Esempio n. 1
0
def simultaneous_stream_plan(evaluations,
                             goal_expression,
                             domain,
                             stream_results,
                             negated,
                             unit_costs=False,
                             **kwargs):
    if negated:
        raise NotImplementedError(negated)
    for result in stream_results:
        if isinstance(result.external, Stream) and result.external.is_fluent():
            raise NotImplementedError('Fluents are not supported')

    applied_streams, deferred_streams = partition_results(
        evaluations, stream_results, lambda r: False)
    opt_evaluations = apply_streams(evaluations, applied_streams)
    stream_domain, stream_result_from_name = add_stream_actions(
        domain, deferred_streams)
    if any(map(is_optimizer_result, stream_results)):
        goal_expression = augment_goal(stream_domain, goal_expression)
    combined_plan, _ = solve_finite(opt_evaluations,
                                    goal_expression,
                                    stream_domain,
                                    unit_costs=unit_costs,
                                    **kwargs)
    if combined_plan is None:
        return None, INF

    stream_plan, action_plan = partition_plan(combined_plan,
                                              stream_result_from_name)
    function_plan = extract_function_plan(opt_evaluations, action_plan, domain,
                                          unit_costs)
    cost = get_plan_cost(opt_evaluations, action_plan, domain, unit_costs)
    combined_plan = stream_plan + function_plan + action_plan
    return combined_plan, cost
Esempio n. 2
0
def locally_optimize(evaluations, store, goal_expression, domain, functions, negative,
                     dynamic_streams, visualize, sampling_time=0):
    action_plan = store.best_plan
    if action_plan is None:
        return None
    print('\nPostprocessing | Cost: {} | Total Time: {:.3f}'.format(store.best_cost, store.elapsed_time()))
    # TODO: postprocess current skeletons as well

    task = task_from_domain_problem(domain, get_problem(evaluations, goal_expression, domain, unit_costs=False))
    opt_stream_plan, opt_from_obj = recover_opt_stream_plan(evaluations, action_plan, task)
    opt_stream_plan += optimistic_process_streams(evaluations_from_stream_plan(evaluations, opt_stream_plan), functions)
    opt_action_plan = [(name, tuple(opt_from_obj.get(o, o) for o in args)) for name, args in action_plan]
    pddl_plan = [(name, tuple(map(pddl_from_object, args))) for name, args in opt_action_plan]
    stream_plan = recover_stream_plan(evaluations, goal_expression, domain,
                                      opt_stream_plan, pddl_plan, negative, unit_costs=False)
    stream_plan = get_synthetic_stream_plan(reorder_stream_plan(stream_plan), dynamic_streams)


    # TODO: need to make this just streams
    opt_evaluations = apply_streams(evaluations, stream_plan)
    opt_cost = get_plan_cost(opt_evaluations, opt_action_plan, domain, unit_costs=False)
    dump_plans(stream_plan, opt_action_plan, opt_cost)
    if visualize:
        log_plans(stream_plan, action_plan, None)
        create_visualizations(evaluations, stream_plan, None)

    store.start_time = time.time()
    store.max_cost = store.best_cost
    queue = SkeletonQueue(store, evaluations, goal_expression, domain)
    queue.new_skeleton(stream_plan, opt_action_plan, opt_cost)
    queue.greedily_process()
    queue.timed_process(sampling_time)
Esempio n. 3
0
def simultaneous_stream_plan(evaluations,
                             goal_expression,
                             domain,
                             stream_results,
                             negated,
                             unit_costs=False,
                             **kwargs):
    # TODO: remove this method in favor of the more general relaxed plan
    if negated:
        raise NotImplementedError(negated)
    for result in stream_results:
        if isinstance(result.external, Stream) and result.external.is_fluent():
            raise NotImplementedError('Fluents are not supported')
    # TODO: warning check if using simultaneous_stream_plan with non-eager functions

    applied_streams, deferred_streams = partition_results(
        evaluations, stream_results, lambda r: False)
    opt_evaluations = apply_streams(evaluations, applied_streams)
    stream_domain, stream_result_from_name = add_stream_actions(
        domain, deferred_streams)
    if any(map(is_optimizer_result, stream_results)):
        goal_expression = add_unsatisfiable_to_goal(stream_domain,
                                                    goal_expression)
    combined_plan, _ = solve_finite(opt_evaluations,
                                    goal_expression,
                                    stream_domain,
                                    unit_costs=unit_costs,
                                    **kwargs)
    if combined_plan is None:
        return None, INF

    stream_plan, action_plan = partition_plan(combined_plan,
                                              stream_result_from_name)
    function_plan = extract_function_plan(opt_evaluations, action_plan, domain,
                                          unit_costs)
    cost = get_plan_cost(opt_evaluations, action_plan, domain, unit_costs)
    combined_plan = stream_plan + function_plan + action_plan
    return combined_plan, cost
Esempio n. 4
0
def relaxed_stream_plan(evaluations, goal_expression, domain, stream_results, negative, unit_costs,
                        unit_efforts, effort_weight, debug=False, **kwargs):
    # TODO: alternatively could translate with stream actions on real opt_state and just discard them
    # TODO: only consider axioms that have stream conditions?
    applied_results, deferred_results = partition_results(evaluations, stream_results,
                                                          apply_now=lambda r: not r.external.info.simultaneous)
    stream_domain, result_from_name = add_stream_actions(domain, deferred_results)
    node_from_atom = get_achieving_streams(evaluations, applied_results)
    opt_evaluations = apply_streams(evaluations, applied_results) # if n.effort < INF
    if any(map(is_optimizer_result, stream_results)):
        goal_expression = augment_goal(stream_domain, goal_expression)
    problem = get_problem(opt_evaluations, goal_expression, stream_domain, unit_costs) # begin_metric

    with Verbose(debug):
        instantiated = instantiate_task(task_from_domain_problem(stream_domain, problem))
    if instantiated is None:
        return None, INF
    if (effort_weight is not None) or any(map(is_optimizer_result, applied_results)):
        add_stream_costs(node_from_atom, instantiated, unit_efforts, effort_weight)
    add_optimizer_axioms(stream_results, instantiated)
    with Verbose(debug):
        sas_task = sas_from_instantiated(instantiated)
        sas_task.metric = True
    #sas_task = sas_from_pddl(task)
    #action_plan, _ = serialized_solve_from_task(sas_task, debug=debug, **kwargs)
    action_plan, _ = abstrips_solve_from_task(sas_task, debug=debug, **kwargs)
    #action_plan, _ = abstrips_solve_from_task_sequential(sas_task, debug=debug, **kwargs)
    if action_plan is None:
        return None, INF

    applied_plan, function_plan = partition_external_plan(recover_stream_plan(
        evaluations, goal_expression, stream_domain, applied_results, action_plan, negative, unit_costs))
    deferred_plan, action_plan = partition_plan(action_plan, result_from_name)
    stream_plan = applied_plan + deferred_plan + function_plan
    action_plan = obj_from_pddl_plan(action_plan)
    cost = get_plan_cost(opt_evaluations, action_plan, domain, unit_costs)
    combined_plan = stream_plan + action_plan
    return combined_plan, cost
Esempio n. 5
0
def relaxed_stream_plan(evaluations,
                        goal_expression,
                        domain,
                        all_results,
                        negative,
                        unit_efforts,
                        effort_weight,
                        max_effort,
                        simultaneous=False,
                        reachieve=True,
                        unit_costs=False,
                        debug=False,
                        **kwargs):
    # TODO: alternatively could translate with stream actions on real opt_state and just discard them
    # TODO: only consider axioms that have stream conditions?
    applied_results, deferred_results = partition_results(
        evaluations,
        all_results,
        apply_now=lambda r: not (simultaneous or r.external.info.simultaneous))
    stream_domain, result_from_name = add_stream_actions(
        domain, deferred_results)
    opt_evaluations = apply_streams(evaluations,
                                    applied_results)  # if n.effort < INF

    if reachieve:
        achieved_results = {
            r
            for r in evaluations.values() if isinstance(r, Result)
        }
        init_evaluations = {
            e
            for e, r in evaluations.items() if r not in achieved_results
        }
        applied_results = achieved_results | set(applied_results)
        evaluations = init_evaluations  # For clarity
    # TODO: could iteratively increase max_effort
    node_from_atom = get_achieving_streams(evaluations,
                                           applied_results,
                                           unit_efforts=unit_efforts,
                                           max_effort=max_effort)
    if using_optimizers(all_results):
        goal_expression = add_unsatisfiable_to_goal(stream_domain,
                                                    goal_expression)
    problem = get_problem(opt_evaluations, goal_expression, stream_domain,
                          unit_costs)  # begin_metric

    with Verbose(debug):
        instantiated = instantiate_task(
            task_from_domain_problem(stream_domain, problem))
    if instantiated is None:
        return None, INF
    cost_from_action = {action: action.cost for action in instantiated.actions}
    if (effort_weight is not None) or using_optimizers(applied_results):
        add_stream_efforts(node_from_atom,
                           instantiated,
                           effort_weight,
                           unit_efforts=unit_efforts)
    add_optimizer_axioms(all_results, instantiated)
    action_from_name = rename_instantiated_actions(instantiated)
    with Verbose(debug):
        sas_task = sas_from_instantiated(instantiated)
        sas_task.metric = True

    # TODO: apply renaming to hierarchy as well
    # solve_from_task | serialized_solve_from_task | abstrips_solve_from_task | abstrips_solve_from_task_sequential
    action_plan, _ = solve_from_task(sas_task, debug=debug, **kwargs)
    if action_plan is None:
        return None, INF
    action_instances = [action_from_name[name] for name, _ in action_plan]
    cost = get_plan_cost(action_instances, cost_from_action, unit_costs)
    axiom_plans = recover_axioms_plans(instantiated, action_instances)

    applied_plan, function_plan = partition_external_plan(
        recover_stream_plan(evaluations, opt_evaluations, goal_expression,
                            stream_domain, node_from_atom, action_instances,
                            axiom_plans, negative, unit_costs))
    #action_plan = obj_from_pddl_plan(parse_action(instance.name) for instance in action_instances)
    action_plan = obj_from_pddl_plan(map(pddl_from_instance, action_instances))

    deferred_plan, action_plan = partition_plan(action_plan, result_from_name)
    stream_plan = applied_plan + deferred_plan + function_plan
    combined_plan = stream_plan + action_plan
    return combined_plan, cost
Esempio n. 6
0
def recover_stream_plan(evaluations, goal_expression, domain, stream_results, action_plan, negative, unit_costs):
    import pddl
    import instantiate
    # Universally quantified conditions are converted into negative axioms
    # Existentially quantified conditions are made additional preconditions
    # Universally quantified effects are instantiated by doing the cartesian produce of types (slow)
    # Added effects cancel out removed effects

    real_task = task_from_domain_problem(domain, get_problem(evaluations, goal_expression, domain, unit_costs))
    node_from_atom = get_achieving_streams(evaluations, stream_results)
    opt_evaluations = apply_streams(evaluations, stream_results)
    opt_task = task_from_domain_problem(domain, get_problem(opt_evaluations, goal_expression, domain, unit_costs))
    function_assignments = {fact.fluent: fact.expression for fact in opt_task.init  # init_facts
                            if isinstance(fact, pddl.f_expression.FunctionAssignment)}
    type_to_objects = instantiate.get_objects_by_type(opt_task.objects, opt_task.types)
    results_from_head = get_results_from_head(opt_evaluations)
    action_instances = instantiate_actions(opt_task, type_to_objects, function_assignments, action_plan)
    negative_from_name = get_negative_predicates(negative)
    axioms_from_name = get_derived_predicates(opt_task.axioms)

    opt_task.init = set(opt_task.init)
    real_states = [set(real_task.init)] # TODO: had old way of doing this (~July 2018)
    preimage_plan = []
    function_plan = set()
    for layer in action_instances:
        for pair, action_instance in layer:
            axiom_plan = extract_axiom_plan(opt_task, action_instance, negative_from_name,
                                            static_state=real_states[-1])
            if axiom_plan is None:
                continue
            simplify_conditional_effects(real_states[-1], opt_task.init, action_instance, axioms_from_name)
            preimage_plan.extend(axiom_plan + [action_instance])
            apply_action(opt_task.init, action_instance)
            real_states.append(set(real_states[-1]))
            apply_action(real_states[-1], action_instance)
            if not unit_costs and (pair is not None):
                function_result = extract_function_results(results_from_head, *pair)
                if function_result is not None:
                    function_plan.add(function_result)
            break
        else:
            raise RuntimeError('No action instances are applicable')

    # TODO: could instead just accumulate difference between real and opt
    full_preimage = plan_preimage(preimage_plan, [])
    stream_preimage = set(full_preimage) - real_states[0]
    negative_preimage = set(filter(lambda a: a.predicate in negative_from_name, stream_preimage))
    positive_preimage = stream_preimage - negative_preimage
    function_plan.update(convert_negative(negative_preimage, negative_from_name, full_preimage, real_states))

    step_from_fact = {fact_from_fd(l): full_preimage[l] for l in positive_preimage if not l.negated}
    target_facts = list(step_from_fact.keys())
    #stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_results)
    stream_plan = []
    extract_stream_plan(node_from_atom, target_facts, stream_plan)
    stream_plan = prune_stream_plan(evaluations, stream_plan, target_facts)
    stream_plan = convert_fluent_streams(stream_plan, real_states, step_from_fact, node_from_atom)
    # visualize_constraints(map(fact_from_fd, stream_preimage))

    if DO_RESCHEDULE: # TODO: detect this based on unique or not
        # TODO: maybe test if partial order between two ways of achieving facts, if not prune
        new_stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_plan)
        if new_stream_plan is not None:
            stream_plan = new_stream_plan
    return stream_plan + list(function_plan)