def __init__(self, configuration, currTimeStep, initialState = None): self._configuration = configuration self._modelTime = currTimeStep pcr.setclone(configuration.cloneMap) # Read the ldd map. self.lddMap = vos.readPCRmapClone(\ configuration.routingOptions['lddMap'], configuration.cloneMap,configuration.tmpDir,configuration.globalOptions['inputDir'],True) #ensure ldd map is correct, and actually of type "ldd" self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) if configuration.globalOptions['landmask'] != "None": self.landmask = vos.readPCRmapClone(\ configuration.globalOptions['landmask'], configuration.cloneMap,configuration.tmpDir,configuration.globalOptions['inputDir']) else: self.landmask = pcr.defined(self.lddMap) # ADDED: variables necessary for 2-way coupling functions # ---------------------------------------------------------------------------------------------------------------- # variable to control activation of 2-way coupling functions (can be changed through BMI) self.ActivateCoupling = self._configuration.globalOptions['ActivateCoupling'] # ---------------------------------------------------------------------------------------------------------------- # defining catchment areas self.catchment_class = 1.0 # number of upperSoilLayers: self.numberOfSoilLayers = int(configuration.landSurfaceOptions['numberOfUpperSoilLayers']) self.createSubmodels(initialState)
def readPCRmapClone(v,cloneMapFileName,tmpDir,absolutePath=None,isLddMap=False,cover=None,isNomMap=False): # v: inputMapFileName or floating values # cloneMapFileName: If the inputMap and cloneMap have different clones, # resampling will be done. #logger.info('read file/values: '+str(v)) if v == "None": PCRmap = str("None") elif not re.match(r"[0-9.-]*$",v): if absolutePath != None: v = getFullPath(v,absolutePath) # print(v) sameClone = isSameClone(v,cloneMapFileName) if sameClone == True: PCRmap = pcr.readmap(v) else: # resample using GDAL: output = tmpDir+'temp.map' warp = gdalwarpPCR(v,output,cloneMapFileName,tmpDir,isLddMap,isNomMap) # read from temporary file and delete the temporary file: PCRmap = pcr.readmap(output) if isLddMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) < 10., PCRmap) if isLddMap == True: PCRmap = pcr.ldd(PCRmap) if isNomMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) > 0., PCRmap) if isNomMap == True: PCRmap = pcr.nominal(PCRmap) co = 'rm '+str(tmpDir)+'*.*' cOut,err = subprocess.Popen(co, stdout=subprocess.PIPE,stderr=open('/dev/null'),shell=True).communicate() else: PCRmap = pcr.scalar(float(v)) if cover != None: PCRmap = pcr.cover(PCRmap, cover) co = None; cOut = None; err = None; warp = None del co; del cOut; del err; del warp stdout = None; del stdout stderr = None; del stderr return PCRmap
def __init__(self, configuration, currTimeStep, initialState = None): self._configuration = configuration self._modelTime = currTimeStep pcr.setclone(configuration.cloneMap) # Read the ldd map. self.lddMap = vos.readPCRmapClone(\ configuration.routingOptions['lddMap'], configuration.cloneMap,configuration.tmpDir,configuration.globalOptions['inputDir'],True) #ensure ldd map is correct, and actually of type "ldd" self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) if configuration.globalOptions['landmask'] != "None": self.landmask = vos.readPCRmapClone(\ configuration.globalOptions['landmask'], configuration.cloneMap,configuration.tmpDir,configuration.globalOptions['inputDir']) else: self.landmask = pcr.defined(self.lddMap) # defining catchment areas self.catchment_class = 1.0 # number of upperSoilLayers: self.numberOfSoilLayers = int(configuration.landSurfaceOptions['numberOfUpperSoilLayers']) self.createSubmodels(initialState)
def readPCRmapClone(v,cloneMapFileName,tmpDir,absolutePath=None,isLddMap=False,cover=None,isNomMap=False): # v: inputMapFileName or floating values # cloneMapFileName: If the inputMap and cloneMap have different clones, # resampling will be done. print(v) if v == "None": PCRmap = str("None") elif not re.match(r"[0-9.-]*$",v): if absolutePath != None: v = getFullPath(v,absolutePath) # print(v) sameClone = isSameClone(v,cloneMapFileName) if sameClone == True: PCRmap = pcr.readmap(v) else: # resample using GDAL: output = tmpDir+'temp.map' warp = gdalwarpPCR(v,output,cloneMapFileName,tmpDir,isLddMap,isNomMap) # read from temporary file and delete the temporary file: PCRmap = pcr.readmap(output) if isLddMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) < 10., PCRmap) if isLddMap == True: PCRmap = pcr.ldd(PCRmap) if isNomMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) > 0., PCRmap) if isNomMap == True: PCRmap = pcr.nominal(PCRmap) co = 'rm '+str(tmpDir)+'*.*' cOut,err = subprocess.Popen(co, stdout=subprocess.PIPE,stderr=open('/dev/null'),shell=True).communicate() else: PCRmap = pcr.scalar(float(v)) if cover != None: PCRmap = pcr.cover(PCRmap, cover) co = None; cOut = None; err = None; warp = None del co; del cOut; del err; del warp stdout = None; del stdout stderr = None; del stderr return PCRmap
def _parseLine(self, line, lineNumber, nrColumns, externalNames, keyDict): line = re.sub("\n", "", line) line = re.sub("\t", " ", line) result = None # read until first comment content = "" content, sep, comment = line.partition("#") if len(content) > 1: collectionVariableName, sep, tail = content.partition(" ") if collectionVariableName == self._varName: tail = tail.strip() key, sep, variableValue = tail.rpartition(" ") if len(key.split()) != nrColumns: tmp = re.sub("\(|\)|,", "", str(key)) msg = "Error reading %s line %d, order of columns given (%s columns) does not match expected order of %s columns" % ( self._fileName, lineNumber, len(key.split()) + 2, int(nrColumns) + 2) raise ValueError(msg) variableValue = re.sub('\"', "", variableValue) tmp = None try: tmp = int(variableValue) if self._dataType == pcraster.Boolean: tmp = pcraster.boolean(tmp) elif self._dataType == pcraster.Nominal: tmp = pcraster.nominal(tmp) elif self._dataType == pcraster.Ordinal: tmp = pcraster.ordinal(tmp) elif self._dataType == pcraster.Ldd: tmp = pcraster.ldd(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError, e: try: tmp = float(variableValue) if self._dataType == pcraster.Scalar: tmp = pcraster.scalar(tmp) elif self._dataType == pcraster.Directional: tmp = pcraster.directional(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError, e: variableValue = re.sub("\\\\", "/", variableValue) variableValue = variableValue.strip() path = os.path.normpath(variableValue) try: tmp = pcraster.readmap(path) except RuntimeError, e: msg = "Error reading %s line %d, %s" % ( self._fileName, lineNumber, e) raise ValueError(msg)
def readPCRmapClone(v, cloneMapFileName, tmpDir, absolutePath=None, isLddMap=False, cover=None, isNomMap=False): # v: inputMapFileName or floating values # cloneMapFileName: If the inputMap and cloneMap have different clones, # resampling will be done. logger.debug('read file/values: ' + str(v)) if v == "None": #~ PCRmap = str("None") PCRmap = None # 29 July: I made an experiment by changing the type of this object. elif not re.match(r"[0-9.-]*$", v): if absolutePath != None: v = getFullPath(v, absolutePath) # print v # print cloneMapFileName sameClone = isSameClone(v, cloneMapFileName) if sameClone == True: PCRmap = pcr.readmap(v) else: # resample using GDAL: output = tmpDir + 'temp.map' warp = gdalwarpPCR(v, output, cloneMapFileName, tmpDir, isLddMap, isNomMap) # read from temporary file and delete the temporary file: PCRmap = pcr.readmap(output) if isLddMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) < 10., PCRmap) if isLddMap == True: PCRmap = pcr.ldd(PCRmap) if isNomMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) > 0., PCRmap) if isNomMap == True: PCRmap = pcr.nominal(PCRmap) if os.path.isdir(tmpDir): shutil.rmtree(tmpDir) os.makedirs(tmpDir) else: PCRmap = pcr.spatial(pcr.scalar(float(v))) if cover != None: PCRmap = pcr.cover(PCRmap, cover) co = None cOut = None err = None warp = None del co del cOut del err del warp stdout = None del stdout stderr = None del stderr # SM: revisit this PCRmap = pcr.pcr2numpy(PCRmap, np.nan) return PCRmap
def __init__(self, iniItems, landmask, Dir, cloneMap, tmpDir): object.__init__(self) # clone map file names, temporary directory and global/absolute path of input directory self.cloneMap = cloneMap #iniItems.cloneMap self.tmpDir = tmpDir #iniItems.tmpDir self.inputDir = Dir #iniItems.globalOptions['inputDir'] self.landmask = landmask # local drainage direction: self.lddMap = vos.readPCRmapClone( iniItems.get("routingOptions", "lddMap"), self.cloneMap, self.tmpDir, self.inputDir, True) self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) self.lddMap = pcr.lddrepair(self.lddMap) # option to activate water balance check self.debugWaterBalance = True if configget(iniItems, "routingOptions", "debugWaterBalance", "True") == "False": self.debugWaterBalance = False # option to perform a run with only natural lakes (without reservoirs) self.onlyNaturalWaterBodies = False if "onlyNaturalWaterBodies" in iniItems._sections[ 'routingOptions'] and configget(iniItems, "routingOptions", "onlyNaturalWaterBodies", "False") == "True": logger.info( "Using only natural water bodies identified in the year 1900. All reservoirs in 1900 are assumed as lakes." ) self.onlyNaturalWaterBodies = True self.dateForNaturalCondition = "1900-01-01" # The run for a natural condition should access only this date. # names of files containing water bodies parameters if configget(iniItems, "routingOptions", "waterBodyInputNC", "None") == str(None): self.useNetCDF = False self.fracWaterInp = iniItems.get("routingOptions", "fracWaterInp") self.waterBodyIdsInp = iniItems.get("routingOptions", "waterBodyIds") self.waterBodyTypInp = iniItems.get("routingOptions", "waterBodyTyp") self.resMaxCapInp = iniItems.get("routingOptions", "resMaxCapInp") self.resSfAreaInp = iniItems.get("routingOptions", "resSfAreaInp") else: self.useNetCDF = True self.ncFileInp = vos.getFullPath(\ iniItems.get("routingOptions","waterBodyInputNC"),\ self.inputDir) # minimum width (m) used in the weir formula # TODO: define minWeirWidth based on the GLWD, GRanD database and/or bankfull discharge formula self.minWeirWidth = 10. # lower and upper limits at which reservoir release is terminated and # at which reservoir release is equal to long-term average outflow self.minResvrFrac = 0.10 self.maxResvrFrac = 0.75
def initial(self): ##################### # * initial section # ##################### #-constants # betaQ [-]: constant of kinematic wave momentum equation self.betaQ = 0.6 #-channel LDD self.channelLDD= pcr.ifthenelse(self.waterBodies.distribution != 0,\ pcr.ldd(5),self.LDD) #-channel area and storage self.channelArea = self.channelWidth * self.channelLength self.channelStorageCapacity= pcr.ifthenelse(self.waterBodies.distribution == 0,\ self.channelArea*self.channelDepth,pcr.scalar(0.)) #-basin outlets self.basinOutlet = pcr.pit(self.LDD) != 0 #-read initial conditions self.Q = clippedRead.get(self.QIniMap) self.actualStorage = clippedRead.get(self.actualStorageIniMap) self.actualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\ pcr.ifthenelse(self.waterBodies.location != 0,\ pcr.areatotal(self.actualStorage,self.waterBodies.distribution),0),\ self.actualStorage) self.waterBodies.actualStorage = self.waterBodies.retrieveMapValue( self.actualStorage) #-update targets of average and bankful discharge self.waterBodies.averageQ = self.waterBodies.retrieveMapValue( self.averageQ) self.waterBodies.bankfulQ = self.waterBodies.retrieveMapValue( self.bankfulQ) #-return the parameters for the kinematic wave, # including alpha, wetted area, flood fraction, flood volume and depth # and the corresponding land area floodedFraction,floodedDepth,\ self.wettedArea,self.alphaQ= self.kinAlphaComposite(self.actualStorage,self.floodplainMask) self.wettedArea= self.waterBodies.returnMapValue(self.wettedArea,\ self.waterBodies.channelWidth+2.*self.waterBodies.updateWaterHeight()) self.waterFraction= pcr.ifthenelse(self.waterBodies.distribution == 0,\ pcr.max(self.waterFractionMask,floodedFraction),self.waterFractionMask) self.landFraction = pcr.max(0., 1. - self.waterFraction) #-update on velocity and check on Q - NOTE: does not work in case of reservoirs! self.flowVelocity = pcr.ifthenelse(self.wettedArea > 0, self.Q / self.wettedArea, 0.) pcr.report( self.flowVelocity, pcrm.generateNameT(flowVelocityFileName, 0).replace('.000', '.ini')) #-setting initial values for specific runoff and surface water extraction self.landSurfaceQ = pcr.scalar(0.) self.potWaterSurfaceQ = pcr.scalar(0.) self.surfaceWaterExtraction = pcr.scalar(0.) #-budget check: setting initial values for cumulative discharge and # net cumulative input, including initial storage [m3] self.totalDischarge = pcr.scalar(0.) self.cumulativeDeltaStorage = pcr.catchmenttotal( self.actualStorage, self.LDD)
def _parseLine(self, line, lineNumber, nrColumns, externalNames, keyDict): line = re.sub("\n","",line) line = re.sub("\t"," ",line) result = None # read until first comment content = "" content,sep,comment = line.partition("#") if len(content) > 1: collectionVariableName, sep, tail = content.partition(" ") if collectionVariableName == self._varName: tail = tail.strip() key, sep, variableValue = tail.rpartition(" ") if len(key.split()) != nrColumns: tmp = re.sub("\(|\)|,","",str(key)) msg = "Error reading %s line %d, order of columns given (%s columns) does not match expected order of %s columns" %(self._fileName, lineNumber, len(key.split()) + 2, int(nrColumns) + 2) raise ValueError(msg) variableValue = re.sub('\"', "", variableValue) tmp = None try: tmp = int(variableValue) if self._dataType == pcraster.Boolean: tmp = pcraster.boolean(tmp) elif self._dataType == pcraster.Nominal: tmp = pcraster.nominal(tmp) elif self._dataType == pcraster.Ordinal: tmp = pcraster.ordinal(tmp) elif self._dataType == pcraster.Ldd: tmp = pcraster.ldd(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError, e: try: tmp = float(variableValue) if self._dataType == pcraster.Scalar: tmp = pcraster.scalar(tmp) elif self._dataType == pcraster.Directional: tmp = pcraster.directional(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError,e: variableValue = re.sub("\\\\","/",variableValue) variableValue = variableValue.strip() path = os.path.normpath(variableValue) try: tmp = pcraster.readmap(path) except RuntimeError, e: msg = "Error reading %s line %d, %s" %(self._fileName, lineNumber, e) raise ValueError(msg)
def initial(self): ##################### # * initial section # ##################### #-constants # betaQ [-]: constant of kinematic wave momentum equation self.betaQ= 0.6 #-channel LDD self.channelLDD= pcr.ifthenelse(self.waterBodies.distribution != 0,\ pcr.ldd(5),self.LDD) #-channel area and storage self.channelArea= self.channelWidth*self.channelLength self.channelStorageCapacity= pcr.ifthenelse(self.waterBodies.distribution == 0,\ self.channelArea*self.channelDepth,pcr.scalar(0.)) #-basin outlets self.basinOutlet= pcr.pit(self.LDD) != 0 #-read initial conditions self.Q= clippedRead.get(self.QIniMap) self.actualStorage= clippedRead.get(self.actualStorageIniMap) self.actualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\ pcr.ifthenelse(self.waterBodies.location != 0,\ pcr.areatotal(self.actualStorage,self.waterBodies.distribution),0),\ self.actualStorage) self.waterBodies.actualStorage= self.waterBodies.retrieveMapValue(self.actualStorage) #-update targets of average and bankful discharge self.waterBodies.averageQ= self.waterBodies.retrieveMapValue(self.averageQ) self.waterBodies.bankfulQ= self.waterBodies.retrieveMapValue(self.bankfulQ) #-return the parameters for the kinematic wave, # including alpha, wetted area, flood fraction, flood volume and depth # and the corresponding land area floodedFraction,floodedDepth,\ self.wettedArea,self.alphaQ= self.kinAlphaComposite(self.actualStorage,self.floodplainMask) self.wettedArea= self.waterBodies.returnMapValue(self.wettedArea,\ self.waterBodies.channelWidth+2.*self.waterBodies.updateWaterHeight()) self.waterFraction= pcr.ifthenelse(self.waterBodies.distribution == 0,\ pcr.max(self.waterFractionMask,floodedFraction),self.waterFractionMask) self.landFraction= pcr.max(0.,1.-self.waterFraction) #-update on velocity and check on Q - NOTE: does not work in case of reservoirs! self.flowVelocity= pcr.ifthenelse(self.wettedArea > 0,self.Q/self.wettedArea,0.) pcr.report(self.flowVelocity,pcrm.generateNameT(flowVelocityFileName,0).replace('.000','.ini')) #-setting initial values for specific runoff and surface water extraction self.landSurfaceQ= pcr.scalar(0.) self.potWaterSurfaceQ= pcr.scalar(0.) self.surfaceWaterExtraction= pcr.scalar(0.) #-budget check: setting initial values for cumulative discharge and # net cumulative input, including initial storage [m3] self.totalDischarge= pcr.scalar(0.) self.cumulativeDeltaStorage= pcr.catchmenttotal(self.actualStorage,self.LDD)
def testNotEqualsLdd(self): pcraster.setclone("accu_Ldd.map") ldd = pcraster.readmap("accu_Ldd.map") nonSpatial = pcraster._pcraster._newNonSpatialField(5) # we need to explicitly cast PODs to ldd (or directional) # when using the multicore module #raster = mcop.pcrmcNE("accu_Ldd.map", 5) raster = mcop.pcrmcNE("accu_Ldd.map", pcraster.ldd(5)) warnings.warn("Difference between pcraster and multicore module...") value, isValid = pcraster.cellvalue(raster, 1) self.assertEqual(isValid, True) self.assertEqual(value, True) value, isValid = pcraster.cellvalue(raster, 22) self.assertEqual(isValid, True) self.assertEqual(value, False) value, isValid = pcraster.cellvalue(raster, 25) self.assertEqual(isValid, True) self.assertEqual(value, True)
def __init__(self, configuration, currTimeStep, initialState=None): self._configuration = configuration self._modelTime = currTimeStep pcr.setclone(configuration.cloneMap) # Read the ldd map. self.lddMap = vos.readPCRmapClone(\ configuration.routingOptions['lddMap'], configuration.cloneMap,configuration.tmpDir,configuration.globalOptions['inputDir'],True) #ensure ldd map is correct, and actually of type "ldd" self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) if configuration.globalOptions['landmask'] != "None": self.landmask = vos.readPCRmapClone(\ configuration.globalOptions['landmask'], configuration.cloneMap,configuration.tmpDir,configuration.globalOptions['inputDir']) else: self.landmask = pcr.defined(self.lddMap) # defining catchment areas self.catchment_class = 1.0 # number of upperSoilLayers: self.numberOfSoilLayers = int( configuration.landSurfaceOptions['numberOfUpperSoilLayers']) # preparing sub-modules self.createSubmodels(initialState) # option for debugging to PCR-GLOBWB version 1.0 self.debug_to_version_one = False if configuration.debug_to_version_one: self.debug_to_version_one = True if self.debug_to_version_one: # preparing initial folder directory self.directory_for_initial_maps = vos.getFullPath( "initials/", self.configuration.mapsDir) if os.path.exists(self.directory_for_initial_maps): shutil.rmtree(self.directory_for_initial_maps) os.makedirs(self.directory_for_initial_maps) # dump the initial state self.dumpState(self.directory_for_initial_maps, "initial")
def testDeepCopyRasterNonSpatial(self): pcraster.setclone("validated/boolean_Result.map") raster = pcraster.boolean(1) tmp = copy.deepcopy(raster) self.assertEqual(True, self.arbitraryMapEquals(raster, tmp)) raster1 = pcraster.nominal(1) tmp1 = copy.deepcopy(raster1) self.assertEqual(True, self.arbitraryMapEquals(raster1, tmp1)) raster2 = pcraster.ordinal(1) tmp2 = copy.deepcopy(raster2) self.assertEqual(True, self.arbitraryMapEquals(raster2, tmp2)) raster3 = pcraster.scalar(1) tmp3 = copy.deepcopy(raster3) self.assertEqual(True, self.arbitraryMapEquals(raster3, tmp3)) raster4 = pcraster.directional(1) tmp4 = copy.deepcopy(raster4) self.assertEqual(True, self.arbitraryMapEquals(raster4, tmp4)) raster5 = pcraster.ldd(1) tmp5 = copy.deepcopy(raster5) self.assertEqual(True, self.arbitraryMapEquals(raster5, tmp5))
def pcr_preprocess(dem_in, x, y, itile, tempdir, ldd_in=None, test=False, create_ldd=True): """ function to set pcr clone and translate DEM (terrain) and ldd numpy 2d arrays to pcr maps :param terrain: masked numpy 2d array with elevation data :param x: numpy 1d array with x coordinates of elevation grid :param y: numpy 1d array with Y coordinates of elevation grid :param tempdir: string with directory to temporary save clone pcrmap :param ldd: numpy 2d array with ldd grid, make sure it uses the pcrmap definition of ldd :param test: if True do not remove clone maps :return: pcr maps for dem and ldd """ # create clone in temp_dir fn_clone = os.path.join(tempdir, '_{:03d}_dem.map'.format(itile)) cl.makeDir(tempdir) # make dir if not exist # DEM gdal_writemap(fn_clone, 'PCRaster', x, y, dem_in, -9999) # note: missing value needs conversion in python item pcr.setclone(fn_clone) pcr.setglobaloption("unitcell") dem = pcr.readmap(fn_clone) # cleanup if not test: os.unlink(fn_clone) # cleanup clone file os.unlink(fn_clone+'.aux.xml') # LDD if create_ldd: if ldd_in is None: print('Calculating LDD') ldd = pcr.lddcreate(dem, 1E31, 1E31, 1E31, 1E31) else: # TODO note that np.nan is default NoDataValue for ldd file. check this when reading data # TODO: x and y axis got mixed up when translating with numpy2pcr. check if it works here! # in process_tile function in coastal_inun.py ldd = pcr.lddrepair(pcr.ldd(pcr.numpy2pcr(pcr.Ldd, ldd_in, np.nan))) else: ldd = None return dem, ldd
def __init__(self, configuration, currTimeStep): self._configuration = configuration self._modelTime = currTimeStep pcr.setclone(configuration.cloneMap) # read the ldd map self.lddMap = vos.netcdf2PCRobjCloneWithoutTime(configuration.modflowParameterOptions['channelNC'],'lddMap',\ configuration.cloneMap) # ensure ldd map is correct, and actually of type "ldd" self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) # defining the landmask map if configuration.globalOptions['landmask'] != "None": self.landmask = vos.readPCRmapClone(\ configuration.globalOptions['landmask'], configuration.cloneMap,configuration.tmpDir,configuration.globalOptions['inputDir']) else: self.landmask = pcr.defined(self.lddMap) # preparing the sub-model(s) - Currently, there is only one sub-model. self.createSubmodels()
def readPCRmapClone(v,cloneMapFileName,tmpDir,absolutePath=None,isLddMap=False,cover=None,isNomMap=False,inputEPSG="EPSG:4326",outputEPSG="EPSG:4326",method="near"): # v: inputMapFileName or floating values # cloneMapFileName: If the inputMap and cloneMap have different clones, # resampling will be done. logger.debug('read file/values: '+str(v)) if v == "None": PCRmap = str("None") elif not re.match(r"[0-9.-]*$",v): if absolutePath != None: v = getFullPath(v,absolutePath) # print(v) sameClone = isSameClone(v,cloneMapFileName) if sameClone == True: PCRmap = pcr.readmap(v) else: # resample using GDAL: output = tmpDir+'temp.map' # if no re-projection needed: if inputEPSG == outputEPSG or outputEPSG == None: warp = gdalwarpPCR(v,output,cloneMapFileName,tmpDir,isLddMap,isNomMap) else: warp = gdalwarpPCR(v,output,cloneMapFileName,tmpDir,isLddMap,isNomMap,inputEPSG,outputEPSG,method) # read from temporary file and delete the temporary file: PCRmap = pcr.readmap(output) if isLddMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) < 10., PCRmap) if isLddMap == True: PCRmap = pcr.ldd(PCRmap) if isNomMap == True: PCRmap = pcr.ifthen(pcr.scalar(PCRmap) > 0., PCRmap) if isNomMap == True: PCRmap = pcr.nominal(PCRmap) if os.path.isdir(tmpDir): shutil.rmtree(tmpDir) os.makedirs(tmpDir) else: PCRmap = pcr.scalar(float(v)) if cover != None: PCRmap = pcr.cover(PCRmap, cover) co = None; cOut = None; err = None; warp = None del co; del cOut; del err; del warp stdout = None; del stdout stderr = None; del stderr return PCRmap
def main(): ### Read input arguments ##### parser = OptionParser() usage = "usage: %prog [options]" parser = OptionParser(usage=usage) parser.add_option('-q', '--quiet', dest='verbose', default=True, action='store_false', help='do not print status messages to stdout') parser.add_option('-i', '--ini', dest='inifile', default='hand_contour_inun.ini', nargs=1, help='ini configuration file') parser.add_option('-f', '--flood_map', nargs=1, dest='flood_map', help='Flood map file (NetCDF point time series file') parser.add_option('-v', '--flood_variable', nargs=1, dest='flood_variable', default='water_level', help='variable name of flood water level') parser.add_option('-b', '--bankfull_map', dest='bankfull_map', default='', help='Map containing bank full level (is subtracted from flood map, in NetCDF)') parser.add_option('-c', '--catchment', dest='catchment_strahler', default=7, type='int', help='Strahler order threshold >= are selected as catchment boundaries') parser.add_option('-s', '--hand_strahler', dest='hand_strahler', default=7, type='int', help='Strahler order threshold >= selected as riverine') parser.add_option('-d', '--destination', dest='dest_path', default='inun', help='Destination path') (options, args) = parser.parse_args() if not os.path.exists(options.inifile): print 'path to ini file cannot be found' sys.exit(1) options.dest_path = os.path.abspath(options.dest_path) if not(os.path.isdir(options.dest_path)): os.makedirs(options.dest_path) # set up the logger flood_name = os.path.split(options.flood_map)[1].split('.')[0] case_name = 'inun_{:s}_hand_{:02d}_catch_{:02d}'.format(flood_name, options.hand_strahler, options.catchment_strahler) logfilename = os.path.join(options.dest_path, 'hand_contour_inun.log') logger, ch = inun_lib.setlogger(logfilename, 'HAND_INUN', options.verbose) logger.info('$Id: $') logger.info('Flood map: {:s}'.format(options.flood_map)) logger.info('Bank full map: {:s}'.format(options.bankfull_map)) logger.info('Destination path: {:s}'.format(options.dest_path)) # read out ini file ### READ CONFIG FILE # open config-file config = inun_lib.open_conf(options.inifile) # read settings options.dem_file = inun_lib.configget(config, 'maps', 'dem_file', True) options.ldd_file = inun_lib.configget(config, 'maps', 'ldd_file', True) options.stream_file = inun_lib.configget(config, 'maps', 'stream_file', True) options.riv_length_file = inun_lib.configget(config, 'maps', 'riv_length_file', True) options.riv_width_file = inun_lib.configget(config, 'maps', 'riv_width_file', True) options.file_format = inun_lib.configget(config, 'maps', 'file_format', 0, datatype='int') options.x_tile = inun_lib.configget(config, 'tiling', 'x_tile', 10000, datatype='int') options.y_tile = inun_lib.configget(config, 'tiling', 'y_tile', 10000, datatype='int') options.x_overlap = inun_lib.configget(config, 'tiling', 'x_overlap', 1000, datatype='int') options.y_overlap = inun_lib.configget(config, 'tiling', 'y_overlap', 1000, datatype='int') options.iterations = inun_lib.configget(config, 'inundation', 'iterations', 20, datatype='int') options.initial_level = inun_lib.configget(config, 'inundation', 'initial_level', 32., datatype='float') options.area_multiplier = inun_lib.configget(config, 'inundation', 'area_multiplier', 1., datatype='float') logger.info('DEM file: {:s}'.format(options.dem_file)) logger.info('LDD file: {:s}'.format(options.ldd_file)) logger.info('Columns per tile: {:d}'.format(options.x_tile)) logger.info('Rows per tile: {:d}'.format(options.y_tile)) logger.info('Columns overlap: {:d}'.format(options.x_overlap)) logger.info('Rows overlap: {:d}'.format(options.y_overlap)) metadata_global = {} # add metadata from the section [metadata] meta_keys = config.options('metadata_global') for key in meta_keys: metadata_global[key] = config.get('metadata_global', key) # add a number of metadata variables that are mandatory metadata_global['config_file'] = os.path.abspath(options.inifile) metadata_var = {} metadata_var['units'] = 'm' metadata_var['standard_name'] = 'water_surface_height_above_reference_datum' metadata_var['long_name'] = 'Coastal flooding' metadata_var['comment'] = 'water_surface_reference_datum_altitude is given in file {:s}'.format(options.dem_file) if not os.path.exists(options.dem_file): logger.error('path to dem file {:s} cannot be found'.format(options.dem_file)) sys.exit(1) if not os.path.exists(options.ldd_file): logger.error('path to ldd file {:s} cannot be found'.format(options.ldd_file)) sys.exit(1) # Read extent from a GDAL compatible file try: extent = inun_lib.get_gdal_extent(options.dem_file) except: msg = 'Input file {:s} not a gdal compatible file'.format(options.dem_file) inun_lib.close_with_error(logger, ch, msg) sys.exit(1) try: x, y = inun_lib.get_gdal_axes(options.dem_file, logging=logger) srs = inun_lib.get_gdal_projection(options.dem_file, logging=logger) except: msg = 'Input file {:s} not a gdal compatible file'.format(options.dem_file) inun_lib.close_with_error(logger, ch, msg) sys.exit(1) # read history from flood file if options.file_format == 0: a = nc.Dataset(options.flood_map, 'r') metadata_global['history'] = 'Created by: $Id: $, boundary conditions from {:s},\nhistory: {:s}'.format(os.path.abspath(options.flood_map), a.history) a.close() else: metadata_global['history'] = 'Created by: $Id: $, boundary conditions from {:s},\nhistory: {:s}'.format(os.path.abspath(options.flood_map), 'PCRaster file, no history') # first write subcatch maps and hand maps ############### TODO ###### # setup a HAND file dem_name = os.path.split(options.dem_file)[1].split('.')[0] hand_file = os.path.join(options.dest_path, '{:s}_hand_strahler_{:02d}.tif'.format(dem_name, options.hand_strahler)) if not(os.path.isfile(hand_file)): # hand file does not exist yet! Generate it, otherwise skip! logger.info('HAND file {:s} setting up...please wait...'.format(hand_file)) hand_file_tmp = os.path.join(options.dest_path, '{:s}_hand_strahler_{:02d}.tif.tmp'.format(dem_name, options.hand_strahler)) ds_hand = inun_lib.prepare_gdal(hand_file_tmp, x, y, logging=logger, srs=srs) band_hand = ds_hand.GetRasterBand(1) # Open terrain data for reading ds_dem, rasterband_dem = inun_lib.get_gdal_rasterband(options.dem_file) ds_ldd, rasterband_ldd = inun_lib.get_gdal_rasterband(options.ldd_file) ds_stream, rasterband_stream = inun_lib.get_gdal_rasterband(options.stream_file) n = 0 for x_loop in range(0, len(x), options.x_tile): x_start = np.maximum(x_loop, 0) x_end = np.minimum(x_loop + options.x_tile, len(x)) # determine actual overlap for cutting for y_loop in range(0, len(y), options.y_tile): x_overlap_min = x_start - np.maximum(x_start - options.x_overlap, 0) x_overlap_max = np.minimum(x_end + options.x_overlap, len(x)) - x_end n += 1 # print('tile {:001d}:'.format(n)) y_start = np.maximum(y_loop, 0) y_end = np.minimum(y_loop + options.y_tile, len(y)) y_overlap_min = y_start - np.maximum(y_start - options.y_overlap, 0) y_overlap_max = np.minimum(y_end + options.y_overlap, len(y)) - y_end # cut out DEM logger.debug('Computing HAND for xmin: {:d} xmax: {:d} ymin {:d} ymax {:d}'.format(x_start, x_end,y_start, y_end)) terrain = rasterband_dem.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) drainage = rasterband_ldd.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) stream = rasterband_stream.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) # write to temporary file terrain_temp_file = os.path.join(options.dest_path, 'terrain_temp.map') drainage_temp_file = os.path.join(options.dest_path, 'drainage_temp.map') stream_temp_file = os.path.join(options.dest_path, 'stream_temp.map') if rasterband_dem.GetNoDataValue() is not None: inun_lib.gdal_writemap(terrain_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), terrain, rasterband_dem.GetNoDataValue(), gdal_type=gdal.GDT_Float32, logging=logger) else: # in case no nodata value is found logger.warning('No nodata value found in {:s}. assuming -9999'.format(options.dem_file)) inun_lib.gdal_writemap(terrain_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), terrain, -9999., gdal_type=gdal.GDT_Float32, logging=logger) inun_lib.gdal_writemap(drainage_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), drainage, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) inun_lib.gdal_writemap(stream_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), stream, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) # read as pcr objects pcr.setclone(terrain_temp_file) terrain_pcr = pcr.readmap(terrain_temp_file) drainage_pcr = pcr.lddrepair(pcr.ldd(pcr.readmap(drainage_temp_file))) # convert to ldd type map stream_pcr = pcr.scalar(pcr.readmap(stream_temp_file)) # convert to ldd type map # compute streams stream_ge, subcatch = inun_lib.subcatch_stream(drainage_pcr, stream_pcr, options.hand_strahler) # generate streams basin = pcr.boolean(subcatch) hand_pcr, dist_pcr = inun_lib.derive_HAND(terrain_pcr, drainage_pcr, 3000, rivers=pcr.boolean(stream_ge), basin=basin) # convert to numpy hand = pcr.pcr2numpy(hand_pcr, -9999.) # cut relevant part if y_overlap_max == 0: y_overlap_max = -hand.shape[0] if x_overlap_max == 0: x_overlap_max = -hand.shape[1] hand_cut = hand[0+y_overlap_min:-y_overlap_max, 0+x_overlap_min:-x_overlap_max] band_hand.WriteArray(hand_cut, x_start, y_start) os.unlink(terrain_temp_file) os.unlink(drainage_temp_file) band_hand.FlushCache() ds_dem = None ds_ldd = None ds_stream = None band_hand.SetNoDataValue(-9999.) ds_hand = None logger.info('Finalizing {:s}'.format(hand_file)) # rename temporary file to final hand file os.rename(hand_file_tmp, hand_file) else: logger.info('HAND file {:s} already exists...skipping...'.format(hand_file)) ##################################################################################### # HAND file has now been prepared, moving to flood mapping part # ##################################################################################### # load the staticmaps needed to estimate volumes across all xax, yax, riv_length, fill_value = inun_lib.gdal_readmap(options.riv_length_file, 'GTiff') riv_length = np.ma.masked_where(riv_length==fill_value, riv_length) xax, yax, riv_width, fill_value = inun_lib.gdal_readmap(options.riv_width_file, 'GTiff') riv_width[riv_width == fill_value] = 0 x_res = np.abs((xax[-1]-xax[0])/(len(xax)-1)) y_res = np.abs((yax[-1]-yax[0])/(len(yax)-1)) flood_folder = os.path.join(options.dest_path, case_name) flood_vol_map = os.path.join(flood_folder, '{:s}_vol.tif'.format(os.path.split(options.flood_map)[1].split('.')[0])) if not(os.path.isdir(flood_folder)): os.makedirs(flood_folder) inun_file_tmp = os.path.join(flood_folder, '{:s}.tif.tmp'.format(case_name)) inun_file = os.path.join(flood_folder, '{:s}.tif'.format(case_name)) hand_temp_file = os.path.join(flood_folder, 'hand_temp.map') drainage_temp_file = os.path.join(flood_folder, 'drainage_temp.map') stream_temp_file = os.path.join(flood_folder, 'stream_temp.map') flood_vol_temp_file = os.path.join(flood_folder, 'flood_warp_temp.tif') # load the data with river levels and compute the volumes if options.file_format == 0: # assume we need the maximum value in a NetCDF time series grid a = nc.Dataset(options.flood_map, 'r') xax = a.variables['x'][:] yax = a.variables['y'][:] flood_series = a.variables[options.flood_variable][:] flood_data = flood_series.max(axis=0) if np.ma.is_masked(flood_data): flood = flood_data.data flood[flood_data.mask] = 0 if yax[-1] > yax[0]: yax = np.flipud(yax) flood = np.flipud(flood) a.close() elif options.file_format == 1: xax, yax, flood, flood_fill_value = inun_lib.gdal_readmap(options.flood_map, 'PCRaster') flood[flood==flood_fill_value] = 0. #res_x = x[1]-x[0] #res_y = y[1]-y[0] # load the bankfull depths if options.bankfull_map == '': bankfull = np.zeros(flood.shape) else: if options.file_format == 0: a = nc.Dataset(options.bankfull_map, 'r') xax = a.variables['x'][:] yax = a.variables['y'][:] bankfull = a.variables[options.flood_variable][0, :, :] if yax[-1] > yax[0]: yax = np.flipud(yax) bankfull = np.flipud(bankful) a.close() elif options.file_format == 1: xax, yax, bankfull, bankfull_fill_value = inun_lib.gdal_readmap(options.bankfull_map, 'PCRaster') # flood = bankfull*2 # res_x = 2000 # res_y = 2000 # subtract the bankfull water level to get flood levels (above bankfull) flood_vol = np.maximum(flood-bankfull, 0) flood_vol_m = riv_length*riv_width*flood_vol/(x_res * y_res) # volume expressed in meters water disc (1e6 is the surface area of one wflow grid cell) flood_vol_m_data = flood_vol_m.data flood_vol_m_data[flood_vol_m.mask] = -999. print('Saving water layer map to {:s}'.format(flood_vol_map)) # write to a tiff file inun_lib.gdal_writemap(flood_vol_map, 'GTiff', xax, yax, np.maximum(flood_vol_m_data, 0), -999.) ds_hand, rasterband_hand = inun_lib.get_gdal_rasterband(hand_file) ds_ldd, rasterband_ldd = inun_lib.get_gdal_rasterband(options.ldd_file) ds_stream, rasterband_stream = inun_lib.get_gdal_rasterband(options.stream_file) logger.info('Preparing flood map in {:s} ...please wait...'.format(inun_file)) ds_inun = inun_lib.prepare_gdal(inun_file_tmp, x, y, logging=logger, srs=srs) band_inun = ds_inun.GetRasterBand(1) # loop over all the tiles n = 0 for x_loop in range(0, len(x), options.x_tile): x_start = np.maximum(x_loop, 0) x_end = np.minimum(x_loop + options.x_tile, len(x)) # determine actual overlap for cutting for y_loop in range(0, len(y), options.y_tile): x_overlap_min = x_start - np.maximum(x_start - options.x_overlap, 0) x_overlap_max = np.minimum(x_end + options.x_overlap, len(x)) - x_end n += 1 # print('tile {:001d}:'.format(n)) y_start = np.maximum(y_loop, 0) y_end = np.minimum(y_loop + options.y_tile, len(y)) y_overlap_min = y_start - np.maximum(y_start - options.y_overlap, 0) y_overlap_max = np.minimum(y_end + options.y_overlap, len(y)) - y_end x_tile_ax = x[x_start - x_overlap_min:x_end + x_overlap_max] y_tile_ax = y[y_start - y_overlap_min:y_end + y_overlap_max] # cut out DEM logger.debug('handling xmin: {:d} xmax: {:d} ymin {:d} ymax {:d}'.format(x_start, x_end, y_start, y_end)) hand = rasterband_hand.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) drainage = rasterband_ldd.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) stream = rasterband_stream.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) print('len x-ax: {:d} len y-ax {:d} x-shape {:d} y-shape {:d}'.format(len(x_tile_ax), len(y_tile_ax), hand.shape[1], hand.shape[0])) inun_lib.gdal_writemap(hand_temp_file, 'PCRaster', x_tile_ax, y_tile_ax, hand, rasterband_hand.GetNoDataValue(), gdal_type=gdal.GDT_Float32, logging=logger) inun_lib.gdal_writemap(drainage_temp_file, 'PCRaster', x_tile_ax, y_tile_ax, drainage, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) inun_lib.gdal_writemap(stream_temp_file, 'PCRaster', x_tile_ax, y_tile_ax, stream, rasterband_stream.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) # read as pcr objects pcr.setclone(hand_temp_file) hand_pcr = pcr.readmap(hand_temp_file) drainage_pcr = pcr.lddrepair(pcr.ldd(pcr.readmap(drainage_temp_file))) # convert to ldd type map stream_pcr = pcr.scalar(pcr.readmap(drainage_temp_file)) # convert to ldd type map # prepare a subcatchment map stream_ge, subcatch = inun_lib.subcatch_stream(drainage_pcr, stream_pcr, options.catchment_strahler) # generate subcatchments drainage_surf = pcr.ifthen(stream_ge > 0, pcr.accuflux(drainage_pcr, 1)) # proxy of drainage surface inaccurate at tile edges # compute weights for spreadzone (1/drainage_surf) subcatch = pcr.spreadzone(subcatch, 0, 0) # TODO check weighting scheme, perhaps not necessary # weight = 1./pcr.scalar(pcr.spreadzone(pcr.cover(pcr.ordinal(drainage_surf), 0), 0, 0)) # subcatch_fill = pcr.scalar(pcr.spreadzone(subcatch, 0, weight)) # # cover subcatch with subcatch_fill # pcr.report(weight, 'weight_{:02d}.map'.format(n)) # pcr.report(subcatch, 'subcatch_{:02d}.map'.format(n)) # pcr.report(pcr.nominal(subcatch_fill), 'subcatch_fill_{:02d}.map'.format(n)) inun_lib.gdal_warp(flood_vol_map, hand_temp_file, flood_vol_temp_file, gdal_interp=gdalconst.GRA_NearestNeighbour) # , x_tile_ax, y_tile_ax, flood_meter, fill_value = inun_lib.gdal_readmap(flood_vol_temp_file, 'GTiff') # convert meter depth to volume [m3] flood_vol = pcr.numpy2pcr(pcr.Scalar, flood_meter, fill_value)*((x_tile_ax[1] - x_tile_ax[0]) * (y_tile_ax[0] - y_tile_ax[1])) # resolution of SRTM *1166400000. ## now we have some nice volume. Now we need to redistribute! inundation_pcr = inun_lib.volume_spread(drainage_pcr, hand_pcr, subcatch, flood_vol, volume_thres=0., iterations=options.iterations, area_multiplier=options.area_multiplier) # 1166400000. inundation = pcr.pcr2numpy(inundation_pcr, -9999.) # cut relevant part if y_overlap_max == 0: y_overlap_max = -inundation.shape[0] if x_overlap_max == 0: x_overlap_max = -inundation.shape[1] inundation_cut = inundation[0+y_overlap_min:-y_overlap_max, 0+x_overlap_min:-x_overlap_max] # inundation_cut band_inun.WriteArray(inundation_cut, x_start, y_start) band_inun.FlushCache() # clean up os.unlink(flood_vol_temp_file) os.unlink(drainage_temp_file) os.unlink(hand_temp_file) # if n == 35: # band_inun.SetNoDataValue(-9999.) # ds_inun = None # sys.exit(0) os.unlink(flood_vol_map) logger.info('Finalizing {:s}'.format(inun_file)) # add the metadata to the file and band band_inun.SetNoDataValue(-9999.) ds_inun.SetMetadata(metadata_global) band_inun.SetMetadata(metadata_var) ds_inun = None ds_hand = None ds_ldd = None # rename temporary file to final hand file if os.path.isfile(inun_file): # remove an old result if available os.unlink(inun_file) os.rename(inun_file_tmp, inun_file) logger.info('Done! Thank you for using hand_contour_inun.py') logger, ch = inun_lib.closeLogger(logger, ch) del logger, ch sys.exit(0)
print("") print(cmd) os.system(cmd) print("") input_files['averageClimatologyDischargeMonthAvg'] = out_file # set the pcraster clone, ldd, landmask, and cell area map msg = "Setting the clone, ldd, landmask, and cell area maps" + ":" logger.info(msg) # - clone clone_map_file = input_files['clone_map_05min'] pcr.setclone(clone_map_file) # - ldd ldd = vos.readPCRmapClone(input_files['ldd_map_05min'], clone_map_file, output_files['tmp_folder'], None, True) ldd = pcr.lddrepair(pcr.ldd(ldd)) ldd = pcr.lddrepair(ldd) # - landmask landmask = pcr.ifthen(pcr.defined(ldd), pcr.boolean(1.0)) # - cell area cell_area = vos.readPCRmapClone(input_files['cell_area_05min'], clone_map_file, output_files['tmp_folder']) # set the basin map msg = "Setting the basin map" + ":" logger.info(msg) basin_map = pcr.nominal(\ vos.readPCRmapClone(input_files['basin_map_05min'], input_files['clone_map_05min'], output_files['tmp_folder'], None, False, None, True))
# - set the landmask landmask_map_file = "/projects/0/dfguu/data/hydroworld/others/05ArcMinCloneMaps/new_masks_from_top/mask_" + str(mask_code) + ".map" msg = "Set the landmask to : " + str(landmask_map_file) logger.info(msg) landmask = pcr.readmap(landmask_map_file) # resampling low resolution ldd map msg = "Resample the low resolution ldd map." logger.info(msg) ldd_map_low_resolution_file_name = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/lddsound_05min.map" ldd_map_low_resolution = vos.readPCRmapClone(ldd_map_low_resolution_file_name, \ clone_map_file, \ tmp_folder, \ None, True, None, False) ldd_map_low_resolution = pcr.ifthen(landmask, ldd_map_low_resolution) # NOTE THAT YOU MAY NOT HAVE TO MASK-OUT THE LDD. ldd_map_low_resolution = pcr.lddrepair(pcr.ldd(ldd_map_low_resolution)) ldd_map_low_resolution = pcr.lddrepair(ldd_map_low_resolution) pcr.report(ldd_map_low_resolution, "resampled_low_resolution_ldd.map") # permanent water bodies files (at 5 arc-minute resolution) reservoir_capacity_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/reservoirs/waterBodiesFinal_version15Sept2013/maps/reservoircapacity_2010.map" fracwat_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/reservoirs/waterBodiesFinal_version15Sept2013/maps/fracwat_2010.map" water_body_id_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/reservoirs/waterBodiesFinal_version15Sept2013/maps/waterbodyid_2010.map" # cell_area_file cell_area_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/cellsize05min.correct.map" # bankfull capacity (5 arcmin, volume: m3)
def main(): ### Read input arguments ##### parser = OptionParser() usage = "usage: %prog [options]" parser = OptionParser(usage=usage) parser.add_option( "-q", "--quiet", dest="verbose", default=True, action="store_false", help="do not print status messages to stdout", ) parser.add_option( "-i", "--ini", dest="inifile", default="hand_contour_inun.ini", nargs=1, help="ini configuration file", ) parser.add_option( "-f", "--flood_map", nargs=1, dest="flood_map", help="Flood map file (NetCDF point time series file", ) parser.add_option( "-v", "--flood_variable", nargs=1, dest="flood_variable", default="water_level", help="variable name of flood water level", ) parser.add_option( "-b", "--bankfull_map", dest="bankfull_map", default="", help="Map containing bank full level (is subtracted from flood map, in NetCDF)", ) parser.add_option( "-c", "--catchment", dest="catchment_strahler", default=7, type="int", help="Strahler order threshold >= are selected as catchment boundaries", ) parser.add_option( "-t", "--time", dest="time", default="", help="time in YYYYMMDDHHMMSS, overrides time in NetCDF input if set", ) # parser.add_option('-s', '--hand_strahler', # dest='hand_strahler', default=7, type='int', # help='Strahler order threshold >= selected as riverine') parser.add_option( "-m", "--max_strahler", dest="max_strahler", default=1000, type="int", help="Maximum Strahler order to loop over", ) parser.add_option( "-d", "--destination", dest="dest_path", default="inun", help="Destination path" ) parser.add_option( "-H", "--hand_file_prefix", dest="hand_file_prefix", default="", help="optional HAND file prefix of already generated HAND files", ) parser.add_option( "-n", "--neg_HAND", dest="neg_HAND", default=0, type="int", help="if set to 1, allow for negative HAND values in HAND maps", ) (options, args) = parser.parse_args() if not os.path.exists(options.inifile): print "path to ini file cannot be found" sys.exit(1) options.dest_path = os.path.abspath(options.dest_path) if not (os.path.isdir(options.dest_path)): os.makedirs(options.dest_path) # set up the logger flood_name = os.path.split(options.flood_map)[1].split(".")[0] # case_name = 'inun_{:s}_hand_{:02d}_catch_{:02d}'.format(flood_name, options.hand_strahler, options.catchment_strahler) case_name = "inun_{:s}_catch_{:02d}".format(flood_name, options.catchment_strahler) logfilename = os.path.join(options.dest_path, "hand_contour_inun.log") logger, ch = inun_lib.setlogger(logfilename, "HAND_INUN", options.verbose) logger.info("$Id: $") logger.info("Flood map: {:s}".format(options.flood_map)) logger.info("Bank full map: {:s}".format(options.bankfull_map)) logger.info("Destination path: {:s}".format(options.dest_path)) # read out ini file ### READ CONFIG FILE # open config-file config = inun_lib.open_conf(options.inifile) # read settings options.dem_file = inun_lib.configget(config, "HighResMaps", "dem_file", True) options.ldd_file = inun_lib.configget(config, "HighResMaps", "ldd_file", True) options.stream_file = inun_lib.configget(config, "HighResMaps", "stream_file", True) options.riv_length_fact_file = inun_lib.configget( config, "wflowResMaps", "riv_length_fact_file", True ) options.ldd_wflow = inun_lib.configget(config, "wflowResMaps", "ldd_wflow", True) options.riv_width_file = inun_lib.configget( config, "wflowResMaps", "riv_width_file", True ) options.file_format = inun_lib.configget( config, "file_settings", "file_format", 0, datatype="int" ) options.out_format = inun_lib.configget( config, "file_settings", "out_format", 0, datatype="int" ) options.latlon = inun_lib.configget( config, "file_settings", "latlon", 0, datatype="int" ) options.x_tile = inun_lib.configget( config, "tiling", "x_tile", 10000, datatype="int" ) options.y_tile = inun_lib.configget( config, "tiling", "y_tile", 10000, datatype="int" ) options.x_overlap = inun_lib.configget( config, "tiling", "x_overlap", 1000, datatype="int" ) options.y_overlap = inun_lib.configget( config, "tiling", "y_overlap", 1000, datatype="int" ) options.iterations = inun_lib.configget( config, "inundation", "iterations", 20, datatype="int" ) options.initial_level = inun_lib.configget( config, "inundation", "initial_level", 32., datatype="float" ) options.flood_volume_type = inun_lib.configget( config, "inundation", "flood_volume_type", 0, datatype="int" ) # options.area_multiplier = inun_lib.configget(config, 'inundation', # 'area_multiplier', 1., datatype='float') logger.info("DEM file: {:s}".format(options.dem_file)) logger.info("LDD file: {:s}".format(options.ldd_file)) logger.info("streamfile: {:s}".format(options.stream_file)) logger.info("Columns per tile: {:d}".format(options.x_tile)) logger.info("Rows per tile: {:d}".format(options.y_tile)) logger.info("Columns overlap: {:d}".format(options.x_overlap)) logger.info("Rows overlap: {:d}".format(options.y_overlap)) metadata_global = {} # add metadata from the section [metadata] meta_keys = config.options("metadata_global") for key in meta_keys: metadata_global[key] = config.get("metadata_global", key) # add a number of metadata variables that are mandatory metadata_global["config_file"] = os.path.abspath(options.inifile) metadata_var = {} metadata_var["units"] = "m" metadata_var["standard_name"] = "water_surface_height_above_reference_datum" metadata_var["long_name"] = "flooding" metadata_var[ "comment" ] = "water_surface_reference_datum_altitude is given in file {:s}".format( options.dem_file ) if not os.path.exists(options.dem_file): logger.error("path to dem file {:s} cannot be found".format(options.dem_file)) sys.exit(1) if not os.path.exists(options.ldd_file): logger.error("path to ldd file {:s} cannot be found".format(options.ldd_file)) sys.exit(1) # Read extent from a GDAL compatible file try: extent = inun_lib.get_gdal_extent(options.dem_file) except: msg = "Input file {:s} not a gdal compatible file".format(options.dem_file) inun_lib.close_with_error(logger, ch, msg) sys.exit(1) try: x, y = inun_lib.get_gdal_axes(options.dem_file, logging=logger) srs = inun_lib.get_gdal_projection(options.dem_file, logging=logger) except: msg = "Input file {:s} not a gdal compatible file".format(options.dem_file) inun_lib.close_with_error(logger, ch, msg) sys.exit(1) # read history from flood file if options.file_format == 0: a = nc.Dataset(options.flood_map, "r") metadata_global[ "history" ] = "Created by: $Id: $, boundary conditions from {:s},\nhistory: {:s}".format( os.path.abspath(options.flood_map), a.history ) a.close() else: metadata_global[ "history" ] = "Created by: $Id: $, boundary conditions from {:s},\nhistory: {:s}".format( os.path.abspath(options.flood_map), "PCRaster file, no history" ) # first write subcatch maps and hand maps ############### TODO ###### # setup a HAND file for each strahler order max_s = inun_lib.define_max_strahler(options.stream_file, logging=logger) stream_max = np.minimum(max_s, options.max_strahler) for hand_strahler in range(options.catchment_strahler, stream_max + 1, 1): dem_name = os.path.split(options.dem_file)[1].split(".")[0] if os.path.isfile( "{:s}_{:02d}.tif".format(options.hand_file_prefix, hand_strahler) ): hand_file = "{:s}_{:02d}.tif".format( options.hand_file_prefix, hand_strahler ) else: logger.info( "No HAND files with HAND prefix were found, checking {:s}_hand_strahler_{:02d}.tif".format( dem_name, hand_strahler ) ) hand_file = os.path.join( options.dest_path, "{:s}_hand_strahler_{:02d}.tif".format(dem_name, hand_strahler), ) if not (os.path.isfile(hand_file)): # hand file does not exist yet! Generate it, otherwise skip! logger.info( "HAND file {:s} not found, start setting up...please wait...".format( hand_file ) ) hand_file_tmp = os.path.join( options.dest_path, "{:s}_hand_strahler_{:02d}.tif.tmp".format(dem_name, hand_strahler), ) ds_hand, band_hand = inun_lib.prepare_gdal( hand_file_tmp, x, y, logging=logger, srs=srs ) # band_hand = ds_hand.GetRasterBand(1) # Open terrain data for reading ds_dem, rasterband_dem = inun_lib.get_gdal_rasterband(options.dem_file) ds_ldd, rasterband_ldd = inun_lib.get_gdal_rasterband(options.ldd_file) ds_stream, rasterband_stream = inun_lib.get_gdal_rasterband( options.stream_file ) n = 0 for x_loop in range(0, len(x), options.x_tile): x_start = np.maximum(x_loop, 0) x_end = np.minimum(x_loop + options.x_tile, len(x)) # determine actual overlap for cutting for y_loop in range(0, len(y), options.y_tile): x_overlap_min = x_start - np.maximum(x_start - options.x_overlap, 0) x_overlap_max = ( np.minimum(x_end + options.x_overlap, len(x)) - x_end ) n += 1 # print('tile {:001d}:'.format(n)) y_start = np.maximum(y_loop, 0) y_end = np.minimum(y_loop + options.y_tile, len(y)) y_overlap_min = y_start - np.maximum(y_start - options.y_overlap, 0) y_overlap_max = ( np.minimum(y_end + options.y_overlap, len(y)) - y_end ) # cut out DEM logger.debug( "Computing HAND for xmin: {:d} xmax: {:d} ymin {:d} ymax {:d}".format( x_start, x_end, y_start, y_end ) ) terrain = rasterband_dem.ReadAsArray( x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min), ) drainage = rasterband_ldd.ReadAsArray( x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min), ) stream = rasterband_stream.ReadAsArray( x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min), ) # write to temporary file terrain_temp_file = os.path.join( options.dest_path, "terrain_temp.map" ) drainage_temp_file = os.path.join( options.dest_path, "drainage_temp.map" ) stream_temp_file = os.path.join( options.dest_path, "stream_temp.map" ) if rasterband_dem.GetNoDataValue() is not None: inun_lib.gdal_writemap( terrain_temp_file, "PCRaster", np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), terrain, rasterband_dem.GetNoDataValue(), gdal_type=gdal.GDT_Float32, logging=logger, ) else: # in case no nodata value is found logger.warning( "No nodata value found in {:s}. assuming -9999".format( options.dem_file ) ) inun_lib.gdal_writemap( terrain_temp_file, "PCRaster", np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), terrain, -9999., gdal_type=gdal.GDT_Float32, logging=logger, ) inun_lib.gdal_writemap( drainage_temp_file, "PCRaster", np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), drainage, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger, ) inun_lib.gdal_writemap( stream_temp_file, "PCRaster", np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), stream, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger, ) # read as pcr objects pcr.setclone(terrain_temp_file) terrain_pcr = pcr.readmap(terrain_temp_file) drainage_pcr = pcr.lddrepair( pcr.ldd(pcr.readmap(drainage_temp_file)) ) # convert to ldd type map stream_pcr = pcr.scalar( pcr.readmap(stream_temp_file) ) # convert to ldd type map # check if the highest stream order of the tile is below the hand_strahler # if the highest stream order of the tile is smaller than hand_strahler, than DEM values are taken instead of HAND values. max_stream_tile = inun_lib.define_max_strahler( stream_temp_file, logging=logger ) if max_stream_tile < hand_strahler: hand_pcr = terrain_pcr logger.info( "For this tile, DEM values are used instead of HAND because there is no stream order larger than {:02d}".format( hand_strahler ) ) else: # compute streams stream_ge, subcatch = inun_lib.subcatch_stream( drainage_pcr, hand_strahler, stream=stream_pcr ) # generate streams # compute basins stream_ge_dummy, subcatch = inun_lib.subcatch_stream( drainage_pcr, options.catchment_strahler, stream=stream_pcr ) # generate streams basin = pcr.boolean(subcatch) hand_pcr, dist_pcr = inun_lib.derive_HAND( terrain_pcr, drainage_pcr, 3000, rivers=pcr.boolean(stream_ge), basin=basin, neg_HAND=options.neg_HAND, ) # convert to numpy hand = pcr.pcr2numpy(hand_pcr, -9999.) # cut relevant part if y_overlap_max == 0: y_overlap_max = -hand.shape[0] if x_overlap_max == 0: x_overlap_max = -hand.shape[1] hand_cut = hand[ 0 + y_overlap_min : -y_overlap_max, 0 + x_overlap_min : -x_overlap_max, ] band_hand.WriteArray(hand_cut, x_start, y_start) os.unlink(terrain_temp_file) os.unlink(drainage_temp_file) os.unlink(stream_temp_file) band_hand.FlushCache() ds_dem = None ds_ldd = None ds_stream = None band_hand.SetNoDataValue(-9999.) ds_hand = None logger.info("Finalizing {:s}".format(hand_file)) # rename temporary file to final hand file os.rename(hand_file_tmp, hand_file) else: logger.info("HAND file {:s} already exists...skipping...".format(hand_file)) ##################################################################################### # HAND file has now been prepared, moving to flood mapping part # ##################################################################################### # set the clone pcr.setclone(options.ldd_wflow) # read wflow ldd as pcraster object ldd_pcr = pcr.readmap(options.ldd_wflow) xax, yax, riv_width, fill_value = inun_lib.gdal_readmap( options.riv_width_file, "GTiff", logging=logger ) # determine cell length in meters using ldd_pcr as clone (if latlon=True, values are converted to m2 x_res, y_res, reallength_wflow = pcrut.detRealCellLength( pcr.scalar(ldd_pcr), not (bool(options.latlon)) ) cell_surface_wflow = pcr.pcr2numpy(x_res * y_res, 0) if options.flood_volume_type == 0: # load the staticmaps needed to estimate volumes across all # xax, yax, riv_length, fill_value = inun_lib.gdal_readmap(options.riv_length_file, 'GTiff', logging=logger) # riv_length = np.ma.masked_where(riv_length==fill_value, riv_length) xax, yax, riv_width, fill_value = inun_lib.gdal_readmap( options.riv_width_file, "GTiff", logging=logger ) riv_width[riv_width == fill_value] = 0 # read river length factor file (multiplier) xax, yax, riv_length_fact, fill_value = inun_lib.gdal_readmap( options.riv_length_fact_file, "GTiff", logging=logger ) riv_length_fact = np.ma.masked_where( riv_length_fact == fill_value, riv_length_fact ) drain_length = wflow_lib.detdrainlength(ldd_pcr, x_res, y_res) # compute river length in each cell riv_length = pcr.pcr2numpy(drain_length, 0) * riv_length_fact # riv_length_pcr = pcr.numpy2pcr(pcr.Scalar, riv_length, 0) flood_folder = os.path.join(options.dest_path, case_name) flood_vol_map = os.path.join( flood_folder, "{:s}_vol.tif".format(os.path.split(options.flood_map)[1].split(".")[0]), ) if not (os.path.isdir(flood_folder)): os.makedirs(flood_folder) if options.out_format == 0: inun_file_tmp = os.path.join(flood_folder, "{:s}.tif.tmp".format(case_name)) inun_file = os.path.join(flood_folder, "{:s}.tif".format(case_name)) else: inun_file_tmp = os.path.join(flood_folder, "{:s}.nc.tmp".format(case_name)) inun_file = os.path.join(flood_folder, "{:s}.nc".format(case_name)) hand_temp_file = os.path.join(flood_folder, "hand_temp.map") drainage_temp_file = os.path.join(flood_folder, "drainage_temp.map") stream_temp_file = os.path.join(flood_folder, "stream_temp.map") flood_vol_temp_file = os.path.join(flood_folder, "flood_warp_temp.tif") # load the data with river levels and compute the volumes if options.file_format == 0: # assume we need the maximum value in a NetCDF time series grid logger.info("Reading flood from {:s} NetCDF file".format(options.flood_map)) a = nc.Dataset(options.flood_map, "r") if options.latlon == 0: xax = a.variables["x"][:] yax = a.variables["y"][:] else: try: xax = a.variables["lon"][:] yax = a.variables["lat"][:] except: xax = a.variables["x"][:] yax = a.variables["y"][:] if options.time == "": time_list = nc.num2date( a.variables["time"][:], units=a.variables["time"].units, calendar=a.variables["time"].calendar, ) time = [time_list[len(time_list) / 2]] else: time = [dt.datetime.strptime(options.time, "%Y%m%d%H%M%S")] flood_series = a.variables[options.flood_variable][:] flood_data = flood_series.max(axis=0) if np.ma.is_masked(flood_data): flood = flood_data.data flood[flood_data.mask] = 0 if yax[-1] > yax[0]: yax = np.flipud(yax) flood = np.flipud(flood) a.close() elif options.file_format == 1: logger.info("Reading flood from {:s} PCRaster file".format(options.flood_map)) xax, yax, flood, flood_fill_value = inun_lib.gdal_readmap( options.flood_map, "PCRaster", logging=logger ) flood = np.ma.masked_equal(flood, flood_fill_value) if options.time == "": options.time = "20000101000000" time = [dt.datetime.strptime(options.time, "%Y%m%d%H%M%S")] flood[flood == flood_fill_value] = 0. # load the bankfull depths if options.bankfull_map == "": bankfull = np.zeros(flood.shape) else: if options.file_format == 0: logger.info( "Reading bankfull from {:s} NetCDF file".format(options.bankfull_map) ) a = nc.Dataset(options.bankfull_map, "r") xax = a.variables["x"][:] yax = a.variables["y"][:] # xax = a.variables['lon'][:] # yax = a.variables['lat'][:] bankfull_series = a.variables[options.flood_variable][:] bankfull_data = bankfull_series.max(axis=0) if np.ma.is_masked(bankfull_data): bankfull = bankfull_data.data bankfull[bankfull_data.mask] = 0 if yax[-1] > yax[0]: yax = np.flipud(yax) bankfull = np.flipud(bankfull) a.close() elif options.file_format == 1: logger.info( "Reading bankfull from {:s} PCRaster file".format(options.bankfull_map) ) xax, yax, bankfull, bankfull_fill_value = inun_lib.gdal_readmap( options.bankfull_map, "PCRaster", logging=logger ) bankfull = np.ma.masked_equal(bankfull, bankfull_fill_value) # flood = bankfull*2 # res_x = 2000 # res_y = 2000 # subtract the bankfull water level to get flood levels (above bankfull) flood_vol = np.maximum(flood - bankfull, 0) if options.flood_volume_type == 0: flood_vol_m = ( riv_length * riv_width * flood_vol / cell_surface_wflow ) # volume expressed in meters water disc flood_vol_m_pcr = pcr.numpy2pcr(pcr.Scalar, flood_vol_m, 0) else: flood_vol_m = flood_vol / cell_surface_wflow flood_vol_m_data = flood_vol_m.data flood_vol_m_data[flood_vol_m.mask] = -999. logger.info("Saving water layer map to {:s}".format(flood_vol_map)) # write to a tiff file inun_lib.gdal_writemap( flood_vol_map, "GTiff", xax, yax, np.maximum(flood_vol_m_data, 0), -999., logging=logger, ) # this is placed later in the hand loop # ds_hand, rasterband_hand = inun_lib.get_gdal_rasterband(hand_file) ds_ldd, rasterband_ldd = inun_lib.get_gdal_rasterband(options.ldd_file) ds_stream, rasterband_stream = inun_lib.get_gdal_rasterband(options.stream_file) logger.info("Preparing flood map in {:s} ...please wait...".format(inun_file)) if options.out_format == 0: ds_inun, band_inun = inun_lib.prepare_gdal( inun_file_tmp, x, y, logging=logger, srs=srs ) # band_inun = ds_inun.GetRasterBand(1) else: ds_inun, band_inun = inun_lib.prepare_nc( inun_file_tmp, time, x, np.flipud(y), metadata=metadata_global, metadata_var=metadata_var, logging=logger, ) # loop over all the tiles n = 0 for x_loop in range(0, len(x), options.x_tile): x_start = np.maximum(x_loop, 0) x_end = np.minimum(x_loop + options.x_tile, len(x)) # determine actual overlap for cutting for y_loop in range(0, len(y), options.y_tile): x_overlap_min = x_start - np.maximum(x_start - options.x_overlap, 0) x_overlap_max = np.minimum(x_end + options.x_overlap, len(x)) - x_end n += 1 # print('tile {:001d}:'.format(n)) y_start = np.maximum(y_loop, 0) y_end = np.minimum(y_loop + options.y_tile, len(y)) y_overlap_min = y_start - np.maximum(y_start - options.y_overlap, 0) y_overlap_max = np.minimum(y_end + options.y_overlap, len(y)) - y_end x_tile_ax = x[x_start - x_overlap_min : x_end + x_overlap_max] y_tile_ax = y[y_start - y_overlap_min : y_end + y_overlap_max] # cut out DEM logger.debug( "handling xmin: {:d} xmax: {:d} ymin {:d} ymax {:d}".format( x_start, x_end, y_start, y_end ) ) drainage = rasterband_ldd.ReadAsArray( x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min), ) stream = rasterband_stream.ReadAsArray( x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min), ) # stream_max = np.minimum(stream.max(), options.max_strahler) inun_lib.gdal_writemap( drainage_temp_file, "PCRaster", x_tile_ax, y_tile_ax, drainage, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger, ) inun_lib.gdal_writemap( stream_temp_file, "PCRaster", x_tile_ax, y_tile_ax, stream, rasterband_stream.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger, ) # read as pcr objects pcr.setclone(stream_temp_file) drainage_pcr = pcr.lddrepair( pcr.ldd(pcr.readmap(drainage_temp_file)) ) # convert to ldd type map stream_pcr = pcr.scalar( pcr.readmap(stream_temp_file) ) # convert to ldd type map # warp of flood volume to inundation resolution inun_lib.gdal_warp( flood_vol_map, stream_temp_file, flood_vol_temp_file, gdal_interp=gdalconst.GRA_NearestNeighbour, ) # , x_tile_ax, y_tile_ax, flood_meter, fill_value = inun_lib.gdal_readmap( flood_vol_temp_file, "GTiff", logging=logger ) # make sure that the option unittrue is on !! (if unitcell was is used in another function) x_res_tile, y_res_tile, reallength = pcrut.detRealCellLength( pcr.scalar(stream_pcr), not (bool(options.latlon)) ) cell_surface_tile = pcr.pcr2numpy(x_res_tile * y_res_tile, 0) # convert meter depth to volume [m3] flood_vol = pcr.numpy2pcr( pcr.Scalar, flood_meter * cell_surface_tile, fill_value ) # first prepare a basin map, belonging to the lowest order we are looking at inundation_pcr = pcr.scalar(stream_pcr) * 0 for hand_strahler in range(options.catchment_strahler, stream_max + 1, 1): # hand_temp_file = os.path.join(flood_folder, 'hand_temp.map') if os.path.isfile( os.path.join( options.dest_path, "{:s}_hand_strahler_{:02d}.tif".format(dem_name, hand_strahler), ) ): hand_file = os.path.join( options.dest_path, "{:s}_hand_strahler_{:02d}.tif".format(dem_name, hand_strahler), ) else: hand_file = "{:s}_{:02d}.tif".format( options.hand_file_prefix, hand_strahler ) ds_hand, rasterband_hand = inun_lib.get_gdal_rasterband(hand_file) hand = rasterband_hand.ReadAsArray( x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min), ) print ( "len x-ax: {:d} len y-ax {:d} x-shape {:d} y-shape {:d}".format( len(x_tile_ax), len(y_tile_ax), hand.shape[1], hand.shape[0] ) ) inun_lib.gdal_writemap( hand_temp_file, "PCRaster", x_tile_ax, y_tile_ax, hand, rasterband_hand.GetNoDataValue(), gdal_type=gdal.GDT_Float32, logging=logger, ) hand_pcr = pcr.readmap(hand_temp_file) stream_ge_hand, subcatch_hand = inun_lib.subcatch_stream( drainage_pcr, options.catchment_strahler, stream=stream_pcr ) # stream_ge_hand, subcatch_hand = inun_lib.subcatch_stream(drainage_pcr, hand_strahler, stream=stream_pcr) stream_ge, subcatch = inun_lib.subcatch_stream( drainage_pcr, options.catchment_strahler, stream=stream_pcr, basin=pcr.boolean(pcr.cover(subcatch_hand, 0)), assign_existing=True, min_strahler=hand_strahler, max_strahler=hand_strahler, ) # generate subcatchments, only within basin for HAND flood_vol_strahler = pcr.ifthenelse( pcr.boolean(pcr.cover(subcatch, 0)), flood_vol, 0 ) # mask the flood volume map with the created subcatch map for strahler order = hand_strahler inundation_pcr_step = inun_lib.volume_spread( drainage_pcr, hand_pcr, pcr.subcatchment( drainage_pcr, subcatch ), # to make sure backwater effects can occur from higher order rivers to lower order rivers flood_vol_strahler, volume_thres=0., iterations=options.iterations, cell_surface=pcr.numpy2pcr(pcr.Scalar, cell_surface_tile, -9999), logging=logger, order=hand_strahler, neg_HAND=options.neg_HAND, ) # 1166400000. # use maximum value of inundation_pcr_step and new inundation for higher strahler order inundation_pcr = pcr.max(inundation_pcr, inundation_pcr_step) inundation = pcr.pcr2numpy(inundation_pcr, -9999.) # cut relevant part if y_overlap_max == 0: y_overlap_max = -inundation.shape[0] if x_overlap_max == 0: x_overlap_max = -inundation.shape[1] inundation_cut = inundation[ 0 + y_overlap_min : -y_overlap_max, 0 + x_overlap_min : -x_overlap_max ] # inundation_cut if options.out_format == 0: band_inun.WriteArray(inundation_cut, x_start, y_start) band_inun.FlushCache() else: # with netCDF, data is up-side-down. inun_lib.write_tile_nc(band_inun, inundation_cut, x_start, y_start) # clean up os.unlink(flood_vol_temp_file) os.unlink(drainage_temp_file) os.unlink(hand_temp_file) os.unlink( stream_temp_file ) # also remove temp stream file from output folder # if n == 35: # band_inun.SetNoDataValue(-9999.) # ds_inun = None # sys.exit(0) # os.unlink(flood_vol_map) logger.info("Finalizing {:s}".format(inun_file)) # add the metadata to the file and band # band_inun.SetNoDataValue(-9999.) # ds_inun.SetMetadata(metadata_global) # band_inun.SetMetadata(metadata_var) if options.out_format == 0: ds_inun = None ds_hand = None else: ds_inun.close() ds_ldd = None # rename temporary file to final hand file if os.path.isfile(inun_file): # remove an old result if available os.unlink(inun_file) os.rename(inun_file_tmp, inun_file) logger.info("Done! Thank you for using hand_contour_inun.py") logger, ch = inun_lib.closeLogger(logger, ch) del logger, ch sys.exit(0)
def __init__(self, iniItems, landmask): object.__init__(self) # cloneMap, temporary directory for the resample process, temporary directory for the modflow process, absolute path for input directory, landmask self.cloneMap = iniItems.cloneMap self.tmpDir = iniItems.tmpDir self.tmp_modflow_dir = iniItems.tmp_modflow_dir self.inputDir = iniItems.globalOptions['inputDir'] self.landmask = landmask # configuration from the ini file self.iniItems = iniItems # topography properties: read several variables from the netcdf file for var in ['dem_minimum','dem_maximum','dem_average','dem_standard_deviation',\ 'slopeLength','orographyBeta','tanslope',\ 'dzRel0000','dzRel0001','dzRel0005',\ 'dzRel0010','dzRel0020','dzRel0030','dzRel0040','dzRel0050',\ 'dzRel0060','dzRel0070','dzRel0080','dzRel0090','dzRel0100']: vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['topographyNC'], \ var, self.cloneMap) vars(self)[var] = pcr.cover(vars(self)[var], 0.0) # channel properties: read several variables from the netcdf file for var in ['lddMap','cellAreaMap','gradient','bankfull_width', 'bankfull_depth','dem_floodplain','dem_riverbed']: vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['channelNC'], \ var, self.cloneMap) vars(self)[var] = pcr.cover(vars(self)[var], 0.0) # minimum channel width minimum_channel_width = 0.5 # TODO: Define this one in the configuration file self.bankfull_width = pcr.max(minimum_channel_width, self.bankfull_width) #~ # cell fraction if channel water reaching the flood plan # NOT USED YET #~ self.flood_plain_fraction = self.return_innundation_fraction(pcr.max(0.0, self.dem_floodplain - self.dem_minimum)) # coefficient of Manning self.manningsN = vos.readPCRmapClone(self.iniItems.modflowParameterOptions['manningsN'],\ self.cloneMap,self.tmpDir,self.inputDir) # minimum channel gradient minGradient = 0.00005 # TODO: Define this one in the configuration file self.gradient = pcr.max(minGradient, pcr.cover(self.gradient, minGradient)) # correcting lddMap self.lddMap = pcr.ifthen(pcr.scalar(self.lddMap) > 0.0, self.lddMap) self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) # channelLength = approximation of channel length (unit: m) # This is approximated by cell diagonal. cellSizeInArcMin = np.round(pcr.clone().cellSize()*60.) # FIXME: This one will not work if you use the resolution: 0.5, 1.5, 2.5 arc-min verticalSizeInMeter = cellSizeInArcMin*1852. horizontalSizeInMeter = self.cellAreaMap/verticalSizeInMeter self.channelLength = ((horizontalSizeInMeter)**(2)+\ (verticalSizeInMeter)**(2))**(0.5) # option for lakes and reservoir self.onlyNaturalWaterBodies = False if self.iniItems.modflowParameterOptions['onlyNaturalWaterBodies'] == "True": self.onlyNaturalWaterBodies = True # groundwater linear recession coefficient (day-1) ; the linear reservoir concept is still being used to represent fast response flow # particularly from karstic aquifer in mountainous regions self.recessionCoeff = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\ 'recessionCoeff', self.cloneMap) self.recessionCoeff = pcr.cover(self.recessionCoeff,0.00) self.recessionCoeff = pcr.min(1.0000,self.recessionCoeff) # if 'minRecessionCoeff' in iniItems.modflowParameterOptions.keys(): minRecessionCoeff = float(iniItems.modflowParameterOptions['minRecessionCoeff']) else: minRecessionCoeff = 1.0e-4 # This is the minimum value used in Van Beek et al. (2011). self.recessionCoeff = pcr.max(minRecessionCoeff,self.recessionCoeff) # aquifer saturated conductivity (m/day) self.kSatAquifer = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\ 'kSatAquifer', self.cloneMap) self.kSatAquifer = pcr.cover(self.kSatAquifer,pcr.mapmaximum(self.kSatAquifer)) self.kSatAquifer = pcr.max(0.001,self.kSatAquifer) # TODO: Define the minimum value as part of the configuration file # aquifer specific yield (dimensionless) self.specificYield = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\ 'specificYield', self.cloneMap) self.specificYield = pcr.cover(self.specificYield,pcr.mapmaximum(self.specificYield)) self.specificYield = pcr.max(0.010,self.specificYield) # TODO: TO BE CHECKED: The resample process of specificYield self.specificYield = pcr.min(1.000,self.specificYield) # TODO: Define the minimum value as part of the configuration file # estimate of thickness (unit: m) of accesible groundwater totalGroundwaterThickness = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['estimateOfTotalGroundwaterThicknessNC'],\ 'thickness', self.cloneMap) # extrapolation totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\ pcr.windowaverage(totalGroundwaterThickness, 1.0)) totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\ pcr.windowaverage(totalGroundwaterThickness, 1.5)) totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness, 0.0) # # set minimum thickness minimumThickness = pcr.scalar(float(\ self.iniItems.modflowParameterOptions['minimumTotalGroundwaterThickness'])) totalGroundwaterThickness = pcr.max(minimumThickness, totalGroundwaterThickness) # # set maximum thickness: 250 m. # TODO: Define this one as part of the ini file maximumThickness = 250. self.totalGroundwaterThickness = pcr.min(maximumThickness, totalGroundwaterThickness) # TODO: Define the maximum value as part of the configuration file # surface water bed thickness (unit: m) bed_thickness = 0.1 # TODO: Define this as part of the configuration file # surface water bed resistance (unit: day) bed_resistance = bed_thickness / (self.kSatAquifer) minimum_bed_resistance = 1.0 # TODO: Define this as part of the configuration file self.bed_resistance = pcr.max(minimum_bed_resistance,\ bed_resistance,) # option to ignore capillary rise self.ignoreCapRise = True if self.iniItems.modflowParameterOptions['ignoreCapRise'] == "False": self.ignoreCapRise = False # a variable to indicate if the modflow has been called or not self.modflow_has_been_called = False # list of the convergence criteria for HCLOSE (unit: m) # - Deltares default's value is 0.001 m # check this value with Jarno self.criteria_HCLOSE = [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] self.criteria_HCLOSE = sorted(self.criteria_HCLOSE) # list of the convergence criteria for RCLOSE (unit: m3) # - Deltares default's value for their 25 and 250 m resolution models is 10 m3 # check this value with Jarno cell_area_assumption = verticalSizeInMeter * float(pcr.cellvalue(pcr.mapmaximum(horizontalSizeInMeter),1)[0]) self.criteria_RCLOSE = [10., 10.* cell_area_assumption/(250.*250.), 10.* cell_area_assumption/(25.*25.)] self.criteria_RCLOSE = sorted(self.criteria_RCLOSE) # initiate the index for HCLOSE and RCLOSE self.iteration_HCLOSE = 0 self.iteration_RCLOSE = 0 # initiate old style reporting # TODO: remove this! self.initiate_old_style_groundwater_reporting(iniItems)
def __init__(self, iniItems, landmask, Dir, cloneMap, tmpDir): object.__init__(self) # clone map file names, temporary directory and global/absolute path of input directory self.cloneMap = cloneMap # iniItems.cloneMap self.tmpDir = tmpDir # iniItems.tmpDir self.inputDir = Dir # iniItems.globalOptions['inputDir'] self.landmask = landmask # local drainage direction: self.lddMap = vos.readPCRmapClone( iniItems.get("routingOptions", "lddMap"), self.cloneMap, self.tmpDir, self.inputDir, True, ) self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) self.lddMap = pcr.lddrepair(self.lddMap) # option to activate water balance check self.debugWaterBalance = True if ( configget(iniItems, "routingOptions", "debugWaterBalance", "True") == "False" ): self.debugWaterBalance = False # option to perform a run with only natural lakes (without reservoirs) self.onlyNaturalWaterBodies = False if ( "onlyNaturalWaterBodies" in iniItems._sections["routingOptions"] and configget(iniItems, "routingOptions", "onlyNaturalWaterBodies", "False") == "True" ): logger.info( "Using only natural water bodies identified in the year 1900. All reservoirs in 1900 are assumed as lakes." ) self.onlyNaturalWaterBodies = True self.dateForNaturalCondition = ( "1900-01-01" ) # The run for a natural condition should access only this date. # names of files containing water bodies parameters if configget(iniItems, "routingOptions", "waterBodyInputNC", "None") == str( None ): self.useNetCDF = False self.fracWaterInp = iniItems.get("routingOptions", "fracWaterInp") self.waterBodyIdsInp = iniItems.get("routingOptions", "waterBodyIds") self.waterBodyTypInp = iniItems.get("routingOptions", "waterBodyTyp") self.resMaxCapInp = iniItems.get("routingOptions", "resMaxCapInp") self.resSfAreaInp = iniItems.get("routingOptions", "resSfAreaInp") else: self.useNetCDF = True self.ncFileInp = vos.getFullPath( iniItems.get("routingOptions", "waterBodyInputNC"), self.inputDir ) # minimum width (m) used in the weir formula # TODO: define minWeirWidth based on the GLWD, GRanD database and/or bankfull discharge formula self.minWeirWidth = 10.0 # lower and upper limits at which reservoir release is terminated and # at which reservoir release is equal to long-term average outflow self.minResvrFrac = 0.10 self.maxResvrFrac = 0.75
call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', rivers_tif, rivers_map)) call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', outlets_tif, outlets_map)) # burn the layers in DEM outletsburn = pcr.scalar(pcr.readmap(outlets_map)) * pcr.scalar(burn_outlets) connectionsburn = pcr.scalar( pcr.readmap(connections_map)) * pcr.scalar(burn_connections) riverburn = pcr.scalar(pcr.readmap(rivers_map)) * pcr.scalar(burn_rivers) ldddem = pcr.cover(dem_resample_map, pcr.ifthen(riverburn > 0, pcr.scalar(0))) ldddem = ldddem - outletsburn - connectionsburn - riverburn ldddem = pcr.cover(ldddem, pcr.scalar(0)) pcr.report(ldddem, workdir + "dem_burn.map") ''' create ldd for multi-catchments ''' ldd = pcr.ldd(empty) # reproject catchment shape-file ds = ogr.Open(catchshp) file_att = os.path.splitext(os.path.basename(catchshp))[0] lyr = ds.GetLayerByName(file_att) spatialref = lyr.GetSpatialRef() # if not spatialref == None: # srs = osr.SpatialReference() # srs.ImportFromWkt(spatialref.ExportToWkt()) # srs.AutoIdentifyEPSG() # catchshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) # spatialref == None # else: catchshp_EPSG = clone_EPSG print 'No projection defined for ' + file_att + '.shp' print 'Assumed to be the same as model projection (' + clone_EPSG + ')'
def main(): # output folder clean_out_folder = True if os.path.exists(out_folder): if clean_out_folder: shutil.rmtree(out_folder) os.makedirs(out_folder) else: os.makedirs(out_folder) os.chdir(out_folder) os.system("pwd") # tmp folder tmp_folder = out_folder + "/tmp/" if os.path.exists(tmp_folder): shutil.rmtree(tmp_folder) os.makedirs(tmp_folder) # set the clone map print("set the clone map") pcr.setclone(global_clone_map_file) # read ldd map print("define the ldd") # ~ ldd_map = pcr.readmap(global_ldd_inp_file) ldd_map = pcr.lddrepair(pcr.lddrepair(pcr.ldd(vos.readPCRmapClone(v = global_ldd_inp_file, \ cloneMapFileName = global_clone_map_file, \ tmpDir = tmp_folder, \ absolutePath = None, \ isLddMap = True, \ cover = None, \ isNomMap = False)))) # define the landmask if landmask_map_file == None: print("define the landmask based on the ldd input") # ~ landmask = pcr.defined(pcr.readmap(global_ldd_inp_file)) landmask = pcr.defined(ldd_map) landmask = pcr.ifthen(landmask, landmask) else: print("define the landmask based on the input landmask_map_file") landmask = pcr.readmap(landmask_map_file) ldd_map = pcr.ifthen(landmask, pcr.cover(ldd_map, pcr.ldd(5))) ldd_map = pcr.lddrepair(pcr.lddrepair(pcr.ldd(ldd_map))) landmask = pcr.defined(ldd_map) landmask = pcr.ifthen(landmask, landmask) # save ldd files used # - global ldd cmd = "cp " + str(global_ldd_inp_file) + " ." print(cmd) os.system(cmd) # - ldd map that is used pcr.report(ldd_map, "lddmap_used.map") # make catchment map print("make catchment map") catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map)) # read global subdomain file print("read global subdomain file") global_subdomain_map = vos.readPCRmapClone( v=global_subdomain_file, cloneMapFileName=global_clone_map_file, tmpDir=tmp_folder, absolutePath=None, isLddMap=False, cover=None, isNomMap=True) # set initial subdomain print("assign subdomains to all catchments") subdomains_initial = pcr.areamajority(global_subdomain_map, catchment_map) subdomains_initial = pcr.ifthen(landmask, subdomains_initial) pcr.aguila(subdomains_initial) pcr.report(subdomains_initial, "global_subdomains_initial.map") print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[0]))) print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1]))) print("Checking all subdomains, avoid too large subdomains") num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1]) # clone code that will be assigned assigned_number = 0 subdomains_final = pcr.ifthen( pcr.scalar(subdomains_initial) < -7777, pcr.nominal(0)) for nr in range(1, num_of_masks + 1, 1): msg = "Processing the landmask %s" % (str(nr)) print(msg) mask_selected_boolean = pcr.ifthen(subdomains_initial == nr, pcr.boolean(1.0)) process_this_clone = False if pcr.cellvalue(pcr.mapmaximum(pcr.scalar(mask_selected_boolean)), 1, 1)[0] > 0: process_this_clone = True # ~ if nr == 1: pcr.aguila(mask_selected_boolean) # - initial check value check_ok = True if process_this_clone: xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean) area_in_degree2 = (xmax - xmin) * (ymax - ymin) # ~ print(str(area_in_degree2)) # check whether the size of bounding box is ok reference_area_in_degree2 = 2500. if area_in_degree2 > 1.50 * reference_area_in_degree2: check_ok = False if (xmax - xmin) > 10 * (ymax - ymin): check_ok = False # ~ # ignore checking # ~ check_ok = True if check_ok == True and process_this_clone == True: msg = "Clump is not needed." msg = "\n\n" + str(msg) + "\n\n" print(msg) # assign the clone code assigned_number = assigned_number + 1 # update global landmask for river and land mask_selected_nominal = pcr.ifthen(mask_selected_boolean, pcr.nominal(assigned_number)) subdomains_final = pcr.cover(subdomains_final, mask_selected_nominal) if check_ok == False and process_this_clone == True: msg = "Clump is needed." msg = "\n\n" + str(msg) + "\n\n" print(msg) # make clump clump_ids = pcr.nominal(pcr.clump(mask_selected_boolean)) # merge clumps that are close together clump_ids_window_majority = pcr.windowmajority(clump_ids, 10.0) clump_ids = pcr.areamajority(clump_ids_window_majority, clump_ids) # ~ pcr.aguila(clump_ids) # minimimum and maximum values min_clump_id = int( pcr.cellvalue(pcr.mapminimum(pcr.scalar(clump_ids)), 1)[0]) max_clump_id = int( pcr.cellvalue(pcr.mapmaximum(pcr.scalar(clump_ids)), 1)[0]) for clump_id in range(min_clump_id, max_clump_id + 1, 1): msg = "Processing the clump %s of %s from the landmask %s" % ( str(clump_id), str(max_clump_id), str(nr)) msg = "\n\n" + str(msg) + "\n\n" print(msg) # identify mask based on the clump mask_selected_boolean_from_clump = pcr.ifthen( clump_ids == pcr.nominal(clump_id), mask_selected_boolean) mask_selected_boolean_from_clump = pcr.ifthen( mask_selected_boolean_from_clump, mask_selected_boolean_from_clump) # check whether the clump is empty check_mask_selected_boolean_from_clump = pcr.ifthen( mask_selected_boolean, mask_selected_boolean_from_clump) check_if_empty = float( pcr.cellvalue( pcr.mapmaximum( pcr.scalar( pcr.defined( check_mask_selected_boolean_from_clump))), 1)[0]) if check_if_empty == 0.0: msg = "Map is empty !" msg = "\n\n" + str(msg) + "\n\n" print(msg) else: msg = "Map is NOT empty !" msg = "\n\n" + str(msg) + "\n\n" print(msg) # assign the clone code assigned_number = assigned_number + 1 # update global landmask for river and land mask_selected_nominal = pcr.ifthen( mask_selected_boolean_from_clump, pcr.nominal(assigned_number)) subdomains_final = pcr.cover(subdomains_final, mask_selected_nominal) # ~ # kill all aguila processes if exist # ~ os.system('killall aguila') pcr.aguila(subdomains_final) print("") print("") print("") print("The subdomain map is READY.") pcr.report(subdomains_final, "global_subdomains_final.map") num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_final))[1]) print(num_of_masks) print("") print("") print("") print("Making the clone and landmask maps for all subdomains") num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_final))[1]) # clone and mask folders clone_folder = out_folder + "/clone/" if os.path.exists(clone_folder): shutil.rmtree(clone_folder) os.makedirs(clone_folder) mask_folder = out_folder + "/mask/" if os.path.exists(mask_folder): shutil.rmtree(mask_folder) os.makedirs(mask_folder) print("") print("") for nr in range(1, num_of_masks + 1, 1): msg = "Processing the subdomain %s" % (str(nr)) print(msg) # set the global clone pcr.setclone(global_clone_map_file) mask_selected_boolean = pcr.ifthen(subdomains_final == nr, pcr.boolean(1.0)) mask_selected_nominal = pcr.ifthen(subdomains_final == nr, pcr.nominal(nr)) mask_file = "mask/mask_%s.map" % (str(nr)) pcr.report(mask_selected_nominal, mask_file) xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean) area_in_degree2 = (xmax - xmin) * (ymax - ymin) print( str(nr) + " ; " + str(area_in_degree2) + " ; " + str((xmax - xmin)) + " ; " + str((ymax - ymin))) # cellsize in arcdegree cellsize = cellsize_in_arcmin / 60. # number of rows and cols num_rows = int(round(ymax - ymin) / cellsize) num_cols = int(round(xmax - xmin) / cellsize) # make the clone map using mapattr clonemap_mask_file = "clone/clonemap_mask_%s.map" % (str(nr)) cmd = "mapattr -s -R %s -C %s -B -P yb2t -x %s -y %s -l %s %s" % ( str(num_rows), str(num_cols), str(xmin), str(ymax), str(cellsize), clonemap_mask_file) print(cmd) os.system(cmd) # set the local landmask for the clump pcr.setclone(clonemap_mask_file) local_mask = vos.readPCRmapClone(v = mask_file, \ cloneMapFileName = clonemap_mask_file, tmpDir = tmp_folder, \ absolutePath = None, isLddMap = False, cover = None, isNomMap = True) local_mask_boolean = pcr.defined(local_mask) local_mask_boolean = pcr.ifthen(local_mask_boolean, local_mask_boolean) pcr.report(local_mask_boolean, mask_file) print("") print("") print("") print(num_of_masks)
def loadmap(name, pcr=False, lddflag=False, timestampflag='exact', averageyearflag=False): """ Load a static map either value or pcraster map or netcdf (single or stack) Load a static map either value or pcraster map or netcdf (single or stack) If a netCDF stack is loaded, map is read according to timestepInit date (i.e. model time step). If timestepInit is a step number, step number is converted to date (referred to CalendarDayStart in settings.xml). Then date is used to read time step from netCDF file. if timestampflag = 'closest' and loadmap is reading a NetCDF stack, the timestep with the closest timestamp will be loaded if the exact one is not available. :param name: name of key in Settings.xml input file containing path and name of the map file (as string) :param pcr: flag for output maps in pcraster format :param lddflag: flag for local drain direction map (CM??) :param timestampflag: look for exact time stamp in netcdf file ('exact') or for the closest (left) time stamp available ('closest') :param averageyearflag: if True, use "average year" netcdf file over the entire model simulation period :return: map or mapC :except: pcr: maps must have the same size of clone.map netCDF: time step timestepInit must be included into the stack """ # name of the key in Settimgs.xml file containing path and name of the map file settings = LisSettings.instance() binding = settings.binding flags = settings.flags value = binding[name] # path and name of the map file filename = value load = False pcrmap = False # try reading in PCRaster map format try: # try reading constant value mapC = float(value) flagmap = False load = True if pcr: map = mapC except ValueError: try: # try reading pcraster map exploiting the iterAccess class map = iterReadPCRasterMap(value) flagmap = True load = True pcrmap = True except: load = False if load and pcrmap: #map is loaded and it is in pcraster format try: # test if map is same size as clone map, if not it will make an error test = pcraster.scalar(map) + pcraster.scalar(map) except: raise LisfloodError( "{} might be of a different size than clone size".format( value)) # if failed before try reading from netCDF map format if not load: # read a netcdf (single one not a stack) filename = os.path.splitext(value)[0] + '.nc' # get mapextend of netcdf map and calculate the cutting cut0, cut1, cut2, cut3 = mapattrNetCDF(filename) # load netcdf map but only the rectangle needed nf1 = iterOpenNetcdf(filename, "", 'r') value = listitems(nf1.variables)[-1][0] # get the last variable name (it must be the variable to be read by Lisflood) if not settings.timestep_init: # if timestep_init is missing, read netcdf as single static map mapnp = nf1.variables[value][cut2:cut3, cut0:cut1] else: if 'time' in nf1.variables: # read a netcdf (stack) - state files # get information from netCDF stack t_steps = nf1.variables[ 'time'][:] # get values for timesteps ([ 0., 24., 48., 72., 96.]) t_unit = nf1.variables[ 'time'].units # get unit (u'hours since 2015-01-01 06:00:00') t_cal = get_calendar_type(nf1) # get year from time unit in case average year is used if averageyearflag: # get date of the first step in netCDF file containing average year values first_date = num2date(t_steps[0], t_unit, t_cal) # get year of the first step in netCDF file containing average year values t_ref_year = first_date.year # select timestep to use for reading from netCDF stack based on timestep_init (state file time step) timestepI = calendar(settings.timestep_init, binding['calendar_type']) if isinstance(timestepI, datetime.datetime): #reading dates in XML settings file # get step id number in netCDF stack for timestepInit date if averageyearflag: #if using an average year don't care about the year in timestepIDate and change it to the netCDF first time step year try: timestepI = timestepI.replace(year=t_ref_year) except: timestepI = timestepI.replace(day=28) timestepI = timestepI.replace(year=t_ref_year) timestepI = date2num(timestepI, nf1.variables['time'].units) else: # reading step numbers in XML file # timestepI = int(timestepI) -1 begin = calendar(binding['CalendarDayStart']) DtSec = float(binding['DtSec']) DtDay = DtSec / 86400. # Time step, expressed as fraction of day (same as self.var.DtSec and self.var.DtDay) # get date for step number timestepI (referred to CalendarDayStart) timestepIDate = begin + datetime.timedelta( days=(timestepI - 1) * DtDay) # get step id number in netCDF stack for step timestepInit # timestepInit refers to CalenradDayStart # timestepI now refers to first date in netCDF stack if averageyearflag: #using an average year, don't care about the year in timestepIDate and change it to the netCDF time unit year try: timestepIDate = timestepIDate.replace( year=t_ref_year) except: #if simulation year is leap and average year is not, switch 29/2 with 28/2 timestepIDate = timestepIDate.replace(day=28) timestepIDate = timestepIDate.replace( year=t_ref_year) timestepI = date2num(timestepIDate, units=t_unit, calendar=t_cal) if not (timestepI in nf1.variables['time'][:]): if timestampflag == 'exact': #look for exact time stamp when loading data msg = "time step " + str(int( timestepI) + 1) + " is not stored in " + filename raise LisfloodError(msg) elif timestampflag == 'closest': #get the closest value timestepInew = takeClosest(t_steps, timestepI) #set timestepI to the closest available time step in netCDF file timestepI = timestepInew itime = np.where(nf1.variables['time'][:] == timestepI)[0][0] mapnp = nf1.variables[value][itime, cut2:cut3, cut0:cut1] else: # read a netcdf (single one) mapnp = nf1.variables[value][cut2:cut3, cut0:cut1] # masking try: maskinfo = MaskInfo.instance() mapnp.mask = maskinfo.info.mask except (KeyError, AttributeError): pass nf1.close() # if a map should be pcraster if pcr: # check if integer map (like outlets, lakes etc checkint = str(mapnp.dtype) if checkint == "int16" or checkint == "int32": mapnp[mapnp.mask] = -9999 map = numpy2pcr(Nominal, mapnp, -9999) elif checkint == "int8": mapnp[mapnp < 0] = -9999 map = numpy2pcr(Nominal, mapnp, -9999) else: mapnp[np.isnan(mapnp)] = -9999 map = numpy2pcr(Scalar, mapnp, -9999) # if the map is a ldd if lddflag: map = pcraster.ldd(pcraster.nominal(map)) else: mapC = compressArray(mapnp, pcr=False, name=filename) flagmap = True # pcraster map but it has to be an array if pcrmap and not pcr: mapC = compressArray(map, name=filename) if flags['checkfiles']: print(name, filename) if flagmap == False: checkmap(name, filename, mapC, flagmap, 0) elif pcr: checkmap(name, filename, map, flagmap, 0) else: print(name, mapC.size) if mapC.size > 0: map = decompress(mapC) checkmap(name, filename, map, flagmap, 0) if pcr: if flags['nancheck'] and name != 'Ldd': nanCheckMap(map, filename, name) return map elif isinstance(mapC, np.ndarray): return mapC.astype(float) else: if flags['nancheck'] and name != 'Ldd': nanCheckMap(mapC, filename, name) return mapC
def __init__(self, iniItems, landmask): object.__init__(self) # cloneMap, temporary directory, absolute path for input directory, landmask self.cloneMap = iniItems.cloneMap self.tmpDir = iniItems.tmpDir self.inputDir = iniItems.globalOptions['inputDir'] self.landmask = landmask # configuration from the ini file self.iniItems = iniItems # topography properties: read several variables from the netcdf file for var in ['dem_minimum','dem_maximum','dem_average','dem_standard_deviation',\ 'slopeLength','orographyBeta','tanslope',\ 'dzRel0000','dzRel0001','dzRel0005',\ 'dzRel0010','dzRel0020','dzRel0030','dzRel0040','dzRel0050',\ 'dzRel0060','dzRel0070','dzRel0080','dzRel0090','dzRel0100']: vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['topographyNC'], \ var, self.cloneMap) vars(self)[var] = pcr.cover(vars(self)[var], 0.0) # channel properties: read several variables from the netcdf file for var in [ 'lddMap', 'cellAreaMap', 'gradient', 'bankfull_width', 'bankfull_depth', 'dem_floodplain', 'dem_riverbed' ]: vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['channelNC'], \ var, self.cloneMap) vars(self)[var] = pcr.cover(vars(self)[var], 0.0) # minimum channel width minimum_channel_width = 0.1 self.bankfull_width = pcr.max(minimum_channel_width, self.bankfull_width) #~ # cell fraction if channel water reaching the flood plan # NOT USED #~ self.flood_plain_fraction = self.return_innundation_fraction(pcr.max(0.0, self.dem_floodplain - self.dem_minimum)) # coefficient of Manning self.manningsN = vos.readPCRmapClone(self.iniItems.modflowParameterOptions['manningsN'],\ self.cloneMap,self.tmpDir,self.inputDir) # minimum channel gradient minGradient = 0.00005 self.gradient = pcr.max(minGradient, pcr.cover(self.gradient, minGradient)) # correcting lddMap self.lddMap = pcr.ifthen(pcr.scalar(self.lddMap) > 0.0, self.lddMap) self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) # channelLength = approximation of channel length (unit: m) # This is approximated by cell diagonal. cellSizeInArcMin = np.round(pcr.clone().cellSize() * 60.) verticalSizeInMeter = cellSizeInArcMin * 1852. self.channelLength = ((self.cellAreaMap/verticalSizeInMeter)**(2)+\ (verticalSizeInMeter)**(2))**(0.5) # option for lakes and reservoir self.onlyNaturalWaterBodies = False if self.iniItems.modflowParameterOptions[ 'onlyNaturalWaterBodies'] == "True": self.onlyNaturalWaterBodies = True # groundwater linear recession coefficient (day-1) ; the linear reservoir concept is still being used to represent fast response flow # particularly from karstic aquifer in mountainous regions self.recessionCoeff = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\ 'recessionCoeff', self.cloneMap) self.recessionCoeff = pcr.cover(self.recessionCoeff, 0.00) self.recessionCoeff = pcr.min(1.0000, self.recessionCoeff) # if 'minRecessionCoeff' in iniItems.modflowParameterOptions.keys(): minRecessionCoeff = float( iniItems.modflowParameterOptions['minRecessionCoeff']) else: minRecessionCoeff = 1.0e-4 # This is the minimum value used in Van Beek et al. (2011). self.recessionCoeff = pcr.max(minRecessionCoeff, self.recessionCoeff) # aquifer saturated conductivity (m/day) self.kSatAquifer = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\ 'kSatAquifer', self.cloneMap) self.kSatAquifer = pcr.cover(self.kSatAquifer, pcr.mapmaximum(self.kSatAquifer)) self.kSatAquifer = pcr.max(0.010, self.kSatAquifer) self.kSatAquifer *= 0.001 # aquifer specific yield (dimensionless) self.specificYield = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\ 'specificYield', self.cloneMap) self.specificYield = pcr.cover(self.specificYield, pcr.mapmaximum(self.specificYield)) self.specificYield = pcr.max( 0.010, self.specificYield ) # TODO: TO BE CHECKED: The resample process of specificYield self.specificYield = pcr.min(1.000, self.specificYield) # estimate of thickness (unit: m) of accesible groundwater totalGroundwaterThickness = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['estimateOfTotalGroundwaterThicknessNC'],\ 'thickness', self.cloneMap) # extrapolation totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\ pcr.windowaverage(totalGroundwaterThickness, 1.0)) totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\ pcr.windowaverage(totalGroundwaterThickness, 1.5)) totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness, 0.0) # # set minimum thickness minimumThickness = pcr.scalar(float(\ self.iniItems.modflowParameterOptions['minimumTotalGroundwaterThickness'])) totalGroundwaterThickness = pcr.max(minimumThickness, totalGroundwaterThickness) # # set maximum thickness: 250 m. maximumThickness = 250. self.totalGroundwaterThickness = pcr.min(maximumThickness, totalGroundwaterThickness) # river bed resistance (unit: day) self.bed_resistance = 1.0 # option to ignore capillary rise self.ignoreCapRise = True if self.iniItems.modflowParameterOptions['ignoreCapRise'] == "False": self.ignoreCapRise = False # initiate old style reporting # TODO: remove this! self.initiate_old_style_groundwater_reporting(iniItems)
def __init__(self, modelTime, input_file, output_file, variable_name, variable_unit): DynamicModel.__init__(self) self.modelTime = modelTime # netcdf input file - based on PCR-GLOBWB output self.input_file = "/projects/0/dfguu/users/edwin/pcr-globwb-aqueduct/historical/1951-2005/gfdl-esm2m/temperature_annuaAvg_output_%s-12-31_to_%s-12-31.nc" self.input_file = input_file # output file - in netcdf format self.output_file = output_folder + "/mekong/basin_temperature_annuaAvg_output.nc" self.output_file = output_file # output variable name and unit self.variable_name = variable_name self.variable_unit = variable_unit # preparing temporary directory self.temporary_directory = output_folder + "/tmp/" os.makedirs(self.temporary_directory) # clone and landmask maps logger.info("Set the clone and landmask maps.") self.clonemap_file_name = "/projects/0/dfguu/users/edwinhs/data/mekong_etc_clone/version_2018-10-22/final/clone_mekong.map" pcr.setclone(self.clonemap_file_name) landmask_file_name = "/projects/0/dfguu/users/edwinhs/data/mekong_etc_clone/version_2018-10-22/final/mask_mekong.map" self.landmask = vos.readPCRmapClone(landmask_file_name, \ self.clonemap_file_name, \ self.temporary_directory, \ None, False, None, True) # pcraster input files # - river network map and sub-catchment map ldd_file_name = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/lddsound_05min.map" # - cell area (unit: m2) cell_area_file_name = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/cellsize05min.correct.map" # loading pcraster input maps self.ldd_network = vos.readPCRmapClone(ldd_file_name, \ self.clonemap_file_name, \ self.temporary_directory, \ None, \ True) self.ldd_network = pcr.lddrepair(pcr.ldd(self.ldd_network)) self.ldd_network = pcr.lddrepair(self.ldd_network) self.cell_area = vos.readPCRmapClone(cell_area_file_name, \ self.clonemap_file_name, \ self.temporary_directory, \ None) # set/limit all input maps to the defined landmask self.ldd_network = pcr.ifthen(self.landmask, self.ldd_network) self.cell_area = pcr.ifthen(self.landmask, self.cell_area) # calculate basin/catchment area self.basin_area = pcr.catchmenttotal(self.cell_area, self.ldd_network) self.basin_area = pcr.ifthen(self.landmask, self.basin_area) # preparing an object for reporting netcdf files: self.netcdf_report = netcdf_writer.PCR2netCDF(self.clonemap_file_name) # preparing netcdf output files: self.netcdf_report.createNetCDF(self.output_file, \ self.variable_name, \ self.variable_unit)
def main(): # output folder (and tmp folder) clean_out_folder = True if os.path.exists(out_folder): if clean_out_folder: shutil.rmtree(out_folder) os.makedirs(out_folder) else: os.makedirs(out_folder) os.chdir(out_folder) os.system("pwd") # set the clone map print("set the clone") pcr.setclone(global_ldd_30min_inp_file) # define the landmask print("define the landmask") # - based on the 30min input landmask_30min = define_landmask(input_file = global_landmask_30min_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_30min_only.map") # - based on the 05min input landmask_05min = define_landmask(input_file = global_landmask_05min_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_05min_only.map") # - based on the 06min input landmask_06min = define_landmask(input_file = global_landmask_06min_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_06min_only.map") # - based on the 30sec input landmask_30sec = define_landmask(input_file = global_landmask_30sec_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_30sec_only.map") # - based on the 30sec input landmask_03sec = define_landmask(input_file = global_landmask_03sec_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_03sec_only.map") # # - merge all landmasks landmask = pcr.cover(landmask_30min, landmask_05min, landmask_06min, landmask_30sec, landmask_03sec) pcr.report(landmask, "global_landmask_extended_30min.map") # ~ pcr.aguila(landmask) # extend ldd print("extend/define the ldd") ldd_map = pcr.readmap(global_ldd_30min_inp_file) ldd_map = pcr.ifthen(landmask, pcr.cover(ldd_map, pcr.ldd(5))) pcr.report(ldd_map, "global_ldd_extended_30min.map") # ~ pcr.aguila(ldd_map) # catchment map and size catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map)) catchment_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), catchment_map) # ~ pcr.aguila(catchment_size) # identify small islands print("identify small islands") # - maps of islands smaller than 15000 cells (at half arc degree resolution) island_map = pcr.ifthen(landmask, pcr.clump(pcr.defined(ldd_map))) island_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), island_map) island_map = pcr.ifthen(island_size < 15000., island_map) # ~ # - use catchments (instead of islands) # ~ island_map = catchment_map # ~ island_size = catchment_size # ~ island_map = pcr.ifthen(island_size < 10000., island_map) # - sort from the largest island # -- take one cell per island as a representative island_map_rep_size = pcr.ifthen( pcr.areaorder(island_size, island_map) == 1.0, island_size) # -- sort from the largest island island_map_rep_ids = pcr.areaorder( island_map_rep_size * -1.00, pcr.ifthen(pcr.defined(island_map_rep_size), pcr.nominal(1.0))) # -- map of smaller islands, sorted from the largest one island_map = pcr.areamajority(pcr.nominal(island_map_rep_ids), island_map) # identify the biggest island for every group of small islands within a certain window (arcdeg cells) print("the biggest island for every group of small islands") large_island_map = pcr.ifthen( pcr.scalar(island_map) == pcr.windowminimum(pcr.scalar(island_map), 15.), island_map) # ~ pcr.aguila(large_island_map) # identify big catchments print("identify large catchments") catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map)) catchment_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), catchment_map) # ~ # - identify all large catchments with size >= 50 cells (at the resolution of 30 arcmin) = 50 x (50^2) km2 = 125000 km2 # ~ large_catchment_map = pcr.ifthen(catchment_size >= 50, catchment_map) # ~ # - identify all large catchments with size >= 10 cells (at the resolution of 30 arcmin) # ~ large_catchment_map = pcr.ifthen(catchment_size >= 10, catchment_map) # ~ # - identify all large catchments with size >= 5 cells (at the resolution of 30 arcmin) # ~ large_catchment_map = pcr.ifthen(catchment_size >= 5, catchment_map) # ~ # - identify all large catchments with size >= 20 cells (at the resolution of 30 arcmin) # ~ large_catchment_map = pcr.ifthen(catchment_size >= 20, catchment_map) # - identify all large catchments with size >= 25 cells (at the resolution of 30 arcmin) large_catchment_map = pcr.ifthen(catchment_size >= 25, catchment_map) # - give the codes that are different than islands large_catchment_map = pcr.nominal( pcr.scalar(large_catchment_map) + 10. * vos.getMinMaxMean(pcr.scalar(large_island_map))[1]) # merge biggest islands and big catchments print("merge large catchments and islands") large_catchment_and_island_map = pcr.cover(large_catchment_map, large_island_map) # ~ large_catchment_and_island_map = pcr.cover(large_island_map, large_catchment_map) large_catchment_and_island_map_size = pcr.areatotal( pcr.spatial(pcr.scalar(1.0)), large_catchment_and_island_map) # - sort from the largest one # -- take one cell per island as a representative large_catchment_and_island_map_rep_size = pcr.ifthen( pcr.areaorder(large_catchment_and_island_map_size, large_catchment_and_island_map) == 1.0, large_catchment_and_island_map_size) # -- sort from the largest large_catchment_and_island_map_rep_ids = pcr.areaorder( large_catchment_and_island_map_rep_size * -1.00, pcr.ifthen(pcr.defined(large_catchment_and_island_map_rep_size), pcr.nominal(1.0))) # -- map of largest catchments and islands, sorted from the largest one large_catchment_and_island_map = pcr.areamajority( pcr.nominal(large_catchment_and_island_map_rep_ids), large_catchment_and_island_map) # ~ pcr.report(large_catchment_and_island_map, "large_catchments_and_islands.map") # ~ # perform cdo fillmiss2 in order to merge the small catchments to the nearest large catchments # ~ print("spatial interpolation/extrapolation using cdo fillmiss2 to get initial subdomains") # ~ cmd = "gdal_translate -of NETCDF large_catchments_and_islands.map large_catchments_and_islands.nc" # ~ print(cmd); os.system(cmd) # ~ cmd = "cdo fillmiss2 large_catchments_and_islands.nc large_catchments_and_islands_filled.nc" # ~ print(cmd); os.system(cmd) # ~ cmd = "gdal_translate -of PCRaster large_catchments_and_islands_filled.nc large_catchments_and_islands_filled.map" # ~ print(cmd); os.system(cmd) # ~ cmd = "mapattr -c " + global_ldd_30min_inp_file + " " + "large_catchments_and_islands_filled.map" # ~ print(cmd); os.system(cmd) # ~ # - initial subdomains # ~ subdomains_initial = pcr.nominal(pcr.readmap("large_catchments_and_islands_filled.map")) # ~ subdomains_initial = pcr.areamajority(subdomains_initial, catchment_map) # ~ pcr.aguila(subdomains_initial) # spatial interpolation/extrapolation in order to merge the small catchments to the nearest large catchments print("spatial interpolation/extrapolation to get initial subdomains") field = large_catchment_and_island_map cellID = pcr.nominal(pcr.uniqueid(pcr.defined(field))) zoneID = pcr.spreadzone(cellID, 0, 1) field = pcr.areamajority(field, zoneID) subdomains_initial = field subdomains_initial = pcr.areamajority(subdomains_initial, catchment_map) pcr.aguila(subdomains_initial) pcr.report(subdomains_initial, "global_subdomains_30min_initial.map") print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[0]))) print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1]))) # ~ print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial_clump))[0]))) # ~ print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial_clump))[1]))) print("Checking all subdomains, avoid too large subdomains") num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1]) # clone code that will be assigned assigned_number = 0 subdomains_final = pcr.ifthen( pcr.scalar(subdomains_initial) < -7777, pcr.nominal(0)) for nr in range(1, num_of_masks + 1, 1): msg = "Processing the landmask %s" % (str(nr)) print(msg) mask_selected_boolean = pcr.ifthen(subdomains_initial == nr, pcr.boolean(1.0)) # ~ if nr == 1: pcr.aguila(mask_selected_boolean) xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean) area_in_degree2 = (xmax - xmin) * (ymax - ymin) # ~ print(str(area_in_degree2)) # check whether the size of bounding box is ok # - initial check value check_ok = True reference_area_in_degree2 = 2500. if area_in_degree2 > 1.50 * reference_area_in_degree2: check_ok = False if (xmax - xmin) > 10 * (ymax - ymin): check_ok = False if check_ok == True: msg = "Clump is not needed." msg = "\n\n" + str(msg) + "\n\n" print(msg) # assign the clone code assigned_number = assigned_number + 1 # update global landmask for river and land mask_selected_nominal = pcr.ifthen(mask_selected_boolean, pcr.nominal(assigned_number)) subdomains_final = pcr.cover(subdomains_final, mask_selected_nominal) if check_ok == False: msg = "Clump is needed." msg = "\n\n" + str(msg) + "\n\n" print(msg) # make clump clump_ids = pcr.nominal(pcr.clump(mask_selected_boolean)) # merge clumps that are close together clump_ids_window_majority = pcr.windowmajority(clump_ids, 10.0) clump_ids = pcr.areamajority(clump_ids_window_majority, clump_ids) # ~ pcr.aguila(clump_ids) # minimimum and maximum values min_clump_id = int( pcr.cellvalue(pcr.mapminimum(pcr.scalar(clump_ids)), 1)[0]) max_clump_id = int( pcr.cellvalue(pcr.mapmaximum(pcr.scalar(clump_ids)), 1)[0]) for clump_id in range(min_clump_id, max_clump_id + 1, 1): msg = "Processing the clump %s of %s from the landmask %s" % ( str(clump_id), str(max_clump_id), str(nr)) msg = "\n\n" + str(msg) + "\n\n" print(msg) # identify mask based on the clump mask_selected_boolean_from_clump = pcr.ifthen( clump_ids == pcr.nominal(clump_id), mask_selected_boolean) mask_selected_boolean_from_clump = pcr.ifthen( mask_selected_boolean_from_clump, mask_selected_boolean_from_clump) # check whether the clump is empty check_mask_selected_boolean_from_clump = pcr.ifthen( mask_selected_boolean, mask_selected_boolean_from_clump) check_if_empty = float( pcr.cellvalue( pcr.mapmaximum( pcr.scalar( pcr.defined( check_mask_selected_boolean_from_clump))), 1)[0]) if check_if_empty == 0.0: msg = "Map is empty !" msg = "\n\n" + str(msg) + "\n\n" print(msg) else: msg = "Map is NOT empty !" msg = "\n\n" + str(msg) + "\n\n" print(msg) # assign the clone code assigned_number = assigned_number + 1 # update global landmask for river and land mask_selected_nominal = pcr.ifthen( mask_selected_boolean_from_clump, pcr.nominal(assigned_number)) subdomains_final = pcr.cover(subdomains_final, mask_selected_nominal) # ~ # kill all aguila processes if exist # ~ os.system('killall aguila') pcr.aguila(subdomains_final) print("") print("") print("") print("The subdomain map is READY.") pcr.report(subdomains_final, "global_subdomains_30min_final.map") num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_final))[1]) print(num_of_masks) print("") print("") print("") for nr in range(1, num_of_masks + 1, 1): mask_selected_boolean = pcr.ifthen(subdomains_final == nr, pcr.boolean(1.0)) xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean) area_in_degree2 = (xmax - xmin) * (ymax - ymin) print( str(nr) + " ; " + str(area_in_degree2) + " ; " + str((xmax - xmin)) + " ; " + str((ymax - ymin))) print("") print("") print("") print("Number of subdomains: " + str(num_of_masks)) print("") print("") print("") # spatial extrapolation in order to cover the entire map print("spatial interpolation/extrapolation to cover the entire map") field = subdomains_final cellID = pcr.nominal(pcr.uniqueid(pcr.defined(field))) zoneID = pcr.spreadzone(cellID, 0, 1) field = pcr.areamajority(field, zoneID) subdomains_final_filled = field pcr.aguila(subdomains_final_filled) pcr.report(subdomains_final_filled, "global_subdomains_30min_final_filled.map")
def main(): ### Read input arguments ##### parser = OptionParser() usage = "usage: %prog [options]" parser = OptionParser(usage=usage) parser.add_option('-q', '--quiet', dest='verbose', default=True, action='store_false', help='do not print status messages to stdout') parser.add_option('-i', '--ini', dest='inifile', default='hand_contour_inun.ini', nargs=1, help='ini configuration file') parser.add_option('-f', '--flood_map', nargs=1, dest='flood_map', help='Flood map file (NetCDF point time series file') parser.add_option('-v', '--flood_variable', nargs=1, dest='flood_variable', default='water_level', help='variable name of flood water level') parser.add_option('-b', '--bankfull_map', dest='bankfull_map', default='', help='Map containing bank full level (is subtracted from flood map, in NetCDF)') parser.add_option('-c', '--catchment', dest='catchment_strahler', default=7, type='int', help='Strahler order threshold >= are selected as catchment boundaries') parser.add_option('-t', '--time', dest='time', default='', help='time in YYYYMMDDHHMMSS, overrides time in NetCDF input if set') # parser.add_option('-s', '--hand_strahler', # dest='hand_strahler', default=7, type='int', # help='Strahler order threshold >= selected as riverine') parser.add_option('-m', '--max_strahler', dest = 'max_strahler', default=1000, type='int', help='Maximum Strahler order to loop over') parser.add_option('-d', '--destination', dest='dest_path', default='inun', help='Destination path') parser.add_option('-H', '--hand_file_prefix', dest='hand_file_prefix', default='', help='optional HAND file prefix of already generated HAND files') parser.add_option('-n', '--neg_HAND', dest='neg_HAND', default=0, type='int', help='if set to 1, allow for negative HAND values in HAND maps') (options, args) = parser.parse_args() if not os.path.exists(options.inifile): print 'path to ini file cannot be found' sys.exit(1) options.dest_path = os.path.abspath(options.dest_path) if not(os.path.isdir(options.dest_path)): os.makedirs(options.dest_path) # set up the logger flood_name = os.path.split(options.flood_map)[1].split('.')[0] # case_name = 'inun_{:s}_hand_{:02d}_catch_{:02d}'.format(flood_name, options.hand_strahler, options.catchment_strahler) case_name = 'inun_{:s}_catch_{:02d}'.format(flood_name, options.catchment_strahler) logfilename = os.path.join(options.dest_path, 'hand_contour_inun.log') logger, ch = inun_lib.setlogger(logfilename, 'HAND_INUN', options.verbose) logger.info('$Id: $') logger.info('Flood map: {:s}'.format(options.flood_map)) logger.info('Bank full map: {:s}'.format(options.bankfull_map)) logger.info('Destination path: {:s}'.format(options.dest_path)) # read out ini file ### READ CONFIG FILE # open config-file config = inun_lib.open_conf(options.inifile) # read settings options.dem_file = inun_lib.configget(config, 'HighResMaps', 'dem_file', True) options.ldd_file = inun_lib.configget(config, 'HighResMaps', 'ldd_file', True) options.stream_file = inun_lib.configget(config, 'HighResMaps', 'stream_file', True) options.riv_length_fact_file = inun_lib.configget(config, 'wflowResMaps', 'riv_length_fact_file', True) options.ldd_wflow = inun_lib.configget(config, 'wflowResMaps', 'ldd_wflow', True) options.riv_width_file = inun_lib.configget(config, 'wflowResMaps', 'riv_width_file', True) options.file_format = inun_lib.configget(config, 'file_settings', 'file_format', 0, datatype='int') options.out_format = inun_lib.configget(config, 'file_settings', 'out_format', 0, datatype='int') options.latlon = inun_lib.configget(config, 'file_settings', 'latlon', 0, datatype='int') options.x_tile = inun_lib.configget(config, 'tiling', 'x_tile', 10000, datatype='int') options.y_tile = inun_lib.configget(config, 'tiling', 'y_tile', 10000, datatype='int') options.x_overlap = inun_lib.configget(config, 'tiling', 'x_overlap', 1000, datatype='int') options.y_overlap = inun_lib.configget(config, 'tiling', 'y_overlap', 1000, datatype='int') options.iterations = inun_lib.configget(config, 'inundation', 'iterations', 20, datatype='int') options.initial_level = inun_lib.configget(config, 'inundation', 'initial_level', 32., datatype='float') options.flood_volume_type = inun_lib.configget(config, 'inundation', 'flood_volume_type', 0, datatype='int') # options.area_multiplier = inun_lib.configget(config, 'inundation', # 'area_multiplier', 1., datatype='float') logger.info('DEM file: {:s}'.format(options.dem_file)) logger.info('LDD file: {:s}'.format(options.ldd_file)) logger.info('Columns per tile: {:d}'.format(options.x_tile)) logger.info('Rows per tile: {:d}'.format(options.y_tile)) logger.info('Columns overlap: {:d}'.format(options.x_overlap)) logger.info('Rows overlap: {:d}'.format(options.y_overlap)) metadata_global = {} # add metadata from the section [metadata] meta_keys = config.options('metadata_global') for key in meta_keys: metadata_global[key] = config.get('metadata_global', key) # add a number of metadata variables that are mandatory metadata_global['config_file'] = os.path.abspath(options.inifile) metadata_var = {} metadata_var['units'] = 'm' metadata_var['standard_name'] = 'water_surface_height_above_reference_datum' metadata_var['long_name'] = 'flooding' metadata_var['comment'] = 'water_surface_reference_datum_altitude is given in file {:s}'.format(options.dem_file) if not os.path.exists(options.dem_file): logger.error('path to dem file {:s} cannot be found'.format(options.dem_file)) sys.exit(1) if not os.path.exists(options.ldd_file): logger.error('path to ldd file {:s} cannot be found'.format(options.ldd_file)) sys.exit(1) # Read extent from a GDAL compatible file try: extent = inun_lib.get_gdal_extent(options.dem_file) except: msg = 'Input file {:s} not a gdal compatible file'.format(options.dem_file) inun_lib.close_with_error(logger, ch, msg) sys.exit(1) try: x, y = inun_lib.get_gdal_axes(options.dem_file, logging=logger) srs = inun_lib.get_gdal_projection(options.dem_file, logging=logger) except: msg = 'Input file {:s} not a gdal compatible file'.format(options.dem_file) inun_lib.close_with_error(logger, ch, msg) sys.exit(1) # read history from flood file if options.file_format == 0: a = nc.Dataset(options.flood_map, 'r') metadata_global['history'] = 'Created by: $Id: $, boundary conditions from {:s},\nhistory: {:s}'.format(os.path.abspath(options.flood_map), a.history) a.close() else: metadata_global['history'] = 'Created by: $Id: $, boundary conditions from {:s},\nhistory: {:s}'.format(os.path.abspath(options.flood_map), 'PCRaster file, no history') # first write subcatch maps and hand maps ############### TODO ###### # setup a HAND file for each strahler order max_s = inun_lib.define_max_strahler(options.stream_file, logging=logger) stream_max = np.minimum(max_s, options.max_strahler) for hand_strahler in range(options.catchment_strahler, stream_max + 1, 1): dem_name = os.path.split(options.dem_file)[1].split('.')[0] if os.path.isfile('{:s}_{:02d}.tif'.format(options.hand_file_prefix, hand_strahler)): hand_file = '{:s}_{:02d}.tif'.format(options.hand_file_prefix, hand_strahler) else: logger.info('No HAND files with HAND prefix were found, checking {:s}_hand_strahler_{:02d}.tif'.format(dem_name, hand_strahler)) hand_file = os.path.join(options.dest_path, '{:s}_hand_strahler_{:02d}.tif'.format(dem_name, hand_strahler)) if not(os.path.isfile(hand_file)): # hand file does not exist yet! Generate it, otherwise skip! logger.info('HAND file {:s} not found, start setting up...please wait...'.format(hand_file)) hand_file_tmp = os.path.join(options.dest_path, '{:s}_hand_strahler_{:02d}.tif.tmp'.format(dem_name, hand_strahler)) ds_hand, band_hand = inun_lib.prepare_gdal(hand_file_tmp, x, y, logging=logger, srs=srs) # band_hand = ds_hand.GetRasterBand(1) # Open terrain data for reading ds_dem, rasterband_dem = inun_lib.get_gdal_rasterband(options.dem_file) ds_ldd, rasterband_ldd = inun_lib.get_gdal_rasterband(options.ldd_file) ds_stream, rasterband_stream = inun_lib.get_gdal_rasterband(options.stream_file) n = 0 for x_loop in range(0, len(x), options.x_tile): x_start = np.maximum(x_loop, 0) x_end = np.minimum(x_loop + options.x_tile, len(x)) # determine actual overlap for cutting for y_loop in range(0, len(y), options.y_tile): x_overlap_min = x_start - np.maximum(x_start - options.x_overlap, 0) x_overlap_max = np.minimum(x_end + options.x_overlap, len(x)) - x_end n += 1 # print('tile {:001d}:'.format(n)) y_start = np.maximum(y_loop, 0) y_end = np.minimum(y_loop + options.y_tile, len(y)) y_overlap_min = y_start - np.maximum(y_start - options.y_overlap, 0) y_overlap_max = np.minimum(y_end + options.y_overlap, len(y)) - y_end # cut out DEM logger.debug('Computing HAND for xmin: {:d} xmax: {:d} ymin {:d} ymax {:d}'.format(x_start, x_end,y_start, y_end)) terrain = rasterband_dem.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) drainage = rasterband_ldd.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) stream = rasterband_stream.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) # write to temporary file terrain_temp_file = os.path.join(options.dest_path, 'terrain_temp.map') drainage_temp_file = os.path.join(options.dest_path, 'drainage_temp.map') stream_temp_file = os.path.join(options.dest_path, 'stream_temp.map') if rasterband_dem.GetNoDataValue() is not None: inun_lib.gdal_writemap(terrain_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), terrain, rasterband_dem.GetNoDataValue(), gdal_type=gdal.GDT_Float32, logging=logger) else: # in case no nodata value is found logger.warning('No nodata value found in {:s}. assuming -9999'.format(options.dem_file)) inun_lib.gdal_writemap(terrain_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), terrain, -9999., gdal_type=gdal.GDT_Float32, logging=logger) inun_lib.gdal_writemap(drainage_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), drainage, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) inun_lib.gdal_writemap(stream_temp_file, 'PCRaster', np.arange(0, terrain.shape[1]), np.arange(0, terrain.shape[0]), stream, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) # read as pcr objects pcr.setclone(terrain_temp_file) terrain_pcr = pcr.readmap(terrain_temp_file) drainage_pcr = pcr.lddrepair(pcr.ldd(pcr.readmap(drainage_temp_file))) # convert to ldd type map stream_pcr = pcr.scalar(pcr.readmap(stream_temp_file)) # convert to ldd type map #check if the highest stream order of the tile is below the hand_strahler # if the highest stream order of the tile is smaller than hand_strahler, than DEM values are taken instead of HAND values. max_stream_tile = inun_lib.define_max_strahler(stream_temp_file, logging=logger) if max_stream_tile < hand_strahler: hand_pcr = terrain_pcr logger.info('For this tile, DEM values are used instead of HAND because there is no stream order larger than {:02d}'.format(hand_strahler)) else: # compute streams stream_ge, subcatch = inun_lib.subcatch_stream(drainage_pcr, hand_strahler, stream=stream_pcr) # generate streams # compute basins stream_ge_dummy, subcatch = inun_lib.subcatch_stream(drainage_pcr, options.catchment_strahler, stream=stream_pcr) # generate streams basin = pcr.boolean(subcatch) hand_pcr, dist_pcr = inun_lib.derive_HAND(terrain_pcr, drainage_pcr, 3000, rivers=pcr.boolean(stream_ge), basin=basin, neg_HAND=options.neg_HAND) # convert to numpy hand = pcr.pcr2numpy(hand_pcr, -9999.) # cut relevant part if y_overlap_max == 0: y_overlap_max = -hand.shape[0] if x_overlap_max == 0: x_overlap_max = -hand.shape[1] hand_cut = hand[0+y_overlap_min:-y_overlap_max, 0+x_overlap_min:-x_overlap_max] band_hand.WriteArray(hand_cut, x_start, y_start) os.unlink(terrain_temp_file) os.unlink(drainage_temp_file) os.unlink(stream_temp_file) band_hand.FlushCache() ds_dem = None ds_ldd = None ds_stream = None band_hand.SetNoDataValue(-9999.) ds_hand = None logger.info('Finalizing {:s}'.format(hand_file)) # rename temporary file to final hand file os.rename(hand_file_tmp, hand_file) else: logger.info('HAND file {:s} already exists...skipping...'.format(hand_file)) ##################################################################################### # HAND file has now been prepared, moving to flood mapping part # ##################################################################################### # set the clone pcr.setclone(options.ldd_wflow) # read wflow ldd as pcraster object ldd_pcr = pcr.readmap(options.ldd_wflow) xax, yax, riv_width, fill_value = inun_lib.gdal_readmap(options.riv_width_file, 'GTiff', logging=logger) # determine cell length in meters using ldd_pcr as clone (if latlon=True, values are converted to m2 x_res, y_res, reallength_wflow = pcrut.detRealCellLength(pcr.scalar(ldd_pcr), not(bool(options.latlon))) cell_surface_wflow = pcr.pcr2numpy(x_res * y_res, 0) if options.flood_volume_type == 0: # load the staticmaps needed to estimate volumes across all # xax, yax, riv_length, fill_value = inun_lib.gdal_readmap(options.riv_length_file, 'GTiff', logging=logger) # riv_length = np.ma.masked_where(riv_length==fill_value, riv_length) xax, yax, riv_width, fill_value = inun_lib.gdal_readmap(options.riv_width_file, 'GTiff', logging=logger) riv_width[riv_width == fill_value] = 0 # read river length factor file (multiplier) xax, yax, riv_length_fact, fill_value = inun_lib.gdal_readmap(options.riv_length_fact_file, 'GTiff', logging=logger) riv_length_fact = np.ma.masked_where(riv_length_fact==fill_value, riv_length_fact) drain_length = wflow_lib.detdrainlength(ldd_pcr, x_res, y_res) # compute river length in each cell riv_length = pcr.pcr2numpy(drain_length, 0) * riv_length_fact # riv_length_pcr = pcr.numpy2pcr(pcr.Scalar, riv_length, 0) flood_folder = os.path.join(options.dest_path, case_name) flood_vol_map = os.path.join(flood_folder, '{:s}_vol.tif'.format(os.path.split(options.flood_map)[1].split('.')[0])) if not(os.path.isdir(flood_folder)): os.makedirs(flood_folder) if options.out_format == 0: inun_file_tmp = os.path.join(flood_folder, '{:s}.tif.tmp'.format(case_name)) inun_file = os.path.join(flood_folder, '{:s}.tif'.format(case_name)) else: inun_file_tmp = os.path.join(flood_folder, '{:s}.nc.tmp'.format(case_name)) inun_file = os.path.join(flood_folder, '{:s}.nc'.format(case_name)) hand_temp_file = os.path.join(flood_folder, 'hand_temp.map') drainage_temp_file = os.path.join(flood_folder, 'drainage_temp.map') stream_temp_file = os.path.join(flood_folder, 'stream_temp.map') flood_vol_temp_file = os.path.join(flood_folder, 'flood_warp_temp.tif') # load the data with river levels and compute the volumes if options.file_format == 0: # assume we need the maximum value in a NetCDF time series grid logger.info('Reading flood from {:s} NetCDF file'.format(options.flood_map)) a = nc.Dataset(options.flood_map, 'r') if options.latlon == 0: xax = a.variables['x'][:] yax = a.variables['y'][:] else: xax = a.variables['lon'][:] yax = a.variables['lat'][:] if options.time == '': time_list = nc.num2date(a.variables['time'][:], units = a.variables['time'].units, calendar=a.variables['time'].calendar) time = [time_list[len(time_list)/2]] else: time = [dt.datetime.strptime(options.time, '%Y%m%d%H%M%S')] flood_series = a.variables[options.flood_variable][:] flood_data = flood_series.max(axis=0) if np.ma.is_masked(flood_data): flood = flood_data.data flood[flood_data.mask] = 0 if yax[-1] > yax[0]: yax = np.flipud(yax) flood = np.flipud(flood) a.close() elif options.file_format == 1: logger.info('Reading flood from {:s} PCRaster file'.format(options.flood_map)) xax, yax, flood, flood_fill_value = inun_lib.gdal_readmap(options.flood_map, 'PCRaster', logging=logger) flood = np.ma.masked_equal(flood, flood_fill_value) if options.time == '': options.time = '20000101000000' time = [dt.datetime.strptime(options.time, '%Y%m%d%H%M%S')] flood[flood==flood_fill_value] = 0. # load the bankfull depths if options.bankfull_map == '': bankfull = np.zeros(flood.shape) else: if options.file_format == 0: logger.info('Reading bankfull from {:s} NetCDF file'.format(options.bankfull_map)) a = nc.Dataset(options.bankfull_map, 'r') xax = a.variables['x'][:] yax = a.variables['y'][:] bankfull_series = a.variables[options.flood_variable][:] bankfull_data = bankfull_series.max(axis=0) if np.ma.is_masked(bankfull_data): bankfull = bankfull_data.data bankfull[bankfull_data.mask] = 0 if yax[-1] > yax[0]: yax = np.flipud(yax) bankfull = np.flipud(bankfull) a.close() elif options.file_format == 1: logger.info('Reading bankfull from {:s} PCRaster file'.format(options.bankfull_map)) xax, yax, bankfull, bankfull_fill_value = inun_lib.gdal_readmap(options.bankfull_map, 'PCRaster', logging=logger) bankfull = np.ma.masked_equal(bankfull, bankfull_fill_value) # flood = bankfull*2 # res_x = 2000 # res_y = 2000 # subtract the bankfull water level to get flood levels (above bankfull) flood_vol = np.maximum(flood-bankfull, 0) if options.flood_volume_type == 0: flood_vol_m = riv_length*riv_width*flood_vol/cell_surface_wflow # volume expressed in meters water disc flood_vol_m_pcr = pcr.numpy2pcr(pcr.Scalar, flood_vol_m, 0) else: flood_vol_m = flood_vol/cell_surface_wflow flood_vol_m_data = flood_vol_m.data flood_vol_m_data[flood_vol_m.mask] = -999. logger.info('Saving water layer map to {:s}'.format(flood_vol_map)) # write to a tiff file inun_lib.gdal_writemap(flood_vol_map, 'GTiff', xax, yax, np.maximum(flood_vol_m_data, 0), -999., logging=logger) # this is placed later in the hand loop # ds_hand, rasterband_hand = inun_lib.get_gdal_rasterband(hand_file) ds_ldd, rasterband_ldd = inun_lib.get_gdal_rasterband(options.ldd_file) ds_stream, rasterband_stream = inun_lib.get_gdal_rasterband(options.stream_file) logger.info('Preparing flood map in {:s} ...please wait...'.format(inun_file)) if options.out_format == 0: ds_inun, band_inun = inun_lib.prepare_gdal(inun_file_tmp, x, y, logging=logger, srs=srs) # band_inun = ds_inun.GetRasterBand(1) else: ds_inun, band_inun = inun_lib.prepare_nc(inun_file_tmp, time, x, np.flipud(y), metadata=metadata_global, metadata_var=metadata_var, logging=logger) # loop over all the tiles n = 0 for x_loop in range(0, len(x), options.x_tile): x_start = np.maximum(x_loop, 0) x_end = np.minimum(x_loop + options.x_tile, len(x)) # determine actual overlap for cutting for y_loop in range(0, len(y), options.y_tile): x_overlap_min = x_start - np.maximum(x_start - options.x_overlap, 0) x_overlap_max = np.minimum(x_end + options.x_overlap, len(x)) - x_end n += 1 # print('tile {:001d}:'.format(n)) y_start = np.maximum(y_loop, 0) y_end = np.minimum(y_loop + options.y_tile, len(y)) y_overlap_min = y_start - np.maximum(y_start - options.y_overlap, 0) y_overlap_max = np.minimum(y_end + options.y_overlap, len(y)) - y_end x_tile_ax = x[x_start - x_overlap_min:x_end + x_overlap_max] y_tile_ax = y[y_start - y_overlap_min:y_end + y_overlap_max] # cut out DEM logger.debug('handling xmin: {:d} xmax: {:d} ymin {:d} ymax {:d}'.format(x_start, x_end, y_start, y_end)) drainage = rasterband_ldd.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) stream = rasterband_stream.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) # stream_max = np.minimum(stream.max(), options.max_strahler) inun_lib.gdal_writemap(drainage_temp_file, 'PCRaster', x_tile_ax, y_tile_ax, drainage, rasterband_ldd.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) inun_lib.gdal_writemap(stream_temp_file, 'PCRaster', x_tile_ax, y_tile_ax, stream, rasterband_stream.GetNoDataValue(), gdal_type=gdal.GDT_Int32, logging=logger) # read as pcr objects pcr.setclone(stream_temp_file) drainage_pcr = pcr.lddrepair(pcr.ldd(pcr.readmap(drainage_temp_file))) # convert to ldd type map stream_pcr = pcr.scalar(pcr.readmap(stream_temp_file)) # convert to ldd type map # warp of flood volume to inundation resolution inun_lib.gdal_warp(flood_vol_map, stream_temp_file, flood_vol_temp_file, gdal_interp=gdalconst.GRA_NearestNeighbour) # , x_tile_ax, y_tile_ax, flood_meter, fill_value = inun_lib.gdal_readmap(flood_vol_temp_file, 'GTiff', logging=logger) # make sure that the option unittrue is on !! (if unitcell was is used in another function) x_res_tile, y_res_tile, reallength = pcrut.detRealCellLength(pcr.scalar(stream_pcr), not(bool(options.latlon))) cell_surface_tile = pcr.pcr2numpy(x_res_tile * y_res_tile, 0) # convert meter depth to volume [m3] flood_vol = pcr.numpy2pcr(pcr.Scalar, flood_meter*cell_surface_tile, fill_value) # first prepare a basin map, belonging to the lowest order we are looking at inundation_pcr = pcr.scalar(stream_pcr) * 0 for hand_strahler in range(options.catchment_strahler, stream_max + 1, 1): # hand_temp_file = os.path.join(flood_folder, 'hand_temp.map') if os.path.isfile(os.path.join(options.dest_path, '{:s}_hand_strahler_{:02d}.tif'.format(dem_name, hand_strahler))): hand_file = os.path.join(options.dest_path, '{:s}_hand_strahler_{:02d}.tif'.format(dem_name, hand_strahler)) else: hand_file = '{:s}_{:02d}.tif'.format(options.hand_file_prefix, hand_strahler) ds_hand, rasterband_hand = inun_lib.get_gdal_rasterband(hand_file) hand = rasterband_hand.ReadAsArray(x_start - x_overlap_min, y_start - y_overlap_min, (x_end + x_overlap_max) - (x_start - x_overlap_min), (y_end + y_overlap_max) - (y_start - y_overlap_min) ) print('len x-ax: {:d} len y-ax {:d} x-shape {:d} y-shape {:d}'.format(len(x_tile_ax), len(y_tile_ax), hand.shape[1], hand.shape[0])) inun_lib.gdal_writemap(hand_temp_file, 'PCRaster', x_tile_ax, y_tile_ax, hand, rasterband_hand.GetNoDataValue(), gdal_type=gdal.GDT_Float32, logging=logger) hand_pcr = pcr.readmap(hand_temp_file) stream_ge_hand, subcatch_hand = inun_lib.subcatch_stream(drainage_pcr, options.catchment_strahler, stream=stream_pcr) # stream_ge_hand, subcatch_hand = inun_lib.subcatch_stream(drainage_pcr, hand_strahler, stream=stream_pcr) stream_ge, subcatch = inun_lib.subcatch_stream(drainage_pcr, options.catchment_strahler, stream=stream_pcr, basin=pcr.boolean(pcr.cover(subcatch_hand, 0)), assign_existing=True, min_strahler=hand_strahler, max_strahler=hand_strahler) # generate subcatchments, only within basin for HAND flood_vol_strahler = pcr.ifthenelse(pcr.boolean(pcr.cover(subcatch, 0)), flood_vol, 0) # mask the flood volume map with the created subcatch map for strahler order = hand_strahler inundation_pcr_step = inun_lib.volume_spread(drainage_pcr, hand_pcr, pcr.subcatchment(drainage_pcr, subcatch), # to make sure backwater effects can occur from higher order rivers to lower order rivers flood_vol_strahler, volume_thres=0., iterations=options.iterations, cell_surface=pcr.numpy2pcr(pcr.Scalar, cell_surface_tile, -9999), logging=logger, order=hand_strahler, neg_HAND=options.neg_HAND) # 1166400000. # use maximum value of inundation_pcr_step and new inundation for higher strahler order inundation_pcr = pcr.max(inundation_pcr, inundation_pcr_step) inundation = pcr.pcr2numpy(inundation_pcr, -9999.) # cut relevant part if y_overlap_max == 0: y_overlap_max = -inundation.shape[0] if x_overlap_max == 0: x_overlap_max = -inundation.shape[1] inundation_cut = inundation[0+y_overlap_min:-y_overlap_max, 0+x_overlap_min:-x_overlap_max] # inundation_cut if options.out_format == 0: band_inun.WriteArray(inundation_cut, x_start, y_start) band_inun.FlushCache() else: # with netCDF, data is up-side-down. inun_lib.write_tile_nc(band_inun, inundation_cut, x_start, y_start) # clean up os.unlink(flood_vol_temp_file) os.unlink(drainage_temp_file) os.unlink(hand_temp_file) os.unlink(stream_temp_file) #also remove temp stream file from output folder # if n == 35: # band_inun.SetNoDataValue(-9999.) # ds_inun = None # sys.exit(0) # os.unlink(flood_vol_map) logger.info('Finalizing {:s}'.format(inun_file)) # add the metadata to the file and band # band_inun.SetNoDataValue(-9999.) # ds_inun.SetMetadata(metadata_global) # band_inun.SetMetadata(metadata_var) if options.out_format == 0: ds_inun = None ds_hand = None else: ds_inun.close() ds_ldd = None # rename temporary file to final hand file if os.path.isfile(inun_file): # remove an old result if available os.unlink(inun_file) os.rename(inun_file_tmp, inun_file) logger.info('Done! Thank you for using hand_contour_inun.py') logger, ch = inun_lib.closeLogger(logger, ch) del logger, ch sys.exit(0)
msg = "Set the landmask to : " + str(landmask_map_file) logger.info(msg) landmask = pcr.readmap(landmask_map_file) # resampling low resolution ldd map msg = "Resample the low resolution ldd map." logger.info(msg) ldd_map_low_resolution_file_name = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/lddsound_05min.map" ldd_map_low_resolution = vos.readPCRmapClone(ldd_map_low_resolution_file_name, \ clone_map_file, \ tmp_folder, \ None, True, None, False) ldd_map_low_resolution = pcr.ifthen( landmask, ldd_map_low_resolution) # NOTE THAT YOU MAY NOT HAVE TO MASK-OUT THE LDD. ldd_map_low_resolution = pcr.lddrepair(pcr.ldd(ldd_map_low_resolution)) ldd_map_low_resolution = pcr.lddrepair(ldd_map_low_resolution) pcr.report(ldd_map_low_resolution, "resampled_low_resolution_ldd.map") # permanent water bodies files (at 5 arc-minutes resolution) reservoir_capacity_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/reservoirs/waterBodiesFinal_version15Sept2013/maps/reservoircapacity_2010.map" fracwat_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/reservoirs/waterBodiesFinal_version15Sept2013/maps/fracwat_2010.map" water_body_id_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/reservoirs/waterBodiesFinal_version15Sept2013/maps/waterbodyid_2010.map" # cell_area_file cell_area_file = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/cellsize05min.correct.map" # read all extreme value maps (low resolution maps), resample them, and save them to the output folder msg = "Resampling extreme value maps." logger.info(msg) file_names = [
def _parseLine(self, line, lineNumber, nrColumns, externalNames, keyDict): line = re.sub("\n", "", line) line = re.sub("\t", " ", line) result = None # read until first comment content = "" content, sep, comment = line.partition("#") if len(content) > 1: collectionVariableName, sep, tail = content.partition(" ") if collectionVariableName == self._varName: tail = tail.strip() key, sep, variableValue = tail.rpartition(" ") if len(key.split()) != nrColumns: tmp = re.sub("\(|\)|,", "", str(key)) msg = "Error reading %s line %d, order of columns given (%s columns) does not match expected order of %s columns" % ( self._fileName, lineNumber, len(key.split()) + 2, int(nrColumns) + 2) raise ValueError(msg) variableValue = re.sub('\"', "", variableValue) tmp = None try: tmp = int(variableValue) if self._dataType == pcraster.Boolean: tmp = pcraster.boolean(tmp) elif self._dataType == pcraster.Nominal: tmp = pcraster.nominal(tmp) elif self._dataType == pcraster.Ordinal: tmp = pcraster.ordinal(tmp) elif self._dataType == pcraster.Ldd: tmp = pcraster.ldd(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError as e: try: tmp = float(variableValue) if self._dataType == pcraster.Scalar: tmp = pcraster.scalar(tmp) elif self._dataType == pcraster.Directional: tmp = pcraster.directional(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError as e: variableValue = re.sub("\\\\", "/", variableValue) variableValue = variableValue.strip() path = os.path.normpath(variableValue) try: tmp = pcraster.readmap(path) except RuntimeError as e: msg = "Error reading %s line %d, %s" % ( self._fileName, lineNumber, e) raise ValueError(msg) # test if key is an external name transformedKeys = [] counter = 0 for k in key.split(): k = k.strip() if externalNames[counter].get(k): transformedKeys.append(externalNames[counter].get(k)) else: transformedKeys.append(k) counter += 1 key = tuple(transformedKeys) if not key in keyDict: tmp = re.sub("\(|\)|,", "", str(key)) msg = "Error reading %s line %d, %s unknown collection index" % ( self._fileName, lineNumber, tmp) raise ValueError(msg) if not keyDict[key] is None: tmp = re.sub("\(|\)|,", "", str(key)) msg = "Error reading %s line %d, %s %s already initialised" % ( self._fileName, lineNumber, self._varName, tmp) raise ValueError(msg) keyDict[key] = tmp
if lddin: pcr.setglobaloption("lddin") ldd_map = workdir + 'ldd.map' streamorder_map = workdir + 'streamorder.map' river_map = workdir + 'river.map' catchments_map = workdir + 'catchments.map' catchments_tif = workdir + 'catchments.tif' #catchments_shp = resultdir + 'catchments.shp' generateldd = True if skipldd: print 'Option -S is set' print 'ldd will be read from ' + ldd_map if os.path.exists(ldd_map): ldd = pcr.ldd(pcr.readmap(ldd_map)) generateldd = False else: print 'file ' + ldd_map + ' does not exist' print 'new ldd will be generated' if generateldd: print 'Generating ldd...' if burndem: linescover = pcr.ifthen(lines==1,pcr.scalar(0)) pointscover = pcr.ifthen(pcr.scalar(points)==1,pcr.scalar(0)) #pcr.report(linescover,'lines.map') #pcr.report(pointscover,'points.map') dem = pcr.cover(dem,linescover,pointscover) #pcr.report(dem,'dem1.map') dem = dem + burn
def __init__(self, iniItems, landmask, onlyNaturalWaterBodies=False, lddMap=None): object.__init__(self) # clone map file names, temporary directory and global/absolute path of input directory self.cloneMap = iniItems.cloneMap self.tmpDir = iniItems.tmpDir self.inputDir = iniItems.globalOptions['inputDir'] self.landmask = landmask self.iniItems = iniItems # local drainage direction: if lddMap is None: self.lddMap = vos.readPCRmapClone( iniItems.routingOptions['lddMap'], self.cloneMap, self.tmpDir, self.inputDir, True) self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap)) self.lddMap = pcr.lddrepair(self.lddMap) else: self.lddMap = lddMap # the following is needed for a modflowOfflineCoupling run if 'modflowOfflineCoupling' in list(iniItems.globalOptions.keys( )) and iniItems.globalOptions[ 'modflowOfflineCoupling'] == "True" and 'routingOptions' not in iniItems.allSections: logger.info( "The 'routingOptions' are not defined in the configuration ini file. We will adopt them from the 'modflowParameterOptions'." ) iniItems.routingOptions = iniItems.modflowParameterOptions # option to activate water balance check self.debugWaterBalance = True if 'debugWaterBalance' in list(iniItems.routingOptions.keys( )) and iniItems.routingOptions['debugWaterBalance'] == "False": self.debugWaterBalance = False # option to perform a run with only natural lakes (without reservoirs) self.onlyNaturalWaterBodies = onlyNaturalWaterBodies if "onlyNaturalWaterBodies" in list(iniItems.routingOptions.keys( )) and iniItems.routingOptions['onlyNaturalWaterBodies'] == "True": logger.info( "Using only natural water bodies identified in the year 1900. All reservoirs in 1900 are assumed as lakes." ) self.onlyNaturalWaterBodies = True self.dateForNaturalCondition = "1900-01-01" # The run for a natural condition should access only this date. # names of files containing water bodies parameters if iniItems.routingOptions['waterBodyInputNC'] == str(None): self.useNetCDF = False self.fracWaterInp = iniItems.routingOptions['fracWaterInp'] self.waterBodyIdsInp = iniItems.routingOptions['waterBodyIds'] self.waterBodyTypInp = iniItems.routingOptions['waterBodyTyp'] self.resMaxCapInp = iniItems.routingOptions['resMaxCapInp'] self.resSfAreaInp = iniItems.routingOptions['resSfAreaInp'] else: self.useNetCDF = True self.ncFileInp = vos.getFullPath(\ iniItems.routingOptions['waterBodyInputNC'],\ self.inputDir) # minimum width (m) used in the weir formula # TODO: define minWeirWidth based on the GLWD, GRanD database and/or bankfull discharge formula self.minWeirWidth = 10. # lower and upper limits at which reservoir release is terminated and # at which reservoir release is equal to long-term average outflow # - default values self.minResvrFrac = 0.10 self.maxResvrFrac = 0.75 # - from the ini file if "minResvrFrac" in list(iniItems.routingOptions.keys()): minResvrFrac = iniItems.routingOptions['minResvrFrac'] self.minResvrFrac = vos.readPCRmapClone(minResvrFrac, self.cloneMap, self.tmpDir, self.inputDir) if "maxResvrFrac" in list(iniItems.routingOptions.keys()): maxResvrFrac = iniItems.routingOptions['maxResvrFrac'] self.maxResvrFrac = vos.readPCRmapClone(maxResvrFrac, self.cloneMap, self.tmpDir, self.inputDir)
def __init__(self, modelTime, output_folder, totat_runoff_input_file): DynamicModel.__init__(self) self.modelTime = modelTime # netcdf input files - based on PCR-GLOBWB output # - total runoff (m/month) self.totat_runoff_input_file = "/scratch-shared/edwin/05min_runs_for_gmd_paper_30_oct_2017/05min_runs_4LCs_accutraveltime_cru-forcing_1958-2015/non-natural_starting_from_1958/merged_1958_to_2015/totalRunoff_monthTot_output_1958-01-31_to_2015-12-31.nc" self.totat_runoff_input_file = totat_runoff_input_file # #~ # - discharge (m3/s) - NOT USED anymore #~ self.discharge_input_file = "/scratch-shared/edwin/05min_runs_for_gmd_paper_30_oct_2017/05min_runs_4LCs_accutraveltime_cru-forcing_1958-2015/non-natural_starting_from_1958/merged_1958_to_2015/discharge_monthAvg_output_1958-01-31_to_2015-12-31.nc" # output files - in netcdf format self.total_flow_output_file = output_folder + "/total_flow.nc" self.internal_flow_output_file = output_folder + "/internal_flow.nc" # - all will have unit m3/s # preparing temporary directory self.temporary_directory = output_folder + "/tmp/" os.makedirs(self.temporary_directory) # clone map logger.info("Set the clone map") self.clonemap_file_name = "/home/edwinvua/github/edwinkost/estimate_discharge_from_local_runoff/making_subcatchment_map/version_20180202/clone_version_20180202.map" pcr.setclone(self.clonemap_file_name) # pcraster input files landmask_file_name = None # - river network map and sub-catchment map ldd_file_name = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/lddsound_05min.map" sub_catchment_file_name = "/home/edwinvua/github/edwinkost/estimate_discharge_from_local_runoff/making_subcatchment_map/version_20180202/subcatchments_of_station_pcraster_ids.nom.bigger_than_zero.map" # - cell area (unit: m2) cell_area_file_name = "/projects/0/dfguu/data/hydroworld/PCRGLOBWB20/input5min/routing/cellsize05min.correct.map" # loading pcraster input maps self.sub_catchment = vos.readPCRmapClone(sub_catchment_file_name, \ self.clonemap_file_name, \ self.temporary_directory, \ None, False, None, \ True) self.ldd_network = vos.readPCRmapClone(ldd_file_name, \ self.clonemap_file_name, \ self.temporary_directory, \ None, \ True) self.ldd_network = pcr.lddrepair(pcr.ldd(self.ldd_network)) self.ldd_network = pcr.lddrepair(self.ldd_network) self.cell_area = vos.readPCRmapClone(cell_area_file_name, \ self.clonemap_file_name, \ self.temporary_directory, \ None) # define the landmask self.landmask = pcr.defined(self.ldd_network) if landmask_file_name != None: self.landmask = vos.readPCRmapClone(landmask_file_name, \ self.clonemap_file_name, \ self.temporary_directory, \ None) self.landmask = pcr.ifthen(pcr.defined(self.ldd_network), self.landmask) self.landmask = pcr.ifthen(self.landmask, self.landmask) # set/limit all input maps to the defined landmask self.sub_catchment = pcr.ifthen(self.landmask, self.sub_catchment) self.ldd_network = pcr.ifthen(self.landmask, self.ldd_network) self.cell_area = pcr.ifthen(self.landmask, self.cell_area) # preparing an object for reporting netcdf files: self.netcdf_report = netcdf_writer.PCR2netCDF(self.clonemap_file_name) # preparing netcdf output files: # - for total inflow self.netcdf_report.createNetCDF(self.total_flow_output_file,\ "total_flow",\ "m3/s") self.netcdf_report.createNetCDF(self.internal_flow_output_file,\ "internal_flow",\ "m3/s")
def main(): clone_map = "mask\mask.map" clone_shp = "mask\mask.shp" clone_prj = "mask\mask.prj" workdir = "work\\" resultdir = "staticmaps\\" ''' read commandline arguments ''' argv = sys.argv clone_EPSG = False try: opts, args = getopt.getopt(argv[1:], 'i:g:p:r:c:d:l:s:CA') except getopt.error: print 'fout' Usage() sys.exit(1) inifile = None rivshp = None catchshp = None dem_in = None landuse = None soiltype = None clean = False gaugeshp = None alltouching = False for o, a in opts: if o == '-i': inifile = a if o == '-p': clone_EPSG = 'EPSG:' + a if o == '-r': rivshp = a if o == '-c': catchshp = a if o == '-d': dem_in = a if o == '-l': landuse = a if o == '-s': soiltype = a if o == '-C': clean = True if o == '-g': gaugeshp = a if o == '-A': alltouching = True if inifile == None or rivshp == None or catchshp == None or dem_in == None: print 'the following files are compulsory:' print ' - ini-file' print ' - DEM (raster)' print ' - river (shape)' print ' - catchment (shape)' Usage() sys.exit(1) if landuse == None: print 'no raster with landuse classifications is specified. 1 class will be applied for the entire domain' if soiltype == None: print 'no raster with soil classifications is specified. 1 class will be applied for the entire domain' ''' read mask ''' if not os.path.exists(clone_map): print 'Mask not found. Make sure the file mask\mask.map exists' print 'This file is usually created with the CreateGrid script' sys.exit(1) else: pcr.setclone(clone_map) ds = gdal.Open(clone_map, GA_ReadOnly) clone_trans = ds.GetGeoTransform() cellsize = clone_trans[1] clone_rows = ds.RasterYSize clone_columns = ds.RasterXSize extent_mask = [ clone_trans[0], clone_trans[3] - ds.RasterYSize * cellsize, clone_trans[0] + ds.RasterXSize * cellsize, clone_trans[3] ] xmin, ymin, xmax, ymax = map(str, extent_mask) ds = None ones = pcr.scalar(pcr.readmap(clone_map)) zeros = ones * 0 empty = pcr.ifthen(ones == 0, pcr.scalar(0)) ''' read projection from mask.shp ''' # TODO: check how to deal with projections (add .prj to mask.shp in creategrid) if not os.path.exists(clone_prj): print 'please add prj-file to mask.shp' sys.exit(1) if os.path.exists(clone_shp): ds = ogr.Open(clone_shp) file_att = os.path.splitext(os.path.basename(clone_shp))[0] lyr = ds.GetLayerByName(file_att) spatialref = lyr.GetSpatialRef() if not spatialref == None: srs_clone = osr.SpatialReference() srs_clone.ImportFromWkt(spatialref.ExportToWkt()) srs_clone.AutoIdentifyEPSG() unit_clone = False unit_clone = srs_clone.GetAttrValue('UNIT').lower() #clone_EPSG = 'EPSG:'+srs_clone.GetAttrValue("AUTHORITY",1) # TODO: fix hard EPSG code below clone_EPSG = 'EPSG:' + '4167' print 'EPSG-code is read from mask.shp: ' + clone_EPSG spatialref == None if not clone_EPSG: print 'EPSG-code cannot be read from mask.shp' print 'please add prj-file to mask.shp or specify on command line' print 'e.g. -p EPSG:4326 (for WGS84 lat lon projection)' ds = None clone_EPSG_int = int(clone_EPSG[5:len(clone_EPSG)]) ''' open config-file ''' config = wt.OpenConf(inifile) ''' read settings ''' snapgaugestoriver = bool( int(wt.configget(config, "settings", "snapgaugestoriver", "1"))) burnalltouching = bool( int(wt.configget(config, "settings", "burncatchalltouching", "1"))) burninorder = bool( int(wt.configget(config, "settings", "burncatchalltouching", "0"))) verticetollerance = float( wt.configget(config, "settings", "vertice_tollerance", "0.0001")) ''' read parameters ''' burn_outlets = int( wt.configget(config, "parameters", "burn_outlets", 10000)) burn_rivers = int(wt.configget(config, "parameters", "burn_rivers", 200)) burn_connections = int( wt.configget(config, "parameters", "burn_connections", 100)) burn_gauges = int(wt.configget(config, "parameters", "burn_gauges", 100)) minorder = int(wt.configget(config, "parameters", "riverorder_min", 3)) exec "percentile=tr.array(" + wt.configget(config, "parameters", "statisticmaps", [0, 100]) + ")" if not unit_clone: print 'failed to read unit (meter or degree) from mask projection' unit_clone = str(wt.configget(config, "settings", "unit", 'meter')) print 'unit read from settings: ' + unit_clone if unit_clone == 'degree': cellsize_hr = float( wt.configget(config, "parameters", "highres_degree", 0.0005)) elif (unit_clone == 'metre') or (unit_clone == 'meter'): cellsize_hr = float( wt.configget(config, "parameters", "highres_metre", 50)) cols_hr = int((float(xmax) - float(xmin)) / cellsize_hr + 2) rows_hr = int((float(ymax) - float(ymin)) / cellsize_hr + 2) hr_trans = (float(xmin), cellsize_hr, float(0), float(ymax), 0, -cellsize_hr) ''' read staticmap locations ''' catchment_map = wt.configget(config, "staticmaps", "catchment", "wflow_catchment.map") dem_map = wt.configget(config, "staticmaps", "dem", "wflow_dem.map") demmax_map = wt.configget(config, "staticmaps", "demmax", "wflow_demmax.map") demmin_map = wt.configget(config, "staticmaps", "demmin", "wflow_demmin.map") gauges_map = wt.configget(config, "staticmaps", "gauges", "wflow_gauges.map") landuse_map = wt.configget(config, "staticmaps", "landuse", "wflow_landuse.map") ldd_map = wt.configget(config, "staticmaps", "ldd", "wflow_ldd.map") river_map = wt.configget(config, "staticmaps", "river", "wflow_river.map") outlet_map = wt.configget(config, "staticmaps", "outlet", "wflow_outlet.map") riverlength_fact_map = wt.configget(config, "staticmaps", "riverlength_fact", "wflow_riverlength_fact.map") soil_map = wt.configget(config, "staticmaps", "soil", "wflow_soil.map") streamorder_map = wt.configget(config, "staticmaps", "streamorder", "wflow_streamorder.map") subcatch_map = wt.configget(config, "staticmaps", "subcatch", "wflow_subcatch.map") ''' read mask location (optional) ''' masklayer = wt.configget(config, "mask", "masklayer", catchshp) ''' create directories ''' if os.path.isdir(workdir): shutil.rmtree(workdir) os.makedirs(workdir) if os.path.isdir(resultdir): shutil.rmtree(resultdir) os.makedirs(resultdir) ''' Preperation steps ''' zero_map = workdir + "zero.map" zero_tif = workdir + "zero.tif" pcr.report(zeros, zero_map) # TODO: replace gdal_translate call call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, zero_tif)) pcr.setglobaloption("lddin") ''' resample DEM ''' dem_resample = workdir + "dem_resampled.tif" ds = gdal.Open(dem_in, GA_ReadOnly) band = ds.GetRasterBand(1) nodata = band.GetNoDataValue() proj = ds.GetGeoTransform() cellsize_dem = proj[1] ''' read DEM projection ''' spatialref == None spatialref = ds.GetProjection() if not spatialref == None: srs = osr.SpatialReference() srs.ImportFromWkt(spatialref) srs.AutoIdentifyEPSG() dem_EPSG = 'EPSG:' + srs.GetAttrValue("AUTHORITY", 1) print 'EPSG-code is read from ' + os.path.basename( dem_in) + ': ' + dem_EPSG spatialref == None dem_EPSG_int = int(dem_EPSG[5:len(dem_EPSG)]) srs_DEM = osr.SpatialReference() srs_DEM.ImportFromEPSG(dem_EPSG_int) clone2dem_transform = osr.CoordinateTransformation(srs_clone, srs_DEM) else: dem_EPSG = clone_EPSG print 'No projection defined for ' + os.path.basename(dem_in) print 'Assumed to be the same as model projection (' + clone_EPSG + ')' ds = None print 'Resampling DEM...' if nodata == None: call(('gdalwarp', '-overwrite', '-t_srs', clone_prj, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-dstnodata', str(-9999), '-r', 'cubic', dem_in, dem_resample)) else: call(('gdalwarp', '-overwrite', '-t_srs', clone_prj, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-srcnodata', str(nodata), '-dstnodata', str(nodata), '-r', 'cubic', dem_in, dem_resample)) ''' create dem.map and statistic maps ''' dem_resample_map = resultdir + dem_map call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', dem_resample, dem_resample_map)) print 'Computing DEM statistics ....' stats = wt.windowstats(dem_in, clone_rows, clone_columns, clone_trans, srs_clone, resultdir, percentile) ''' burn DEM ''' ds = ogr.Open(rivshp) file_att = os.path.splitext(os.path.basename(rivshp))[0] lyr = ds.GetLayerByName(file_att) spatialref = lyr.GetSpatialRef() # if not spatialref == None: # srs = osr.SpatialReference() # srs.ImportFromWkt(spatialref.ExportToWkt()) # srs.AutoIdentifyEPSG() # rivshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) # spatialref == None # else: rivshp_EPSG = clone_EPSG print 'No projection defined for ' + file_att + '.shp' print 'Assumed to be the same as model projection (' + clone_EPSG + ')' # strip rivers to nodes xminc = str(float(xmin) + 0.5 * cellsize) yminc = str(float(ymin) + 0.5 * cellsize) xmaxc = str(float(xmax) - 0.5 * cellsize) ymaxc = str(float(ymax) - 0.5 * cellsize) if rivshp_EPSG == clone_EPSG: rivclipshp = workdir + 'rivshape_clip.shp' call(('ogr2ogr', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-spat', xmin, ymin, xmax, ymax, '-clipsrc', xminc, yminc, xmaxc, ymaxc, rivclipshp, rivshp)) else: rivprojshp = workdir + 'rivshape_proj.shp' rivclipshp = workdir + 'rivshape_clip.shp' call(('ogr2ogr', '-s_srs', rivshp_EPSG, '-t_srs', clone_EPSG, '-spat', xmin, ymin, xmax, ymax, rivprojshp, rivshp)) call(('ogr2ogr', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-spat', xmin, ymin, xmax, ymax, '-clipsrc', xminc, yminc, xmaxc, ymaxc, rivclipshp, rivprojshp)) rivshp = rivclipshp #### BURNING BELOW #### # TODO: check if extraction can be done within memory and retun a burn layer shapes = wt.Reach2Nodes(rivclipshp, clone_EPSG_int, cellsize * verticetollerance, workdir) outlets = shapes[1] connections = shapes[2] outlets_att = os.path.splitext(os.path.basename(outlets))[0] connections_att = os.path.splitext(os.path.basename(connections))[0] dem_resample_att = os.path.splitext(os.path.basename(dem_resample))[0] connections_tif = workdir + connections_att + ".tif" outlets_tif = workdir + outlets_att + ".tif" # TODO: make the burning in memory call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, connections_tif)) call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, outlets_tif)) call(('gdal_rasterize', '-burn', '1', '-l', outlets_att, outlets, outlets_tif)) call(('gdal_rasterize', '-burn', '1', '-l', connections_att, connections, connections_tif)) # convert rivers to order rivshp_att = os.path.splitext(os.path.basename(rivshp))[0] rivers_tif = workdir + rivshp_att + ".tif" call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, rivers_tif)) if burninorder: # make river shape with an order attribute OrderSHPs = wt.ReachOrder(rivshp, clone_EPSG_int, cellsize * verticetollerance, workdir) wt.Burn2Tif(OrderSHPs, 'order', rivers_tif) else: call(('gdal_rasterize', '-burn', '1', '-l', rivshp_att, rivshp, rivers_tif)) # convert 2 maps connections_map = workdir + connections_att + ".map" rivers_map = workdir + rivshp_att + ".map" outlets_map = workdir + outlets_att + ".map" call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', connections_tif, connections_map)) call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', rivers_tif, rivers_map)) call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', outlets_tif, outlets_map)) # burn the layers in DEM outletsburn = pcr.scalar( pcr.readmap(outlets_map)) * pcr.scalar(burn_outlets) connectionsburn = pcr.scalar( pcr.readmap(connections_map)) * pcr.scalar(burn_connections) riverburn = pcr.scalar(pcr.readmap(rivers_map)) * pcr.scalar(burn_rivers) ldddem = pcr.cover(dem_resample_map, pcr.ifthen(riverburn > 0, pcr.scalar(0))) ldddem = ldddem - outletsburn - connectionsburn - riverburn ldddem = pcr.cover(ldddem, pcr.scalar(0)) pcr.report(ldddem, workdir + "dem_burn.map") ''' create ldd for multi-catchments ''' ldd = pcr.ldd(empty) # reproject catchment shape-file ds = ogr.Open(catchshp) file_att = os.path.splitext(os.path.basename(catchshp))[0] lyr = ds.GetLayerByName(file_att) spatialref = lyr.GetSpatialRef() # if not spatialref == None: # srs = osr.SpatialReference() # srs.ImportFromWkt(spatialref.ExportToWkt()) # srs.AutoIdentifyEPSG() # catchshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) # spatialref == None # else: catchshp_EPSG = clone_EPSG print 'No projection defined for ' + file_att + '.shp' print 'Assumed to be the same as model projection (' + clone_EPSG + ')' if not rivshp_EPSG == clone_EPSG: catchprojshp = workdir + 'catchshape_proj.shp' call(('ogr2ogr', '-s_srs', catchshp_EPSG, '-t_srs', clone_ESPG, catchprojshp, catchshp)) catchshp = catchprojshp ds.Destroy() ds = ogr.Open(catchshp) file_att = os.path.splitext(os.path.basename(catchshp))[0] lyr = ds.GetLayerByName(file_att) fieldDef = ogr.FieldDefn("ID", ogr.OFTString) fieldDef.SetWidth(12) TEMP_out = Driver.CreateDataSource(workdir + "temp.shp") if not srs == None: TEMP_LYR = TEMP_out.CreateLayer("temp", srs, geom_type=ogr.wkbMultiPolygon) else: TEMP_LYR = TEMP_out.CreateLayer("temp", geom_type=ogr.wkbMultiPolygon) TEMP_LYR.CreateField(fieldDef) for i in range(lyr.GetFeatureCount()): orgfeature = lyr.GetFeature(i) geometry = orgfeature.geometry() feature = ogr.Feature(TEMP_LYR.GetLayerDefn()) feature.SetGeometry(geometry) feature.SetField("ID", str(i + 1)) TEMP_LYR.CreateFeature(feature) TEMP_out.Destroy() ds.Destroy # rasterize catchment map catchments_tif = workdir + "catchments.tif" catchments_map = workdir + "catchments.map" call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, zero_map, catchments_tif)) if alltouching: call(('gdal_rasterize', '-at', '-a', 'ID', '-l', "temp", workdir + 'temp.shp', catchments_tif)) else: call(('gdal_rasterize', '-a', 'ID', '-l', "temp", workdir + 'temp.shp', catchments_tif)) call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, catchments_tif, catchments_map)) catchments = pcr.readmap(catchments_map) riverunique = pcr.clump(pcr.nominal(pcr.ifthen(riverburn > 0, riverburn))) rivercatch = pcr.areamajority(pcr.ordinal(catchments), riverunique) #catchments = pcr.cover(pcr.ordinal(rivercatch),pcr.ordinal(pcr.ifthen(catchments > 0, catchments)),pcr.ordinal(0)) catchments = pcr.cover( pcr.ifthen(catchments > 0, pcr.ordinal(catchments)), pcr.ifthen( riverburn > 0, pcr.ordinal( pcr.spreadzone(pcr.nominal(catchments), pcr.ifthen(riverburn > 0, pcr.scalar(1)), 1)))) rivercatch_map = workdir + "catchments_river.map" catchclip_map = workdir + "catchments_clip.map" pcr.report(rivercatch, rivercatch_map) pcr.report(catchments, catchclip_map) ds = ogr.Open(workdir + "temp.shp") lyr = ds.GetLayerByName("temp") print 'calculating ldd' for i in range(lyr.GetFeatureCount()): feature = lyr.GetFeature(i) catch = int(feature.GetField("ID")) print "calculating ldd for catchment: " + str(i + 1) + "/" + str( lyr.GetFeatureCount()) + "...." ldddem_select = pcr.scalar(pcr.ifthen(catchments == catch, catchments)) * 0 + 1 * ldddem ldd_select = pcr.lddcreate(ldddem_select, float("1E35"), float("1E35"), float("1E35"), float("1E35")) ldd = pcr.cover(ldd, ldd_select) pcr.report(ldd, resultdir + ldd_map) ds.Destroy() ''' report stream order, river and dem ''' streamorder = pcr.ordinal(pcr.streamorder(ldd)) river = pcr.ifthen(streamorder >= pcr.ordinal(minorder), pcr.boolean(1)) mindem = int(np.min(pcr.pcr2numpy(pcr.ordinal(dem_resample_map), 9999999))) dem_resample_map = pcr.cover(dem_resample_map, pcr.scalar(river) * 0 + mindem) pcr.report(dem_resample_map, resultdir + dem_map) pcr.report(streamorder, resultdir + streamorder_map) pcr.report(river, resultdir + river_map) ''' deal with your catchments ''' if gaugeshp == None: print 'No gauges defined, using outlets instead' gauges = pcr.ordinal( pcr.uniqueid( pcr.boolean(pcr.ifthen(pcr.scalar(ldd) == 5, pcr.boolean(1))))) pcr.report(gauges, resultdir + gauges_map) # ds = ogr.Open(gaugeshp) # file_att = os.path.splitext(os.path.basename(gaugeshp))[0] # lyr = ds.GetLayerByName(file_att) # spatialref = lyr.GetSpatialRef() ## if not spatialref == None: ## srs = osr.SpatialReference() ## srs.ImportFromWkt(spatialref.ExportToWkt()) ## srs.AutoIdentifyEPSG() ## gaugeshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) ## spatialref == None # #else: # gaugeshp_EPSG = clone_EPSG # print 'No projection defined for ' + file_att + '.shp' # print 'Assumed to be the same as model projection (' + clone_EPSG + ')' # # # reproject gauge shape if necesarry # if not gaugeshp_EPSG == clone_EPSG: # gaugeprojshp = workdir + 'gaugeshape_proj.shp' # call(('ogr2ogr','-s_srs',rivshp_EPSG,'-t_srs',clone_ESPG,gaugeprojshp,gaugeshp)) # gaugeshp = gaugeprojshp # # file_att = os.path.splitext(os.path.basename(gaugeshp))[0] # gaugestif = workdir + file_att + '.tif' # gaugesmap = workdir + file_att + '.map' # call(('gdal_translate','-of','GTiff','-a_srs',clone_EPSG,zero_map,gaugestif)) # call(('gdal_rasterize','-burn','1','-l',file_att,gaugeshp,gaugestif)) # call(('gdal_translate','-of','PCRaster','-a_srs',clone_EPSG,gaugestif,gaugesmap)) # gaugelocs = pcr.readmap(gaugesmap) # snapgaugestoriver = True # # if snapgaugestoriver: # print "Snapping gauges to river" # gauges = pcr.uniqueid(pcr.boolean(gaugelocs)) # gauges= wt.snaptomap(pcr.ordinal(gauges),river) # # gaugesmap = pcr.ifthen(gauges > 0, gauges) ''' report riverlengthfrac ''' riv_hr = workdir + 'river_highres.tif' wt.CreateTif(riv_hr, rows_hr, cols_hr, hr_trans, srs_clone, 0) file_att = os.path.splitext(os.path.basename(rivshp))[0] call(('gdal_rasterize', '-burn', '1', '-l', file_att, rivshp, riv_hr)) print 'Computing river length...' #riverlength = wt.windowstats(riv_hr,clone_rows,clone_columns,clone_trans,srs_clone,resultdir,'frac',clone2dem_transform) riverlength = wt.windowstats(riv_hr, clone_rows, clone_columns, clone_trans, srs_clone, resultdir, 'frac') ''' report outlet map ''' pcr.report(pcr.ifthen(pcr.ordinal(ldd) == 5, pcr.ordinal(1)), resultdir + outlet_map) ''' report map ''' catchment = pcr.ifthen(catchments > 0, pcr.ordinal(1)) pcr.report(catchment, resultdir + catchment_map) ''' report subcatchment map ''' subcatchment = pcr.subcatchment(ldd, gauges) pcr.report(pcr.ordinal(subcatchment), resultdir + subcatch_map) ''' report landuse map ''' if landuse == None: pcr.report(pcr.nominal(ones), resultdir + landuse_map) else: landuse_resample = workdir + 'landuse.tif' landuse_map = resultdir + landuse_map transform = wt.GetRasterTranform(landuse, srs_clone) if not transform[0]: call(('gdalwarp', '-overwrite', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-r', 'mode', landuse, landuse_resample)) else: call(('gdalwarp', '-overwrite', '-s_srs', transform[1], '-t_srs', clone_EPSG, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-r', 'mode', landuse, landuse_resample)) call(('gdal_translate', '-of', 'PCRaster', '-ot', 'Float32', landuse_resample, landuse_map)) landuse_work = pcr.readmap(landuse_map) pcr.report(pcr.nominal(landuse_work), landuse_map) ''' report soil map ''' if soiltype == None: pcr.report(pcr.nominal(ones), resultdir + soil_map) else: soiltype_resample = workdir + 'soiltype.tif' soil_map = resultdir + soil_map #transform = wt.GetRasterTranform(soiltype,srs_clone) # if not transform[0]: call(('gdalwarp', '-overwrite', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-r', 'mode', soiltype, soiltype_resample)) # else: # call(('gdalwarp','-overwrite','-s_srs',transform[1],'-t_srs',clone_EPSG,'-te', xmin, ymin, xmax, ymax,'-tr',str(cellsize),str(-cellsize),'-r','mode',soiltype, soiltype_resample)) call(('gdal_translate', '-of', 'PCRaster', '-ot', 'Float32', soiltype_resample, soil_map)) soiltype_work = pcr.readmap(soil_map) pcr.report(pcr.nominal(soiltype_work), soil_map) if clean: wt.DeleteList(glob.glob(os.getcwd() + '\\' + resultdir + '/*.xml'))
def _parseLine(self, line, lineNumber, nrColumns, externalNames, keyDict): line = re.sub("\n","",line) line = re.sub("\t"," ",line) result = None # read until first comment content = "" content,sep,comment = line.partition("#") if len(content) > 1: collectionVariableName, sep, tail = content.partition(" ") if collectionVariableName == self._varName: tail = tail.strip() key, sep, variableValue = tail.rpartition(" ") if len(key.split()) != nrColumns: tmp = re.sub("\(|\)|,","",str(key)) msg = "Error reading %s line %d, order of columns given (%s columns) does not match expected order of %s columns" %(self._fileName, lineNumber, len(key.split()) + 2, int(nrColumns) + 2) raise ValueError(msg) variableValue = re.sub('\"', "", variableValue) tmp = None try: tmp = int(variableValue) if self._dataType == pcraster.Boolean: tmp = pcraster.boolean(tmp) elif self._dataType == pcraster.Nominal: tmp = pcraster.nominal(tmp) elif self._dataType == pcraster.Ordinal: tmp = pcraster.ordinal(tmp) elif self._dataType == pcraster.Ldd: tmp = pcraster.ldd(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError as e: try: tmp = float(variableValue) if self._dataType == pcraster.Scalar: tmp = pcraster.scalar(tmp) elif self._dataType == pcraster.Directional: tmp = pcraster.directional(tmp) else: msg = "Conversion to %s failed" % (self._dataType) raise Exception(msg) except ValueError as e: variableValue = re.sub("\\\\","/",variableValue) variableValue = variableValue.strip() path = os.path.normpath(variableValue) try: tmp = pcraster.readmap(path) except RuntimeError as e: msg = "Error reading %s line %d, %s" %(self._fileName, lineNumber, e) raise ValueError(msg) # test if key is an external name transformedKeys = [] counter = 0 for k in key.split(): k = k.strip() if externalNames[counter].get(k): transformedKeys.append(externalNames[counter].get(k)) else: transformedKeys.append(k) counter += 1 key = tuple(transformedKeys) if not key in keyDict: tmp = re.sub("\(|\)|,","",str(key)) msg = "Error reading %s line %d, %s unknown collection index" %(self._fileName, lineNumber, tmp) raise ValueError(msg) if not keyDict[key] is None: tmp = re.sub("\(|\)|,","",str(key)) msg = "Error reading %s line %d, %s %s already initialised" %(self._fileName, lineNumber, self._varName, tmp) raise ValueError(msg) keyDict[key] = tmp
def main(): try: opts, args = getopt.getopt(sys.argv[1:], "fhC:N:I:s:M:", ['version']) except getopt.error as msg: usage(msg) factor = 1 Verbose = 1 inmaps = True force = False caseName = "thecase" caseNameNew = "thecase_resamp" maxcpu = 4 for o, a in opts: if o == "-C": caseName = a if o == "-N": caseNameNew = a if o == "-s": subcatch = int(a) if o == "-I": inmaps = False if o == "-h": usage() if o == "-f": force = True if o == "-M": maxcpu = int(a) if o == "--version": import wflow print("wflow version: ", wflow.__version__) sys.exit(0) dirs = [ "/intbl/", "/staticmaps/", "/intss/", "/instate/", "/outstate/", "/inmaps/", "/inmaps/clim/", "/intbl/clim/", ] ext_to_copy = ["*.tss", "*.tbl", "*.col", "*.xml"] if os.path.isdir(caseNameNew) and not force: print("Refusing to write into an existing directory:" + caseNameNew) exit() # ddir = [] dirs = [] for (path, thedirs, files) in os.walk(caseName): print(path) dirs.append(path) if not os.path.isdir(caseNameNew): for ddir in dirs: os.makedirs(ddir.replace(caseName, caseNameNew)) for inifile in glob.glob(caseName + "/*.ini"): shutil.copy(inifile, inifile.replace(caseName, caseNameNew)) # read subcatchment map x, y, subcatchmap, FillVal = readMap( os.path.join(caseName, "staticmaps", "wflow_subcatch.map"), "PCRaster") for ddir in dirs: print(ddir) allcmd = [] for mfile in glob.glob(ddir + "/*.map"): if not os.path.exists(mfile.replace(caseName, caseNameNew)): x, y, data, FillVal = readMap(mfile, "PCRaster") try: good = 1 xn, yn, datan = cutMapById(data, subcatchmap, subcatch, x, y, FillVal) except Exception as e: good = 0 print("Skipping: " + mfile + " exception: " + str(e)) if xn.size == 0: good = 0 print("Skipping: " + mfile + " size does not match...") if good: ofile = mfile.replace(caseName, caseNameNew) if data.dtype == np.int32 or data.dtype == np.uint8: writeMap(ofile, "PCRaster", xn, yn, datan.astype(np.int32), FillVal) else: writeMap(ofile, "PCRaster", xn, yn, datan, FillVal) # Assume ldd and repair if (data.dtype == np.uint8 and 'wflow_ldd.map' in mfile): myldd = pcr.ldd(pcr.readmap(ofile)) myldd = pcr.lddrepair(myldd) pcr.report(myldd, ofile) for mfile in glob.glob(ddir + "/*.[0-9][0-9][0-9]"): if not os.path.exists(mfile.replace(caseName, caseNameNew)): x, y, data, FillVal = readMap(mfile, "PCRaster") try: good = 1 xn, yn, datan = cutMapById(data, subcatchmap, subcatch, x, y, FillVal) except Exception as e: good = 0 print("Skipping: " + mfile + " exception: " + str(e)) if xn.size == 0: good = 0 print("Skipping: " + mfile + " size does not match...") if good: ofile = mfile.replace(caseName, caseNameNew) if data.dtype == np.int32 or data.dtype == np.uint8: writeMap(ofile, "PCRaster", xn, yn, datan.astype(np.int32), FillVal) else: writeMap(ofile, "PCRaster", xn, yn, datan, FillVal) for ext in ext_to_copy: for mfile in glob.glob(os.path.join(ddir, ext)): shutil.copy(mfile, mfile.replace(caseName, caseNameNew)) # Copy ini files for mfile in glob.glob(os.path.join(caseName, "*.ini")): shutil.copy(mfile, mfile.replace(caseName, caseNameNew))
logger.info(msg) # set the pcraster clone, ldd, landmask, and cell area map msg = "Setting the clone, ldd, landmask, and cell area maps" + ":" logger.info(msg) # - clone clone_map_file = input_files['clone_map_05min'] pcr.setclone(clone_map_file) # - ldd ldd = vos.readPCRmapClone(input_files['ldd_map_05min'], clone_map_file, output_files['tmp_folder'], None, True) ldd = pcr.lddrepair(pcr.ldd(ldd)) ldd = pcr.lddrepair(ldd) # - landmask landmask = pcr.ifthen(pcr.defined(ldd), pcr.boolean(1.0)) # - cell area cell_area = vos.readPCRmapClone(input_files['cell_area_05min'], clone_map_file, output_files['tmp_folder']) # read the hydrological year msg = "Reading the hydrological year types" + ":" logger.info(msg) hydro_year_type = pcr.nominal(\ vos.readPCRmapClone(input_files['hydro_year_05min'], input_files['clone_map_05min'],
event_file_name = "channel_storage_" + chosen_date + ".map" pcr.report(extreme_value_map, event_file_name) #~ # - check it using aguila #~ cmd = 'aguila ' + event_file_name #~ os.system(cmd) # resampling low resolution ldd map msg = "Resample the low resolution ldd map." logger.info(msg) ldd_map_low_resolution_file_name = ldd_map_low_resolution_file_name ldd_map_low_resolution = vos.readPCRmapClone(ldd_map_low_resolution_file_name, \ clone_map_file, \ tmp_folder, \ None, True, None, False) #~ ldd_map_low_resolution = pcr.ifthen(landmask, ldd_map_low_resolution) # NOTE THAT YOU SHOULD NOT MASK-OUT THE LDD. ldd_map_low_resolution = pcr.lddrepair(pcr.ldd(ldd_map_low_resolution)) ldd_map_low_resolution = pcr.lddrepair(ldd_map_low_resolution) pcr.report(ldd_map_low_resolution, "resampled_low_resolution_ldd.map") # resampling river length and width files (actually, we don't need these): msg = "Resample the low resolution river length and width maps." logger.info(msg) # - river length river_length_file_name = "/projects/0/dfguu/users/edwin/data/data_for_glofris_downscaling/input_data/maps_05min/celldiagonal05min.map" river_length_low_resolution = vos.readPCRmapClone(river_length_file_name, \ clone_map_file, \ tmp_folder, \ None, False, None, False) river_length_low_resolution = pcr.ifthen(landmask, river_length_low_resolution) river_length_low_resolution = pcr.cover(river_length_low_resolution, 0.0) pcr.report(river_length_low_resolution, "resampled_low_resolution_channel_length.map")