamtGen

        s.shamt = Wire(6)

        # Binary representation of the multiplier

        s.bit_string = Wire(32)

        #==================================================================
        # Structure
        #==================================================================

        # A Mux

        s.in_a = Wire(32)

        # Take the absolute value of the input

        @s.combinational
        def sign_handling_a():
            s.in_a.value = s.req_msg_a if ~s.req_msg_a[31] \
                           else (~s.req_msg_a) + 1

        s.l_shift_out = Wire(32)

        s.a_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.a_mux_sel,
            m.in_[A_MUX_SEL_IN],
            s.in_a,
            m.in_[A_MUX_SEL_SHIFT],
            s.l_shift_out,
        )

        # A Register

        s.a_reg = m = Reg(32)

        s.connect(m.in_, s.a_mux.out)

        # Left Shifter

        s.l_shift = m = LeftLogicalShifter(32, 6)

        s.connect_pairs(
            m.in_,
            s.a_reg.out,
            m.shamt,
            s.shamt,
            m.out,
            s.l_shift_out,
        )

        # B Mux

        s.in_b = Wire(32)

        # Take the absolute value of the input

        @s.combinational
        def sign_handling_b():
            s.in_b.value = s.req_msg_b if ~s.req_msg_b[31] \
                           else (~s.req_msg_b) + 1

        s.r_shift_out = Wire(32)

        s.b_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.b_mux_sel,
            m.in_[B_MUX_SEL_IN],
            s.in_b,
            m.in_[B_MUX_SEL_SHIFT],
            s.r_shift_out,
        )

        # B Register

        s.b_reg = m = Reg(32)

        s.connect(m.in_, s.b_mux.out)

        # Take the higher 31 bits and add 0 in the high order
        # The ShamtGen module will generate the appropriate shamt
        # according to the number of consecutive zeros in lower s.bit_string

        @s.combinational
        def bit_string_block():
            s.bit_string.value = concat(Bits(1, 0), s.b_reg.out[1:32])

        # Right Shifter

        s.r_shift = m = RightLogicalShifter(32, 6)

        s.connect_pairs(
            m.in_,
            s.b_reg.out,
            m.shamt,
            s.shamt,
            m.out,
            s.r_shift_out,
        )

        # Result Mux

        s.add_mux_out = Wire(32)

        s.result_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.result_mux_sel,
            m.in_[RES_MUX_SEL_ZERO],
            0,
            m.in_[RES_MUX_SEL_ADD],
            s.add_mux_out,
        )

        # Result Register

        s.res_reg = m = RegEn(32)

        s.connect_pairs(m.in_, s.result_mux.out, m.en, s.result_en)

        # Adder

        s.adder = m = Adder(32)

        s.connect_pairs(
            m.in0,
            s.a_reg.out,
            m.in1,
            s.res_reg.out,
            m.cin,
            0,
        )

        # Add Mux

        s.add_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.add_mux_sel,
            m.in_[ADD_MUX_SEL_ADD],
            s.adder.out,
            m.in_[ADD_MUX_SEL_RES],
            s.res_reg.out,
            m.out,
            s.add_mux_out,
        )

        # ShamtGen

        s.shamt_gen = m = ShamtGenPRTL()

        s.connect_pairs(
            m.a,
            s.bit_string,
            m.shamt,
            s.shamt,
        )

        # Forward shamt to control unit so the counter can update
        # accordingly

        @s.combinational
        def to_ctrl_shamt_block():
            s.to_ctrl_shamt.value = s.shamt

        # Output MUX
        s.res_neg = Wire(32)

        # Generate -res in case the result is negative

        @s.combinational
        def twos_compl_block():
            s.res_neg.value = (~s.res_reg.out) + 1

        s.out_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.result_sign,
            m.in_[OUT_MUX_SEL_POS],
            s.res_reg.out,
            m.in_[OUT_MUX_SEL_NEG],
            s.res_neg,
            m.out,
            s.resp_msg,
        )

        # Connect status signals

        s.connect(s.b_reg.out[0], s.b_lsb)
        s.connect(s.req_msg_a[31], s.a_msb)
        s.connect(s.req_msg_b[31], s.b_msb)
Esempio n. 5
0
    def __init__(s, num_cores=1):

        #---------------------------------------------------------------------
        # Interface
        #---------------------------------------------------------------------

        # Parameters

        s.core_id = InPort(32)

        # imem ports

        s.imemreq_msg = OutPort(MemReqMsg4B)
        s.imemresp_msg_data = InPort(32)

        # dmem ports

        s.dmemreq_msg_addr = OutPort(32)
        s.dmemreq_msg_data = OutPort(32)
        s.dmemresp_msg_data = InPort(32)

        # mngr ports

        s.mngr2proc_data = InPort(32)
        s.proc2mngr_data = OutPort(32)

        # Control signals (ctrl->dpath)

        s.reg_en_F = InPort(1)
        s.pc_sel_F = InPort(2)

        s.reg_en_D = InPort(1)
        s.op1_sel_D = InPort(1)
        s.op2_sel_D = InPort(2)
        s.csrr_sel_D = InPort(2)
        s.imm_type_D = InPort(3)
        s.imul_req_val_D = InPort(1)

        s.reg_en_X = InPort(1)
        s.alu_fn_X = InPort(4)
        s.ex_result_sel_X = InPort(2)
        s.imul_resp_rdy_X = InPort(1)

        s.reg_en_M = InPort(1)
        s.wb_result_sel_M = InPort(1)

        s.reg_en_W = InPort(1)
        s.rf_waddr_W = InPort(5)
        s.rf_wen_W = InPort(1)
        s.stats_en_wen_W = InPort(1)

        # Status signals (dpath->Ctrl)

        s.inst_D = OutPort(32)
        s.imul_req_rdy_D = OutPort(1)
        s.br_cond_eq_X = OutPort(1)
        s.br_cond_ltu_X = OutPort(1)
        s.br_cond_lt_X = OutPort(1)
        s.imul_resp_val_X = OutPort(1)

        # stats_en output

        s.stats_en = OutPort(1)

        #---------------------------------------------------------------------
        # F stage
        #---------------------------------------------------------------------

        s.pc_F = Wire(32)
        s.pc_plus4_F = Wire(32)

        # PC+4 incrementer

        s.pc_incr_F = m = Incrementer(nbits=32, increment_amount=4)
        s.connect_pairs(m.in_, s.pc_F, m.out, s.pc_plus4_F)

        # forward delaration for branch target and jal target

        s.br_target_X = Wire(32)
        s.jal_target_D = Wire(32)
        s.jalr_target_X = Wire(32)
        # PC sel mux

        s.pc_sel_mux_F = m = Mux(dtype=32, nports=4)
        s.connect_pairs(m.in_[0], s.pc_plus4_F, m.in_[1], s.br_target_X,
                        m.in_[2], s.jal_target_D, m.in_[3], s.jalr_target_X,
                        m.sel, s.pc_sel_F)

        @s.combinational
        def imem_req_F():
            s.imemreq_msg.addr.value = s.pc_sel_mux_F.out

        # PC register

        s.pc_reg_F = m = RegEnRst(dtype=32, reset_value=c_reset_vector - 4)
        s.connect_pairs(m.en, s.reg_en_F, m.in_, s.pc_sel_mux_F.out, m.out,
                        s.pc_F)

        #---------------------------------------------------------------------
        # D stage
        #---------------------------------------------------------------------

        # PC reg in D stage
        # This value is basically passed from F stage for the corresponding
        # instruction to use, e.g. branch to (PC+imm)

        s.pc_reg_D = m = RegEnRst(dtype=32)
        s.connect_pairs(
            m.en,
            s.reg_en_D,
            m.in_,
            s.pc_F,
        )

        # Instruction reg

        s.inst_D_reg = m = RegEnRst(dtype=32, reset_value=c_reset_inst)
        s.connect_pairs(
            m.en,
            s.reg_en_D,
            m.in_,
            s.imemresp_msg_data,
            m.out,
            s.inst_D  # to ctrl
        )

        # Register File
        # The rf_rdata_D wires, albeit redundant in some sense, are used to
        # remind people these data are from D stage.

        s.rf_rdata0_D = Wire(32)
        s.rf_rdata1_D = Wire(32)

        s.rf_wdata_W = Wire(32)

        s.rf = m = RegisterFile(dtype=32,
                                nregs=32,
                                rd_ports=2,
                                const_zero=True)
        s.connect_pairs(m.rd_addr[0], s.inst_D[RS1], m.rd_addr[1],
                        s.inst_D[RS2], m.rd_data[0], s.rf_rdata0_D,
                        m.rd_data[1], s.rf_rdata1_D, m.wr_en, s.rf_wen_W,
                        m.wr_addr, s.rf_waddr_W, m.wr_data, s.rf_wdata_W)

        # Immediate generator

        s.imm_gen_D = m = ImmGenPRTL()
        s.connect_pairs(m.imm_type, s.imm_type_D, m.inst, s.inst_D)

        # csrr sel mux

        s.csrr_sel_mux_D = m = Mux(dtype=32, nports=3)
        s.connect_pairs(
            m.in_[0],
            s.mngr2proc_data,
            m.in_[1],
            num_cores,
            m.in_[2],
            s.core_id,
            m.sel,
            s.csrr_sel_D,
        )

        # op1 sel mux
        s.op1_sel_mux_D = m = Mux(dtype=32, nports=2)
        s.connect_pairs(
            m.in_[0],
            s.rf_rdata0_D,
            m.in_[1],
            s.pc_reg_D.out,
            m.sel,
            s.op1_sel_D,
        )

        # op2 sel mux
        # This mux chooses among RS2, imm, and the output of the above csrr
        # sel mux. Basically we are using two muxes here for pedagogy.

        s.op2_sel_mux_D = m = Mux(dtype=32, nports=3)
        s.connect_pairs(
            m.in_[0],
            s.rf_rdata1_D,
            m.in_[1],
            s.imm_gen_D.imm,
            m.in_[2],
            s.csrr_sel_mux_D.out,
            m.sel,
            s.op2_sel_D,
        )

        # Risc-V always calcs branch/jal target by adding imm(generated above) to PC

        s.pc_plus_imm_D = m = Adder(32)
        s.connect_pairs(
            m.in0,
            s.pc_reg_D.out,
            m.in1,
            s.imm_gen_D.imm,
            m.out,
            s.jal_target_D,
        )

        #---------------------------------------------------------------------
        # X stage
        #---------------------------------------------------------------------

        # br_target_reg_X
        # Since branches are resolved in X stage, we register the target,
        # which is already calculated in D stage, to X stage.

        s.br_target_reg_X = m = RegEnRst(dtype=32, reset_value=0)
        s.connect_pairs(m.en, s.reg_en_X, m.in_, s.pc_plus_imm_D.out, m.out,
                        s.br_target_X)

        # op1 reg

        s.op1_reg_X = m = RegEnRst(dtype=32, reset_value=0)
        s.connect_pairs(
            m.en,
            s.reg_en_X,
            m.in_,
            s.op1_sel_mux_D.out,
        )

        # op2 reg

        s.op2_reg_X = m = RegEnRst(dtype=32, reset_value=0)
        s.connect_pairs(
            m.en,
            s.reg_en_X,
            m.in_,
            s.op2_sel_mux_D.out,
        )

        # dmemreq data reg

        s.dmem_write_data_reg_X = m = RegEnRst(dtype=32, reset_value=0)
        s.connect_pairs(
            m.en,
            s.reg_en_X,
            m.in_,
            s.rf_rdata1_D,
        )

        # pc reg

        s.pc_reg_X = m = RegEnRst(dtype=32, reset_value=0)
        s.connect_pairs(
            m.en,
            s.reg_en_X,
            m.in_,
            s.pc_reg_D.out,
        )

        # ALU

        s.alu_X = m = AluPRTL()
        s.connect_pairs(
            m.in0,
            s.op1_reg_X.out,
            m.in1,
            s.op2_reg_X.out,
            m.fn,
            s.alu_fn_X,
            m.ops_eq,
            s.br_cond_eq_X,
            m.ops_ltu,
            s.br_cond_ltu_X,
            m.ops_lt,
            s.br_cond_lt_X,
            m.out,
            s.jalr_target_X,
        )

        # Multiplier

        s.imul_X = m = IntMulAltRTL()
        s.connect_pairs(
            m.req.msg[0:32],
            s.op1_sel_mux_D.out,
            m.req.msg[32:64],
            s.op2_sel_mux_D.out,
            m.req.val,
            s.imul_req_val_D,
            m.req.rdy,
            s.imul_req_rdy_D,
            m.resp.val,
            s.imul_resp_val_X,
            m.resp.rdy,
            s.imul_resp_rdy_X,
        )

        # PC+4 Incrementer

        s.pc_incr_X = m = Incrementer(nbits=32, increment_amount=4)
        s.connect_pairs(
            m.in_,
            s.pc_reg_X.out,
        )

        # ex result Mux

        s.ex_result_sel_mux_X = m = Mux(dtype=32, nports=3)
        s.connect_pairs(
            m.in_[0],
            s.pc_incr_X.out,
            m.in_[1],
            s.alu_X.out,
            m.in_[2],
            s.imul_X.resp.msg,
            m.sel,
            s.ex_result_sel_X,
        )

        # dmemreq address

        s.connect(s.dmemreq_msg_addr, s.alu_X.out)
        s.connect(s.dmemreq_msg_data, s.dmem_write_data_reg_X.out)
        #---------------------------------------------------------------------
        # M stage
        #---------------------------------------------------------------------

        # Alu execution result reg

        s.ex_result_reg_M = m = RegEnRst(dtype=32, reset_value=0)
        s.connect_pairs(
            m.en,
            s.reg_en_M,
            m.in_,
            s.ex_result_sel_mux_X.out,
        )

        # Writeback result selection mux

        s.wb_result_sel_mux_M = m = Mux(dtype=32, nports=2)
        s.connect_pairs(m.in_[0], s.ex_result_reg_M.out, m.in_[1],
                        s.dmemresp_msg_data, m.sel, s.wb_result_sel_M)

        #---------------------------------------------------------------------
        # W stage
        #---------------------------------------------------------------------

        # Writeback result reg

        s.wb_result_reg_W = m = RegEnRst(dtype=32, reset_value=0)
        s.connect_pairs(
            m.en,
            s.reg_en_W,
            m.in_,
            s.wb_result_sel_mux_M.out,
        )

        s.connect(s.proc2mngr_data, s.wb_result_reg_W.out)

        s.connect(s.rf_wdata_W, s.wb_result_reg_W.out)

        s.stats_en_reg_W = m = RegEnRst(dtype=32, reset_value=0)

        # stats_en logic

        s.connect_pairs(
            m.en,
            s.stats_en_wen_W,
            m.in_,
            s.wb_result_reg_W.out,
        )

        @s.combinational
        def stats_en_logic_W():
            s.stats_en.value = any(
                s.stats_en_reg_W.out)  # reduction with bitwise OR
Esempio n. 6
0
    def __init__(s):

        #==================================================================
        # Interfaces
        #==================================================================

        s.req_msg_a = InPort(32)
        s.req_msg_b = InPort(32)
        s.resp_msg = OutPort(32)

        # Control signals

        s.a_mux_sel = InPort(A_MUX_SEL_NBITS)
        s.b_mux_sel = InPort(B_MUX_SEL_NBITS)
        s.result_mux_sel = InPort(RES_MUX_SEL_NBITS)
        s.add_mux_sel = InPort(ADD_MUX_SEL_NBITS)
        s.result_en = InPort(1)
        s.result_sign = InPort(OUT_MUX_SEL_NBITS)

        # Status signals

        s.b_lsb = OutPort(1)
        s.a_msb = OutPort(1)
        s.b_msb = OutPort(1)

        #==================================================================
        # Structure
        #==================================================================

        # A Mux

        s.in_a = Wire(32)

        # Take the abs value of the input

        @s.combinational
        def sign_handling_a():
            s.in_a.value = s.req_msg_a if ~s.req_msg_a[31] \
                           else (~s.req_msg_a) + 1

        s.l_shift_out = Wire(32)

        s.a_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.a_mux_sel,
            m.in_[A_MUX_SEL_IN],
            s.in_a,
            m.in_[A_MUX_SEL_SHIFT],
            s.l_shift_out,
        )

        # A Register

        s.a_reg = m = Reg(32)

        s.connect(m.in_, s.a_mux.out)

        # Left Shifter

        s.l_shift = m = LeftLogicalShifter(32)

        s.connect_pairs(
            m.in_,
            s.a_reg.out,
            m.shamt,
            1,
            m.out,
            s.l_shift_out,
        )

        # B Mux

        s.in_b = Wire(32)

        # Take the abs value of the input

        @s.combinational
        def sign_handling_b():
            s.in_b.value = s.req_msg_b if ~s.req_msg_b[31] \
                           else (~s.req_msg_b) + 1

        s.r_shift_out = Wire(32)

        s.b_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.b_mux_sel,
            m.in_[B_MUX_SEL_IN],
            s.in_b,
            m.in_[B_MUX_SEL_SHIFT],
            s.r_shift_out,
        )

        # B Register

        s.b_reg = m = Reg(32)

        s.connect(m.in_, s.b_mux.out)

        # Right Shifter

        s.r_shift = m = RightLogicalShifter(32)

        s.connect_pairs(
            m.in_,
            s.b_reg.out,
            m.shamt,
            1,
            m.out,
            s.r_shift_out,
        )

        # Result Mux

        s.add_mux_out = Wire(32)

        s.result_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.result_mux_sel,
            m.in_[RES_MUX_SEL_ZERO],
            0,
            m.in_[RES_MUX_SEL_ADD],
            s.add_mux_out,
        )

        # Result Register

        s.res_reg = m = RegEn(32)

        s.connect_pairs(m.in_, s.result_mux.out, m.en, s.result_en)

        # Adder

        s.adder = m = Adder(32)

        s.connect_pairs(
            m.in0,
            s.a_reg.out,
            m.in1,
            s.res_reg.out,
            m.cin,
            0,
        )

        # Add Mux

        s.add_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.add_mux_sel,
            m.in_[ADD_MUX_SEL_ADD],
            s.adder.out,
            m.in_[ADD_MUX_SEL_RES],
            s.res_reg.out,
            m.out,
            s.add_mux_out,
        )

        # Output MUX
        s.res_neg = Wire(32)

        # Generate -res in case the output is negative

        @s.combinational
        def twos_compl_block():
            s.res_neg.value = (~s.res_reg.out) + 1

        s.out_mux = m = Mux(32, 2)

        s.connect_pairs(
            m.sel,
            s.result_sign,
            m.in_[OUT_MUX_SEL_POS],
            s.res_reg.out,
            m.in_[OUT_MUX_SEL_NEG],
            s.res_neg,
            m.out,
            s.resp_msg,
        )

        # Connect status signals

        s.connect(s.b_reg.out[0], s.b_lsb)
        s.connect(s.req_msg_a[31], s.a_msb)
        s.connect(s.req_msg_b[31], s.b_msb)
    def __init__(s, k=3):

        SUM_DATA_SIZE = int(math.ceil(math.log(50 * k, 2)))

        s.req_msg_data = InPort(RE_DATA_SIZE)
        s.resp_msg_digit = OutPort(4)

        # ctrl->dpath
        s.knn_wr_data_mux_sel = InPort(1)
        s.knn_wr_addr = InPort(int(math.ceil(math.log(k * DIGIT,
                                                      2))))  # max 30
        s.knn_rd_addr = InPort(int(math.ceil(math.log(k * DIGIT,
                                                      2))))  # max 30
        s.knn_wr_en = InPort(1)

        s.vote_wr_data_mux_sel = InPort(1)
        s.vote_wr_addr = InPort(int(math.ceil(math.log(DIGIT, 2))))  # max 10
        s.vote_rd_addr = InPort(int(math.ceil(math.log(DIGIT, 2))))  # max 10
        s.vote_wr_en = InPort(1)

        s.FindMax_req_val = InPort(1)
        s.FindMax_resp_rdy = InPort(1)
        s.FindMin_req_val = InPort(1)
        s.FindMin_resp_rdy = InPort(1)

        s.msg_data_reg_en = InPort(1)
        s.msg_idx_reg_en = InPort(1)

        # dpath->ctrl
        s.FindMax_req_rdy = OutPort(1)
        s.FindMax_resp_val = OutPort(1)
        s.FindMax_resp_idx = OutPort(int(math.ceil(math.log(k, 2))))  # max 3
        s.FindMin_req_rdy = OutPort(1)
        s.FindMin_resp_val = OutPort(1)
        s.isSmaller = OutPort(1)

        # internal wires
        s.knn_rd_data = Wire(Bits(RE_DATA_SIZE))
        s.knn_wr_data = Wire(Bits(RE_DATA_SIZE))

        s.subtractor_out = Wire(Bits(SUM_DATA_SIZE))
        s.adder_out = Wire(Bits(SUM_DATA_SIZE))

        s.vote_rd_data = Wire(Bits(SUM_DATA_SIZE))
        s.vote_wr_data = Wire(Bits(SUM_DATA_SIZE))

        s.FindMax_req_data = Wire(Bits(RE_DATA_SIZE))
        s.FindMax_resp_data = Wire(Bits(RE_DATA_SIZE))
        s.FindMin_req_data = Wire(Bits(SUM_DATA_SIZE))
        s.FindMin_resp_data = Wire(Bits(SUM_DATA_SIZE))
        s.FindMin_resp_idx = Wire(Bits(int(math.ceil(math.log(DIGIT,
                                                              2)))))  # max 10

        # Req msg data Register
        s.req_msg_data_q = Wire(Bits(RE_DATA_SIZE))

        s.req_msg_data_reg = m = RegEnRst(RE_DATA_SIZE)
        s.connect_dict({
            m.en: s.msg_data_reg_en,
            m.in_: s.req_msg_data,
            m.out: s.req_msg_data_q
        })

        # knn_wr_data Mux
        s.knn_wr_data_mux = m = Mux(RE_DATA_SIZE, 2)
        s.connect_dict({
            m.sel: s.knn_wr_data_mux_sel,
            m.in_[0]: 50,
            m.in_[1]: s.req_msg_data_q,
            m.out: s.knn_wr_data
        })

        # register file knn_table
        s.knn_table = m = RegisterFile(dtype=Bits(RE_DATA_SIZE),
                                       nregs=k * DIGIT,
                                       rd_ports=1,
                                       wr_ports=1,
                                       const_zero=False)
        s.connect_dict({
            m.rd_addr[0]: s.knn_rd_addr,
            m.rd_data[0]: s.knn_rd_data,
            m.wr_addr: s.knn_wr_addr,
            m.wr_data: s.knn_wr_data,
            m.wr_en: s.knn_wr_en
        })

        # vote_wr_data Mux
        s.vote_wr_data_mux = m = Mux(SUM_DATA_SIZE, 2)
        s.connect_dict({
            m.sel: s.vote_wr_data_mux_sel,
            m.in_[0]: 50 * k,
            m.in_[1]: s.adder_out,
            m.out: s.vote_wr_data
        })

        # register file knn_vote
        s.knn_vote = m = RegisterFile(dtype=Bits(SUM_DATA_SIZE),
                                      nregs=DIGIT,
                                      rd_ports=1,
                                      wr_ports=1,
                                      const_zero=False)
        s.connect_dict({
            m.rd_addr[0]: s.vote_rd_addr,
            m.rd_data[0]: s.vote_rd_data,
            m.wr_addr: s.vote_wr_addr,
            m.wr_data: s.vote_wr_data,
            m.wr_en: s.vote_wr_en
        })

        # Find max value of knn_table for a given digit
        s.connect_wire(s.knn_rd_data, s.FindMax_req_data)

        s.findmax = m = FindMaxPRTL(RE_DATA_SIZE, k)

        s.connect_dict({
            m.req.val: s.FindMax_req_val,
            m.req.rdy: s.FindMax_req_rdy,
            m.req.msg.data: s.FindMax_req_data,
            m.resp.val: s.FindMax_resp_val,
            m.resp.rdy: s.FindMax_resp_rdy,
            m.resp.msg.data: s.FindMax_resp_data,
            m.resp.msg.idx: s.FindMax_resp_idx
        })

        # Less than comparator
        s.knn_LtComparator = m = LtComparator(RE_DATA_SIZE)
        s.connect_dict({
            m.in0: s.req_msg_data_q,
            m.in1: s.FindMax_resp_data,
            m.out: s.isSmaller
        })

        # Zero extender
        s.FindMax_resp_data_zext = Wire(Bits(SUM_DATA_SIZE))
        s.FindMax_resp_data_zexter = m = ZeroExtender(RE_DATA_SIZE,
                                                      SUM_DATA_SIZE)
        s.connect_dict({
            m.in_: s.FindMax_resp_data,
            m.out: s.FindMax_resp_data_zext,
        })

        # Subtractor
        s.subtractor = m = Subtractor(SUM_DATA_SIZE)
        s.connect_dict({
            m.in0: s.vote_rd_data,
            m.in1: s.FindMax_resp_data_zext,
            m.out: s.subtractor_out
        })

        # Zero extender
        s.req_msg_data_zext = Wire(Bits(SUM_DATA_SIZE))
        s.req_msg_data_zexter = m = ZeroExtender(RE_DATA_SIZE, SUM_DATA_SIZE)
        s.connect_dict({
            m.in_: s.req_msg_data_q,
            m.out: s.req_msg_data_zext,
        })

        # Adder
        s.adder = m = Adder(SUM_DATA_SIZE)
        s.connect_dict({
            m.in0: s.subtractor_out,
            m.in1: s.req_msg_data_zext,
            m.cin: 0,
            m.out: s.adder_out
        })

        # Find min value of knn_vote, return digit
        s.connect_wire(s.vote_rd_data, s.FindMin_req_data)

        s.findmin = m = FindMinPRTL(SUM_DATA_SIZE, DIGIT)
        s.connect_dict({
            m.req.val: s.FindMin_req_val,
            m.req.rdy: s.FindMin_req_rdy,
            m.req.msg.data: s.FindMin_req_data,
            m.resp.val: s.FindMin_resp_val,
            m.resp.rdy: s.FindMin_resp_rdy,
            m.resp.msg.data: s.FindMin_resp_data,
            m.resp.msg.digit: s.FindMin_resp_idx
        })

        # Resp idx Register
        s.resp_msg_idx_q = Wire(Bits(int(math.ceil(math.log(DIGIT, 2)))))

        s.req_msg_idx_reg = m = RegEnRst(int(math.ceil(math.log(DIGIT, 2))))
        s.connect_dict({
            m.en: s.msg_idx_reg_en,
            m.in_: s.FindMin_resp_idx,
            m.out: s.resp_msg_idx_q
        })

        # connect output idx
        s.connect(s.resp_msg_idx_q, s.resp_msg_digit)