Esempio n. 1
0
    def run_pdb2pqr(self, currentPDB):
        """Run pdb2pqr, prepare input for apbs"""
        pdbfile = getPDBFile(currentPDB)
        pdblist, errlist = readPDB(pdbfile)
        #
        # Instantiate pdb2pqr
        #
        myDefinition = Definition()
        myProtein = Protein(pdblist, myDefinition)

        #
        # Setup everything
        #
        myRoutines = Routines(myProtein, verbose)
        myRoutines.updateResidueTypes()
        myRoutines.updateSSbridges()
        myRoutines.updateBonds()
        myRoutines.setTermini()
        myRoutines.updateInternalBonds()

        myforcefield = Forcefield(ff, myDefinition, None)
        myRoutines.applyNameScheme(myforcefield)

        myRoutines.findMissingHeavy()
        myRoutines.addHydrogens()
        myRoutines.debumpProtein()
        myProtein.reSerialize()
        #
        # Add and optimze hydrogens:
        #
        from src.hydrogens import hydrogenRoutines
        myRoutines.updateInternalBonds()
        myRoutines.calculateDihedralAngles()
        myhydRoutines = hydrogenRoutines(myRoutines)
        #
        # Now optimize hydrogens
        #
        myhydRoutines.setOptimizeableHydrogens()
        myhydRoutines.initializeFullOptimization()
        myhydRoutines.optimizeHydrogens()
        myhydRoutines.cleanup()
        myRoutines.setStates()

        print "Created protein object (after processing myRoutines) -"
        print "\tNumber of residues in protein: %s" % myProtein.numResidues()
        print "\tNumber of atoms in protein   : %s" % myProtein.numAtoms()

        #
        # Assign charges
        #
        for chain in myProtein.getChains():
            for residue in chain.get("residues"):
                for atom in residue.get("atoms"):
                    atomname = atom.get("name")
                    charge, radius = myforcefield.getParams1(residue, atomname)
                    atom.set("radius", radius)
                    atom.set("ffcharge", charge)
        #
        #
                method = ""
                async = 0
                split = 0
                import pdb2pka.inputgen_pKa as IP
                igen = IP.inputGen(currentPDB)
                igen.maps = None
                igen.set_type('background')
                igen.pdie = 8.0
                igen.sdie = 80.0
                all_center, extent = igen.getCenter()
                igen.setfineCenter(all_center)
                print 'Center: %5.1fA %5.1fA %5.1fA' % (
                    all_center[0], all_center[1], all_center[2])
                print 'Extent: %5.1fA %5.1fA %5.1fA' % (extent[0], extent[1],
                                                        extent[2])

                apbs_inputfile = igen.printInput()
                return myProtein, apbs_inputfile
Esempio n. 2
0
    def run_pdb2pqr(self,currentPDB):
        """Run pdb2pqr, prepare input for apbs"""
        pdbfile = getPDBFile(currentPDB)
        pdblist, errlist = readPDB(pdbfile)
        #
        # Instantiate pdb2pqr
        #
        myDefinition = Definition()
        myProtein = Protein(pdblist, myDefinition)

        #
        # Setup everything
        #
        myRoutines = Routines(myProtein, verbose)
        myRoutines.updateResidueTypes()
        myRoutines.updateSSbridges()
        myRoutines.updateBonds()
        myRoutines.setTermini()
        myRoutines.updateInternalBonds()

        myforcefield=Forcefield(ff, myDefinition, None)
        myRoutines.applyNameScheme(myforcefield)

        myRoutines.findMissingHeavy()
        myRoutines.addHydrogens()
        myRoutines.debumpProtein()
        myProtein.reSerialize()
        #
        # Add and optimze hydrogens:
        # 
        from src.hydrogens import hydrogenRoutines
        myRoutines.updateInternalBonds()
        myRoutines.calculateDihedralAngles()
        myhydRoutines = hydrogenRoutines(myRoutines)
        #
        # Now optimize hydrogens
        #
        myhydRoutines.setOptimizeableHydrogens()
        myhydRoutines.initializeFullOptimization()
        myhydRoutines.optimizeHydrogens()
        myhydRoutines.cleanup()
        myRoutines.setStates()

        print "Created protein object (after processing myRoutines) -"
        print "\tNumber of residues in protein: %s" % myProtein.numResidues()
        print "\tNumber of atoms in protein   : %s" % myProtein.numAtoms()

        #
        # Assign charges
        #
        for chain in myProtein.getChains():
            for residue in chain.get("residues"):
                for atom in residue.get("atoms"):
                    atomname = atom.get("name")
                    charge, radius = myforcefield.getParams1(residue, atomname)
                    atom.set("radius", radius)
                    atom.set("ffcharge", charge)
        #
        #
		method=""
		async=0
		split=0
		import pdb2pka.inputgen_pKa as IP
		igen = IP.inputGen(currentPDB)
		igen.maps=None
		igen.set_type('background')
		igen.pdie=8.0
		igen.sdie=80.0
		all_center,extent=igen.getCenter()
		igen.setfineCenter(all_center)
		print 'Center: %5.1fA %5.1fA %5.1fA' %(all_center[0],all_center[1],all_center[2])
		print 'Extent: %5.1fA %5.1fA %5.1fA'  %(extent[0],extent[1],extent[2])

		apbs_inputfile=igen.printInput()
		return myProtein, apbs_inputfile
Esempio n. 3
0
def pre_init(original_pdb_list=None,
             output_dir=None,
             ff=None,
             verbose=False,
             pdie=8.0,
             sdie=80,
             maps=None,
             xdiel=None,
             ydiel=None,
             zdiel=None,
             kappa=None,
             sd=None,
             ligand=None):
    """This function cleans the PDB and prepares the APBS input file

    Prepares the output folder."""

    #prepare the output directory

    output_dir = os.path.abspath(output_dir)

    try:
        os.makedirs(output_dir)
    except OSError:
        if not os.path.isdir(output_dir):
            raise ValueError('Target directory is a file! Aborting.')

    workspace_dir = os.path.join(output_dir,'workspace')

    try:
        os.makedirs(workspace_dir)
    except OSError:
        if not os.path.isdir(output_dir):
            raise ValueError('Target directory is a file! Aborting.')

    #
    # remove hydrogen atoms
    #

    working_pdb_filename = os.path.join(workspace_dir,'working.pdb')

    pka_help.dump_protein_no_hydrogens(original_pdb_list, working_pdb_filename)
    #
    # Get the PDBfile
    #
    pdbfile = getPDBFile(working_pdb_filename)
    pdblist, errlist = readPDB(pdbfile)

    if verbose:
        print "Beginning PDB2PKA...\n"
    #
    # Read the definition file
    #
    myDefinition = Definition()
    ligand_titratable_groups=None
    #
    #
    # Choose whether to include the ligand or not
    #
    # Add the ligand to the pdb2pqr arrays
    #
    Lig=None
    if ligand is None:
        myProtein = Protein(pdblist, myDefinition)
    else:
        from pdb2pka.ligandclean import ligff
        myProtein, myDefinition, Lig = ligff.initialize(myDefinition, ligand, pdblist, verbose)
    #
    # =======================================================================
    #
    # We have identified the structural elements, now contiue with the setup
    #
    # Print something for some reason?
    #
    if verbose:
        print "Created protein object -"
        print "\tNumber of residues in protein: %s" % myProtein.numResidues()
        print "\tNumber of atoms in protein   : %s" % myProtein.numAtoms()
    #
    # Set up all other routines
    #
    myRoutines = Routines(myProtein, verbose) #myDefinition)
    myRoutines.updateResidueTypes()
    myRoutines.updateSSbridges()
    myRoutines.updateBonds()
    myRoutines.setTermini()
    myRoutines.updateInternalBonds()

    myRoutines.applyNameScheme(Forcefield(ff, myDefinition, None))
    myRoutines.findMissingHeavy()
    myRoutines.addHydrogens()
    myRoutines.debumpProtein()

    #myRoutines.randomizeWaters()
    myProtein.reSerialize()
    #
    # Inject the information on hydrogen conformations in the HYDROGENS.DAT arrays
    # We get this information from ligand_titratable_groups
    #
    from src.hydrogens import hydrogenRoutines
    myRoutines.updateInternalBonds()
    myRoutines.calculateDihedralAngles()
    myhydRoutines = hydrogenRoutines(myRoutines)
    #
    # Here we should inject the info!!
    #
    myhydRoutines.setOptimizeableHydrogens()
    myhydRoutines.initializeFullOptimization()
    myhydRoutines.optimizeHydrogens()
    myhydRoutines.cleanup()
    myRoutines.setStates()

    #
    # Choose the correct forcefield
    #
    myForcefield = Forcefield(ff, myDefinition, None)
    if Lig:
        hitlist, misslist = myRoutines.applyForcefield(myForcefield)
        #
        # Can we get charges for the ligand?
        #
        templist=[]
        ligsuccess=False
        for residue in myProtein.getResidues():
            if isinstance(residue, LIG):
                templist = []
                Lig.make_up2date(residue)
                net_charge=0.0
                print 'Ligand',residue
                print 'Atom\tCharge\tRadius'
                for atom in residue.getAtoms():
                    if atom.mol2charge:
                        atom.ffcharge=atom.mol2charge
                    else:
                        atom.ffcharge = Lig.ligand_props[atom.name]["charge"]
                    #
                    # Find the net charge
                    #
                    net_charge=net_charge+atom.ffcharge
                    #
                    # Assign radius
                    #
                    atom.radius = Lig.ligand_props[atom.name]["radius"]
                    print '%s\t%6.4f\t%6.4f' %(atom.name,atom.ffcharge,atom.radius)
                    if atom in misslist:
                        misslist.pop(misslist.index(atom))
                        templist.append(atom)
                    #
                    # Store the charge and radius in the atom instance for later use
                    # This really should be done in a nicer way, but this will do for now
                    #
                    atom.secret_radius=atom.radius
                    atom.secret_charge=atom.ffcharge
                    #
                    #

                charge = residue.getCharge()
                if abs(charge - round(charge)) > 0.01:
                    # Ligand parameterization failed
                    myProtein.residues.remove(residue)
                    raise Exception('Non-integer charge on ligand: %8.5f' %charge)
                else:
                    ligsuccess = 1
                    # Mark these atoms as hits
                    hitlist = hitlist + templist
                #
                # Print the net charge
                #
                print 'Net charge for ligand %s is: %5.3f' %(residue.name,net_charge)
        #
        # Temporary fix; if ligand was successful, pull all ligands from misslist
        # Not sure if this is needed at all here ...? (Jens wrote this)
        #
        if ligsuccess:
            templist = misslist[:]
            for atom in templist:
                if isinstance(atom.residue, Amino) or isinstance(atom.residue, Nucleic):
                    continue
                misslist.remove(atom)

    if verbose:
        print "Created protein object (after processing myRoutines) -"
        print "\tNumber of residues in protein: %s" % myProtein.numResidues()
        print "\tNumber of atoms in protein   : %s" % myProtein.numAtoms()
    #
    # Create the APBS input file
    #
    import src.psize
    size=src.psize.Psize()

    method=""
    async=0
    split=0

    igen = inputgen_pKa.inputGen(working_pdb_filename)
    #
    # For convenience
    #
    igen.pdie = pdie
    print 'Setting protein dielectric constant to ',igen.pdie
    igen.sdie=sdie
    igen.maps=maps
    if maps==1:
        print "Using dielectric and mobile ion-accessibility function maps in PBE"
        if xdiel:
            igen.xdiel = xdiel
        else:
            raise PDB2PKAError('X dielectric map is missing')
        if ydiel:
            igen.ydiel = ydiel
        else:
            raise PDB2PKAError("Y dielectric map is missing\n")
        if zdiel:
            igen.zdiel = zdiel
        else:
            raise PDB2PKAError("Z dielectric map is missing\n")

        print 'Setting dielectric function maps: %s, %s, %s'%(igen.xdiel,igen.ydiel,igen.zdiel)

        if kappa:
            igen.kappa = kappa
        else:
            raise PDB2PKAError("Mobile ion-accessibility map is missing\n")

        print 'Setting mobile ion-accessibility function map to: ',igen.kappa

        if sd:
            xdiel_smooth, ydiel_smooth, zdiel_smooth = smooth(xdiel,ydiel,zdiel)
            igen.xdiel = xdiel_smooth
            igen.ydiel = ydiel_smooth
            igen.zdiel = zdiel_smooth
    #
    # Return all we need
    #
    return output_dir, myProtein, myRoutines, myForcefield,igen, ligand_titratable_groups, maps, sd
Esempio n. 4
0
def pre_init(original_pdb_list=None,
             output_dir=None,
             ff=None,
             verbose=False,
             pdie=8.0,
             sdie=80,
             maps=None,
             xdiel=None,
             ydiel=None,
             zdiel=None,
             kappa=None,
             sd=None,
             ligand=None):
    """This function cleans the PDB and prepares the APBS input file

    Prepares the output folder."""

    #prepare the output directory

    output_dir = os.path.abspath(output_dir)

    try:
        os.makedirs(output_dir)
    except OSError:
        if not os.path.isdir(output_dir):
            raise ValueError('Target directory is a file! Aborting.')

    workspace_dir = os.path.join(output_dir, 'workspace')

    try:
        os.makedirs(workspace_dir)
    except OSError:
        if not os.path.isdir(output_dir):
            raise ValueError('Target directory is a file! Aborting.')

    #
    # remove hydrogen atoms
    #

    working_pdb_filename = os.path.join(workspace_dir, 'working.pdb')

    pka_help.dump_protein_no_hydrogens(original_pdb_list, working_pdb_filename)
    #
    # Get the PDBfile
    #
    pdbfile = getPDBFile(working_pdb_filename)
    pdblist, errlist = readPDB(pdbfile)

    if verbose:
        print "Beginning PDB2PKA...\n"
    #
    # Read the definition file
    #
    myDefinition = Definition()
    ligand_titratable_groups = None
    #
    #
    # Choose whether to include the ligand or not
    #
    # Add the ligand to the pdb2pqr arrays
    #
    Lig = None
    if ligand is None:
        myProtein = Protein(pdblist, myDefinition)
    else:
        from pdb2pka.ligandclean import ligff
        myProtein, myDefinition, Lig = ligff.initialize(
            myDefinition, ligand, pdblist, verbose)
    #
    # =======================================================================
    #
    # We have identified the structural elements, now contiue with the setup
    #
    # Print something for some reason?
    #
    if verbose:
        print "Created protein object -"
        print "\tNumber of residues in protein: %s" % myProtein.numResidues()
        print "\tNumber of atoms in protein   : %s" % myProtein.numAtoms()
    #
    # Set up all other routines
    #
    myRoutines = Routines(myProtein, verbose)  #myDefinition)
    myRoutines.updateResidueTypes()
    myRoutines.updateSSbridges()
    myRoutines.updateBonds()
    myRoutines.setTermini()
    myRoutines.updateInternalBonds()

    myRoutines.applyNameScheme(Forcefield(ff, myDefinition, None))
    myRoutines.findMissingHeavy()
    myRoutines.addHydrogens()
    myRoutines.debumpProtein()

    #myRoutines.randomizeWaters()
    myProtein.reSerialize()
    #
    # Inject the information on hydrogen conformations in the HYDROGENS.DAT arrays
    # We get this information from ligand_titratable_groups
    #
    from src.hydrogens import hydrogenRoutines
    myRoutines.updateInternalBonds()
    myRoutines.calculateDihedralAngles()
    myhydRoutines = hydrogenRoutines(myRoutines)
    #
    # Here we should inject the info!!
    #
    myhydRoutines.setOptimizeableHydrogens()
    myhydRoutines.initializeFullOptimization()
    myhydRoutines.optimizeHydrogens()
    myhydRoutines.cleanup()
    myRoutines.setStates()

    #
    # Choose the correct forcefield
    #
    myForcefield = Forcefield(ff, myDefinition, None)
    if Lig:
        hitlist, misslist = myRoutines.applyForcefield(myForcefield)
        #
        # Can we get charges for the ligand?
        #
        templist = []
        ligsuccess = False
        for residue in myProtein.getResidues():
            if isinstance(residue, LIG):
                templist = []
                Lig.make_up2date(residue)
                net_charge = 0.0
                print 'Ligand', residue
                print 'Atom\tCharge\tRadius'
                for atom in residue.getAtoms():
                    if atom.mol2charge:
                        atom.ffcharge = atom.mol2charge
                    else:
                        atom.ffcharge = Lig.ligand_props[atom.name]["charge"]
                    #
                    # Find the net charge
                    #
                    net_charge = net_charge + atom.ffcharge
                    #
                    # Assign radius
                    #
                    atom.radius = Lig.ligand_props[atom.name]["radius"]
                    print '%s\t%6.4f\t%6.4f' % (atom.name, atom.ffcharge,
                                                atom.radius)
                    if atom in misslist:
                        misslist.pop(misslist.index(atom))
                        templist.append(atom)
                    #
                    # Store the charge and radius in the atom instance for later use
                    # This really should be done in a nicer way, but this will do for now
                    #
                    atom.secret_radius = atom.radius
                    atom.secret_charge = atom.ffcharge
                    #
                    #

                charge = residue.getCharge()
                if abs(charge - round(charge)) > 0.01:
                    # Ligand parameterization failed
                    myProtein.residues.remove(residue)
                    raise Exception('Non-integer charge on ligand: %8.5f' %
                                    charge)
                else:
                    ligsuccess = 1
                    # Mark these atoms as hits
                    hitlist = hitlist + templist
                #
                # Print the net charge
                #
                print 'Net charge for ligand %s is: %5.3f' % (residue.name,
                                                              net_charge)
        #
        # Temporary fix; if ligand was successful, pull all ligands from misslist
        # Not sure if this is needed at all here ...? (Jens wrote this)
        #
        if ligsuccess:
            templist = misslist[:]
            for atom in templist:
                if isinstance(atom.residue, Amino) or isinstance(
                        atom.residue, Nucleic):
                    continue
                misslist.remove(atom)

    if verbose:
        print "Created protein object (after processing myRoutines) -"
        print "\tNumber of residues in protein: %s" % myProtein.numResidues()
        print "\tNumber of atoms in protein   : %s" % myProtein.numAtoms()
    #
    # Create the APBS input file
    #
    import src.psize
    size = src.psize.Psize()

    method = ""
    split = 0

    igen = inputgen_pKa.inputGen(working_pdb_filename)
    #
    # For convenience
    #
    igen.pdie = pdie
    print 'Setting protein dielectric constant to ', igen.pdie
    igen.sdie = sdie
    igen.maps = maps
    if maps == 1:
        print "Using dielectric and mobile ion-accessibility function maps in PBE"
        if xdiel:
            igen.xdiel = xdiel
        else:
            raise PDB2PKAError('X dielectric map is missing')
        if ydiel:
            igen.ydiel = ydiel
        else:
            raise PDB2PKAError("Y dielectric map is missing\n")
        if zdiel:
            igen.zdiel = zdiel
        else:
            raise PDB2PKAError("Z dielectric map is missing\n")

        print 'Setting dielectric function maps: %s, %s, %s' % (
            igen.xdiel, igen.ydiel, igen.zdiel)

        if kappa:
            igen.kappa = kappa
        else:
            raise PDB2PKAError("Mobile ion-accessibility map is missing\n")

        print 'Setting mobile ion-accessibility function map to: ', igen.kappa

        if sd:
            xdiel_smooth, ydiel_smooth, zdiel_smooth = smooth(
                xdiel, ydiel, zdiel)
            igen.xdiel = xdiel_smooth
            igen.ydiel = ydiel_smooth
            igen.zdiel = zdiel_smooth
    #
    # Return all we need
    #
    return output_dir, myProtein, myRoutines, myForcefield, igen, ligand_titratable_groups, maps, sd