Esempio n. 1
0
def main(focused=False, deterministic=False, unit_costs=True):
    np.set_printoptions(precision=2)
    if deterministic:
        seed = 0
        np.random.seed(seed)
    print('Seed:', get_random_seed())

    problem_fn = get_tight_problem  # get_tight_problem | get_blocked_problem
    tamp_problem = problem_fn()
    print(tamp_problem)

    stream_info = {
        #'test-region': StreamInfo(eager=True, p_success=0), # bound_fn is None
        #'plan-motion': StreamInfo(p_success=1),  # bound_fn is None
        #'trajcollision': StreamInfo(p_success=1),  # bound_fn is None
        #'cfree': StreamInfo(eager=True),
    }

    pddlstream_problem = pddlstream_from_tamp(tamp_problem)
    pr = cProfile.Profile()
    pr.enable()
    if focused:
        solution = solve_focused(pddlstream_problem,
                                 stream_info=stream_info,
                                 max_time=10,
                                 max_cost=INF,
                                 debug=False,
                                 effort_weight=None,
                                 unit_costs=unit_costs,
                                 postprocess=False,
                                 visualize=False)
    else:
        solution = solve_incremental(pddlstream_problem,
                                     layers=1,
                                     unit_costs=unit_costs,
                                     verbose=False)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return

    colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS))
    viewer = ContinuousTMPViewer(tamp_problem.regions, title='Continuous TAMP')
    state = tamp_problem.initial
    print()
    print(state)
    draw_state(viewer, state, colors)
    for i, (action, args) in enumerate(plan):
        user_input('Continue?')
        print(i, action, args)
        s2 = args[-1]
        state = TAMPState(
            s2[R], s2[H],
            {b: s2[b]
             for b in state.block_poses if s2[b] is not None})
        print(state)
        draw_state(viewer, state, colors)
    user_input('Finish?')
Esempio n. 2
0
def main(deterministic=False, observable=False, collisions=True, focused=True, factor=True):
    # TODO: global search over the state
    belief_problem = get_belief_problem(deterministic, observable)
    pddlstream_problem = to_pddlstream(belief_problem, collisions)

    pr = cProfile.Profile()
    pr.enable()
    planner = 'ff-wastar1'
    if focused:
        stream_info = {
            'GE': StreamInfo(from_test(ge_fn), eager=False),
            'prob-after-move': StreamInfo(from_fn(get_opt_move_fn(factor=factor))),
            'MoveCost': FunctionInfo(move_cost_fn),
            'prob-after-look': StreamInfo(from_fn(get_opt_obs_fn(factor=factor))),
            'LookCost': FunctionInfo(get_look_cost_fn(p_look_fp=0, p_look_fn=0)),
        }
        solution = solve_focused(pddlstream_problem, stream_info=stream_info, planner=planner, debug=False,
                                     max_cost=0, unit_costs=False, max_time=30)
    else:
        solution = solve_incremental(pddlstream_problem, planner=planner, debug=True,
                                     max_cost=MAX_COST, unit_costs=False, max_time=30)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)

    print_solution(solution)
    plan, cost, init = solution
    print('Real cost:', float(cost)/SCALE_COST)
Esempio n. 3
0
def main():
    uniform_rooms = UniformDist(['room0', OTHER])
    #uniform_tables = UniformDist(['table0', 'table1'])
    #uniform_tables = UniformDist(['table0', OTHER])
    uniform_tables = UniformDist(['table0', 'table1', OTHER])

    #initial_belief = get_room_belief(uniform_rooms, uniform_tables, 1.0)
    initial_belief = get_room_belief(uniform_rooms, uniform_tables, 0.2)
    #initial_belief = get_table_belief(uniform_tables, 1.0)
    #initial_belief = get_table_belief(uniform_tables, 0.2)
    #initial_belief = get_item_belief()

    pddlstream_problem = pddlstream_from_belief(initial_belief)
    _, _, _, _, init, goal = pddlstream_problem
    print(sorted(init))
    print(goal)
    pr = cProfile.Profile()
    pr.enable()
    planner = 'max-astar'
    #solution = solve_incremental(pddlstream_problem, planner=planner, unit_costs=False)
    solution = solve_focused(pddlstream_problem,
                             planner=planner,
                             unit_costs=False)
    print_solution(solution)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
Esempio n. 4
0
def plan_trajectories(task,
                      context,
                      collisions=True,
                      use_impedance=False,
                      max_time=180):
    stream_info = {
        'TrajPoseCollision': FunctionInfo(p_success=1e-3),
        'TrajConfCollision': FunctionInfo(p_success=1e-3),
    }
    pr = cProfile.Profile()
    pr.enable()
    problem = get_pddlstream_problem(task,
                                     context,
                                     collisions=collisions,
                                     use_impedance=use_impedance)
    solution = solve_focused(problem,
                             stream_info=stream_info,
                             planner='ff-wastar2',
                             max_time=max_time,
                             search_sampling_ratio=0)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(5)
    print_solution(solution)
    plan, cost, evaluations = solution
    if plan is None:
        print('Unable to find a solution in under {} seconds'.format(max_time))
        return None
    return postprocess_plan(task.mbp, task.gripper, plan)
Esempio n. 5
0
def main(focused=True, unit_costs=False):
    problem_fn = get_shift_one_problem  # get_shift_one_problem | get_shift_all_problem
    tamp_problem = problem_fn()
    print(tamp_problem)

    pddlstream_problem = pddlstream_from_tamp(tamp_problem)
    if focused:
        solution = solve_focused(pddlstream_problem, unit_costs=unit_costs)
    else:
        #solution = solve_exhaustive(pddlstream_problem, unit_costs=unit_costs)
        solution = solve_incremental(pddlstream_problem, unit_costs=unit_costs)
    print_solution(solution)
    plan, cost, evaluations = solution
    if plan is None:
        return
    print(evaluations)

    colors = dict(zip(tamp_problem.initial.block_poses, COLORS))
    viewer = DiscreteTAMPViewer(1, len(tamp_problem.poses), title='Initial')
    state = tamp_problem.initial
    print(state)
    draw_state(viewer, state, colors)
    for action in plan:
        user_input('Continue?')
        state = apply_action(state, action)
        print(state)
        draw_state(viewer, state, colors)
    user_input('Finish?')
Esempio n. 6
0
def main(viewer=False, display=True, simulate=False, teleport=False):
    # TODO: fix argparse & FastDownward
    #parser = argparse.ArgumentParser()  # Automatically includes help
    #parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    #parser.add_argument('-display', action='store_true', help='enable viewer.')
    #args = parser.parse_args()

    connect(use_gui=viewer)
    problem_fn = holding_problem
    # holding_problem | stacking_problem | cleaning_problem | cooking_problem
    # cleaning_button_problem | cooking_button_problem
    problem = problem_fn()
    state_id = save_state()
    #saved_world = WorldSaver()
    dump_world()

    pddlstream_problem = pddlstream_from_problem(problem, teleport=teleport)
    _, _, _, stream_map, init, goal = pddlstream_problem
    synthesizers = [
        #StreamSynthesizer('safe-base-motion', {'plan-base-motion': 1,
        #                                       'TrajPoseCollision': 0, 'TrajGraspCollision': 0, 'TrajArmCollision': 0},
        #                  from_fn(get_base_motion_synth(problem, teleport))),
    ]
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', stream_map.keys())
    print('Synthesizers:', synthesizers)

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             synthesizers=synthesizers,
                             max_cost=INF)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return
    if (not display) or (plan is None):
        disconnect()
        return

    if viewer:
        restore_state(state_id)
    else:
        disconnect()
        connect(use_gui=True)
        problem = problem_fn()  # TODO: way of doing this without reloading?

    user_input('Execute?')
    commands = post_process(problem, plan)
    if simulate:
        enable_gravity()
        control_commands(commands)
    else:
        step_commands(commands, time_step=0.01)
    user_input('Finish?')
    disconnect()
Esempio n. 7
0
def solve_pddlstream(focused=True):
    pddlstream_problem = get_problem()
    if focused:
        solution = solve_focused(pddlstream_problem, unit_costs=True)
    else:
        #solution = solve_exhaustive(pddlstream_problem, unit_costs=True)
        solution = solve_incremental(pddlstream_problem, unit_costs=True)
    print_solution(solution)
Esempio n. 8
0
def plan_sequence(robot,
                  obstacles,
                  node_points,
                  element_bodies,
                  ground_nodes,
                  trajectories=[]):
    if trajectories is None:
        return None
    pddlstream_fn = get_pddlstream2  # get_pddlstream | get_pddlstream2

    # TODO: Iterated search
    # http://www.fast-downward.org/Doc/Heuristic#h.5Em_heuristic
    # randomize_successors=True
    pr = cProfile.Profile()
    pr.enable()
    pddlstream_problem = pddlstream_fn(robot,
                                       obstacles,
                                       node_points,
                                       element_bodies,
                                       ground_nodes,
                                       trajectories=trajectories)
    #solution = solve_exhaustive(pddlstream_problem, planner='goal-lazy', max_time=300, debug=True)
    #solution = solve_incremental(pddlstream_problem, planner='add-random-lazy', max_time=600,
    #                             max_planner_time=300, debug=True)
    stream_info = {
        #'sample-print': StreamInfo(PartialInputs(unique=True)),
    }
    planner = 'ff-ehc'
    #planner = 'ff-wastar1000' # Branching factor becomes large. Rely on preferred. Preferred should also be cheaper
    #planner = 'ff-eager-wastar1000'
    #planner = 'ff-wastar5'
    solution = solve_focused(
        pddlstream_problem,
        stream_info=stream_info,
        max_time=600,
        effort_weight=1,
        unit_efforts=True,
        use_skeleton=False,  #unit_costs=True,
        planner=planner,
        max_planner_time=15,
        debug=True)
    # solve_exhaustive | solve_incremental
    # Reachability heuristics good for detecting dead-ends
    # Infeasibility from the start means disconnected or collision
    # Random restart based strategy here
    print_solution(solution)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    plan, _, _ = solution

    if plan is None:
        return None
    if pddlstream_fn == get_pddlstream:
        return [t for _, (n1, e, t, n2) in plan]
    elif pddlstream_fn == get_pddlstream2:
        return [t for _, (n1, e, t) in reversed(plan)]
    else:
        raise ValueError(pddlstream_fn)
Esempio n. 9
0
def main():
    # TODO: maybe load problems as a domain explicitly
    pddlstream_problem = get_pddlstream_problem()
    stream_info = {
        #'test-feasible': StreamInfo(negate=True),
    }
    solution = solve_focused(pddlstream_problem, stream_info=stream_info)
    #solution = solve_incremental(pddlstream_problem) # Should throw an error
    print_solution(solution)
Esempio n. 10
0
def solve_pddlstream(focused=True):
    problem_fn = get_problem1  # get_problem1 | get_problem2
    pddlstream_problem = problem_fn()
    print('Init:', pddlstream_problem.init)
    print('Goal:', pddlstream_problem.goal)
    if focused:
        solution = solve_focused(pddlstream_problem, unit_costs=True)
    else:
        solution = solve_incremental(pddlstream_problem, unit_costs=True)
    print_solution(solution)
Esempio n. 11
0
def plan_commands(state, teleport=False, profile=False, verbose=True):
    # TODO: could make indices into set of bodies to ensure the same...
    # TODO: populate the bodies here from state and not the real world
    task = state.task
    robot_conf = get_configuration(task.robot)
    robot_pose = get_pose(task.robot)
    sim_world = connect(use_gui=False)
    with ClientSaver(sim_world):
        with HideOutput():
            robot = create_pr2(use_drake=USE_DRAKE_PR2)
            #robot = load_model(DRAKE_PR2_URDF, fixed_base=True)
        set_pose(robot, robot_pose)
        set_configuration(robot, robot_conf)
    clone_world(client=sim_world, exclude=[task.robot])
    set_client(sim_world)
    saved_world = WorldSaver()  # StateSaver()

    pddlstream_problem = pddlstream_from_state(state, teleport=teleport)
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', sorted(init, key=lambda f: f[0]))
    if verbose:
        print('Goal:', goal)
        print('Streams:', stream_map.keys())

    stream_info = {
        'test-vis-base': StreamInfo(eager=True, p_success=0),
        'test-reg-base': StreamInfo(eager=True, p_success=0),
    }
    hierarchy = [
        ABSTRIPSLayer(pos_pre=['AtBConf']),
    ]

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             stream_info=stream_info,
                             hierarchy=hierarchy,
                             debug=False,
                             max_cost=MAX_COST,
                             verbose=verbose)
    pr.disable()
    plan, cost, evaluations = solution
    if MAX_COST <= cost:
        plan = None
    print_solution(solution)
    print('Finite cost:', cost < MAX_COST)
    if profile:
        pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    saved_world.restore()
    commands = post_process(state, plan)
    disconnect()
    return commands
Esempio n. 12
0
def main(max_time=20):
    """
    Creates and solves the 2D motion planning problem.
    """

    obstacles = [create_box((.5, .5), (.2, .2))]
    regions = {
        'env': create_box((.5, .5), (1, 1)),
        'green': create_box((.8, .8), (.4, .4)),
    }

    goal = 'green'
    if goal not in regions:
        goal = array([1, 1])

    max_distance = 0.25  # 0.2 | 0.25 | 0.5 | 1.0
    problem, samples, roadmap = create_problem(goal,
                                               obstacles,
                                               regions,
                                               max_distance=max_distance)
    print('Initial:', str_from_object(problem.init))
    print('Goal:', str_from_object(problem.goal))

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_incremental(problem,
                                 unit_costs=False,
                                 max_cost=0,
                                 max_time=max_time,
                                 verbose=False)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)

    print_solution(solution)
    plan, cost, evaluations = solution

    #viewer = draw_environment(obstacles, regions)
    #for sample in samples:
    #    viewer.draw_point(sample)
    #user_input('Continue?')

    # TODO: use the same viewer here
    draw_roadmap(roadmap, obstacles, regions)  # TODO: do this in realtime
    user_input('Continue?')

    if plan is None:
        return
    segments = [args for name, args in plan]
    draw_solution(segments, obstacles, regions)
    user_input('Finish?')
Esempio n. 13
0
def main(focused=True, unit_costs=False):
    problem_fn = get_shift_one_problem  # get_shift_one_problem | get_shift_all_problem
    tamp_problem = problem_fn()
    print(tamp_problem)

    pddlstream_problem = pddlstream_from_tamp(tamp_problem)
    if focused:
        solution = solve_focused(pddlstream_problem, unit_costs=unit_costs)
    else:
        solution = solve_incremental(pddlstream_problem, unit_costs=unit_costs)
    print_solution(solution)
    plan, cost, evaluations = solution
    if plan is None:
        return
    apply_plan(tamp_problem, plan)
Esempio n. 14
0
def plan_sequence_test(node_points, elements, ground_nodes):
    pr = cProfile.Profile()
    pr.enable()
    pddlstream_problem = get_pddlstream_test(node_points, elements,
                                             ground_nodes)
    #solution = solve_focused(pddlstream_problem, planner='goal-lazy', max_time=10, debug=False)
    solution = solve_exhaustive(pddlstream_problem,
                                planner='goal-lazy',
                                max_time=10,
                                debug=False)
    print_solution(solution)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    plan, _, _ = solution
    return plan
Esempio n. 15
0
def main(focused=True):
    # TODO: maybe load problems as a domain explicitly
    pddlstream_problem = pddlstream_from_belief()
    _, _, _, _, init, goal = pddlstream_problem
    print('Init:', sorted(init, key=lambda f: f[0]))
    print('Goal:', goal)
    pr = cProfile.Profile()
    pr.enable()
    if focused:
        solution = solve_focused(pddlstream_problem, unit_costs=False)
    else:
        #solution = solve_exhaustive(pddlstream_problem, unit_costs=False)
        solution = solve_incremental(pddlstream_problem, unit_costs=False)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(5)
    print_solution(solution)
Esempio n. 16
0
def solve_pddlstream():
    pddlstream_problem, namo = get_problem()
    namo.env.SetViewer('qtcoin')
    stime = time.time()
    #solution = solve_incremental(pddlstream_problem, unit_costs=True, max_time=500)
    solution = solve_focused(pddlstream_problem, unit_costs=True, max_time=500)
    search_time = time.time()-stime
    plan, cost, evaluations = solution
    print "Search time", search_time
    if solution[0] is None:
        print "No Solution"
        sys.exit(-1)
    print_solution(solution)
    process_plan(plan, namo)
    namo.problem_config['env'].Destroy()
    openravepy.RaveDestroy()

    return plan, search_time
Esempio n. 17
0
def main(max_time=20):
    """
    Creates and solves the 2D motion planning problem.
    """

    obstacles = [create_box((.5, .5), (.2, .2))]
    regions = {
        'env': create_box((.5, .5), (1, 1)),
        #'goal': create_box((.8, .8), (.4, .4)),
    }

    goal = np.array([1, 1])
    #goal = 'goal'

    max_distance = 0.25  # 0.2 | 0.25 | 0.5 | 1.0
    problem, roadmap = create_problem(goal,
                                      obstacles,
                                      regions,
                                      max_distance=max_distance)

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_incremental(problem,
                                 unit_costs=False,
                                 max_cost=0,
                                 max_time=max_time,
                                 verbose=False)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)

    print_solution(solution)
    plan, cost, evaluations = solution

    print('Plan:', plan)
    if plan is None:
        return

    # TODO: use the same viewer here
    draw_roadmap(roadmap, obstacles, regions)  # TODO: do this in realtime
    user_input('Continue?')

    segments = [args for name, args in plan]
    draw_solution(segments, obstacles, regions)
    user_input('Finish?')
Esempio n. 18
0
def main():
    initial_poses = {
        ROBOT: (0., 15., 0.),
        CUP: (7.5, 0., 0.),
        'sugar_cup': (-10., 0., 0.),
        'cream_cup': (15., 0, 0),
        'spoon': (0.5, 0.5, 0),
        'stirrer': (20, 0.5, 0),
        COASTER: (-20., 0, 0),
    }

    problem = create_problem(initial_poses)
    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(problem,
                             unit_costs=True,
                             planner='ff-eager',
                             debug=True)  # max_planner_time=5,
    pr.disable()
    print_solution(solution)
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
Esempio n. 19
0
def main(viewer=True):
    connect(use_gui=viewer)
    robot, brick_from_index, obstacle_from_name = load_pick_and_place(
        'choreo_brick_demo')  # choreo_brick_demo | choreo_eth-trees_demo

    np.set_printoptions(precision=2)
    pr = cProfile.Profile()
    pr.enable()
    with WorldSaver():
        pddlstream_problem = get_pddlstream(robot, brick_from_index,
                                            obstacle_from_name)
        solution = solve_focused(pddlstream_problem,
                                 planner='ff-wastar1',
                                 max_time=30)
    pr.disable()
    pstats.Stats(pr).sort_stats('cumtime').print_stats(10)
    print_solution(solution)
    plan, _, _ = solution
    if plan is None:
        return
    step_plan(plan)
Esempio n. 20
0
def main(focused=True, unit_costs=False):
    problem_fn = get_shift_one_problem  # get_shift_one_problem | get_shift_all_problem
    tamp_problem = problem_fn()
    print(tamp_problem)

    stream_info = {
        'test-cfree': StreamInfo(negate=True),
    }

    pddlstream_problem = pddlstream_from_tamp(tamp_problem)
    if focused:
        #solution = solve_execution(pddlstream_problem, unit_costs=unit_costs, stream_info=stream_info)
        solution = solve_focused(pddlstream_problem,
                                 unit_costs=unit_costs,
                                 stream_info=stream_info,
                                 debug=False)
    else:
        solution = solve_exhaustive(pddlstream_problem, unit_costs=unit_costs)
    print_solution(solution)
    plan, cost, evaluations = solution
    if plan is None:
        return
    apply_plan(tamp_problem, plan)
Esempio n. 21
0
def main():
    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))

    # starting objects
    start_conf = np.array([0, 5])
    p0 = np.array([0, 0])
    goal_region = np.array([5, 10])
    b0 = 'block0'
    ground = np.array([-5, 15])

    initial_atoms = [('CanMove', ), ('Conf', start_conf),
                     ('AtConf', start_conf), ('HandEmpty', ),
                     ('Region', goal_region), ('Block', b0), ('Pose', b0, p0),
                     ('AtPose', b0, p0), ('Region', ground),
                     ('Placeable', b0, ground), ('Placeable', b0, goal_region)]

    goal_literals = [('HandEmpty', ), ('In', b0, goal_region),
                     ('AtConf', start_conf)]

    goal_formula = And(*goal_literals)

    ## environments
    # The pose of block is the center of bottom line
    # The pose of the gripper is the center of mass
    BLOCK_WIDTH = 2
    BLOCK_HEIGHT = BLOCK_WIDTH
    GRIPPER_WIDTH = 2
    GRIPPER_HEIGHT = GRIPPER_WIDTH
    GRASP = -np.array([0, BLOCK_HEIGHT + GRIPPER_HEIGHT / 2])

    def distance(q1, q2):
        return int(np.linalg.norm(q1 - q2))

    def posecollision(blk1, pose1, blk2, pose2):
        i1 = pose1[0] * np.ones(2) + np.array([-BLOCK_WIDTH, +BLOCK_WIDTH
                                               ]) / 2.
        i2 = pose2[0] * np.ones(2) + np.array([-BLOCK_WIDTH, +BLOCK_WIDTH
                                               ]) / 2.
        return (i2[0] <= i1[1]) and (i1[0] <= i2[1])

    def sample_pose(blk, region):
        return ((np.random.uniform(region[0] + BLOCK_WIDTH / 2,
                                   region[1] - BLOCK_WIDTH / 2), 0), )

    def inverse_kinematics(blk, pose):
        return (pose - GRASP, )

    def plan_motion(conf1, conf2):
        traj = [conf1, conf2]
        return (traj, )

    constant_map = {}
    # Upper case does not matter at all
    stream_map = {
        'distance': distance,
        'posecollision': posecollision,
        'sample-pose': from_fn(sample_pose),
        'inverse-kinematics': from_fn(inverse_kinematics),
        'plan-motion': from_fn(plan_motion)
    }

    # A pddlstream problem
    problem = domain_pddl, constant_map, stream_pddl, stream_map, initial_atoms, goal_formula
    # solution = solve_incremental(problem, unit_costs=False)
    solution = solve_incremental(problem, unit_costs=False)
    # plan, cost, evaluations = solution
    print_solution(solution)
Esempio n. 22
0
def main(viewer=False, display=True, simulate=False, teleport=False):
    # TODO: fix argparse & FastDownward
    #parser = argparse.ArgumentParser()  # Automatically includes help
    #parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    #parser.add_argument('-display', action='store_true', help='enable viewer.')
    #args = parser.parse_args()

    connect(use_gui=viewer)
    robot, names, movable = load_world()
    saved_world = WorldSaver()
    dump_world()

    pddlstream_problem = pddlstream_from_problem(robot,
                                                 movable=movable,
                                                 teleport=teleport,
                                                 movable_collisions=True)
    _, _, _, stream_map, init, goal = pddlstream_problem
    synthesizers = [
        #StreamSynthesizer('safe-free-motion', {'plan-free-motion': 1, 'trajcollision': 0},
        #                  from_fn(get_free_motion_synth(robot, movable, teleport))),
        #StreamSynthesizer('safe-holding-motion', {'plan-holding-motion': 1, 'trajcollision': 0},
        #                  from_fn(get_holding_motion_synth(robot, movable, teleport))),
    ]
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', stream_map.keys())
    print('Synthesizers:', stream_map.keys())
    print(names)

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             synthesizers=synthesizers,
                             max_cost=INF)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return

    if (not display) or (plan is None):
        disconnect()
        return

    paths = []
    for name, args in plan:
        if name == 'place':
            paths += args[-1].reverse().body_paths
        elif name in ['move', 'move_free', 'move_holding', 'pick']:
            paths += args[-1].body_paths
    print(paths)
    command = Command(paths)

    if not viewer:  # TODO: how to reenable the viewer
        disconnect()
        connect(use_gui=True)
        load_world()
    else:
        saved_world.restore()

    user_input('Execute?')
    if simulate:
        command.control()
    else:
        #command.step()
        command.refine(num_steps=10).execute(time_step=0.001)

    #wait_for_interrupt()
    user_input('Finish?')
    disconnect()
Esempio n. 23
0
def main(viewer=False, display=True, simulate=False, teleport=False):
    # TODO: fix argparse & FastDownward
    #parser = argparse.ArgumentParser()  # Automatically includes help
    #parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    #parser.add_argument('-display', action='store_true', help='enable viewer.')
    #args = parser.parse_args()

    connect(use_gui=viewer)
    problem_fn = cooking_problem
    # holding_problem | stacking_problem | cleaning_problem | cooking_problem
    # cleaning_button_problem | cooking_button_problem
    with HideOutput():
        problem = problem_fn()
    state_id = save_state()
    #saved_world = WorldSaver()
    #dump_world()

    pddlstream_problem = pddlstream_from_problem(problem, teleport=teleport)

    stream_info = {
        'sample-pose': StreamInfo(from_fn(opt_pose_fn)),
        'inverse-kinematics': StreamInfo(from_fn(opt_ik_fn)),
        'plan-base-motion': StreamInfo(from_fn(opt_motion_fn)),
        'MoveCost': FunctionInfo(opt_move_cost_fn),
    }

    synthesizers = [
        StreamSynthesizer('safe-base-motion', {'plan-base-motion': 1,
                                               'TrajPoseCollision': 0,
                                               'TrajGraspCollision': 0,
                                               'TrajArmCollision': 0},
                          from_fn(get_base_motion_synth(problem, teleport))),
    ] if USE_SYNTHESIZERS else []

    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', stream_map.keys())
    print('Synthesizers:', synthesizers)

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem, stream_info=stream_info,
                             synthesizers=synthesizers, max_cost=INF)
    print_solution(solution)
    plan, cost, evaluations = solution
    print('Real cost:', float(cost)/SCALE_COST)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return
    if (not display) or (plan is None):
        disconnect()
        return

    commands = post_process(problem, plan)
    if viewer:
        restore_state(state_id)
    else:
        disconnect()
        connect(use_gui=True)
        with HideOutput():
            problem_fn() # TODO: way of doing this without reloading?

    if simulate:
        enable_gravity()
        control_commands(commands)
    else:
        step_commands(commands, time_step=0.01)
    user_input('Finish?')
    disconnect()
Esempio n. 24
0
def main(focused=True, deterministic=False, unit_costs=False):
    np.set_printoptions(precision=2)
    if deterministic:
        seed = 0
        np.random.seed(seed)
    print('Seed:', get_random_seed())

    problem_fn = get_blocked_problem  # get_tight_problem | get_blocked_problem
    tamp_problem = problem_fn()
    print(tamp_problem)

    action_info = {
        #'move': ActionInfo(terminal=True),
        #'pick': ActionInfo(terminal=True),
        #'place': ActionInfo(terminal=True),
    }
    stream_info = {
        #'test-region': StreamInfo(eager=True, p_success=0), # bound_fn is None
        #'plan-motion': StreamInfo(p_success=1),  # bound_fn is None
        #'trajcollision': StreamInfo(p_success=1),  # bound_fn is None
        #'cfree': StreamInfo(eager=True),
    }

    dynamic = [
        StreamSynthesizer('cfree-motion', {
            'plan-motion': 1,
            'trajcollision': 0
        },
                          gen_fn=from_fn(cfree_motion_fn)),
        #StreamSynthesizer('optimize', {'sample-pose': 1, 'inverse-kinematics': 1,
        #                           'posecollision': 0, 'distance': 0},
        #                  gen_fn=from_fn(get_optimize_fn(tamp_problem.regions))),
    ]

    pddlstream_problem = pddlstream_from_tamp(tamp_problem)
    pr = cProfile.Profile()
    pr.enable()
    if focused:
        solution = solve_focused(pddlstream_problem,
                                 action_info=action_info,
                                 stream_info=stream_info,
                                 synthesizers=dynamic,
                                 max_time=10,
                                 max_cost=INF,
                                 debug=False,
                                 effort_weight=None,
                                 unit_costs=unit_costs,
                                 postprocess=False,
                                 visualize=False)
    else:
        solution = solve_incremental(pddlstream_problem,
                                     layers=1,
                                     unit_costs=unit_costs)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return

    colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS))
    viewer = ContinuousTMPViewer(tamp_problem.regions, title='Continuous TAMP')
    state = tamp_problem.initial
    print()
    print(state)
    draw_state(viewer, state, colors)
    for i, action in enumerate(plan):
        user_input('Continue?')
        print(i, *action)
        state = apply_action(state, action)
        print(state)
        draw_state(viewer, state, colors)
    user_input('Finish?')
Esempio n. 25
0
def main(deterministic=True):
    # TODO: GeometryInstance, InternalGeometry, & GeometryContext to get the shape of objects
    # TODO: cost-sensitive planning to avoid large kuka moves
    # get_contact_results_output_port
    # TODO: gripper closing via collision information

    time_step = 0.0002 # TODO: context.get_continuous_state_vector() fails
    if deterministic:
        random.seed(0)
        np.random.seed(0)

    parser = argparse.ArgumentParser()
    parser.add_argument('-p', '--problem', default='load_manipulation', help='The name of the problem to solve.')
    parser.add_argument('-c', '--cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-v', '--visualizer', action='store_true', help='Use the drake visualizer')
    parser.add_argument('-s', '--simulate', action='store_true', help='Simulate')
    args = parser.parse_args()

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    print('Problem:', args.problem)
    problem_fn = problem_fn_from_name[args.problem]

    meshcat_vis = None
    if not args.visualizer:
        import meshcat
        # Important that variable is saved
        meshcat_vis = meshcat.Visualizer()  # vis.set_object
        # http://127.0.0.1:7000/static/

    mbp, scene_graph, task = problem_fn(time_step=time_step)
    #station, mbp, scene_graph = load_station(time_step=time_step)
    #builder.AddSystem(station)
    #dump_plant(mbp)
    #dump_models(mbp)
    print(task)
    #print(sorted(body.name() for body in task.movable_bodies()))
    #print(sorted(body.name() for body in task.fixed_bodies()))

    ##################################################

    builder, _ = build_diagram(mbp, scene_graph, not args.visualizer)
    if args.simulate:
        state_machine = connect_controllers(builder, mbp, task.robot, task.gripper)
    else:
        state_machine = None
    diagram = builder.Build()
    RenderSystemWithGraphviz(diagram) # Useful for getting port names
    diagram_context = diagram.CreateDefaultContext()
    context = diagram.GetMutableSubsystemContext(mbp, diagram_context)
    task.diagram = diagram
    task.diagram_context = diagram_context

    #context = mbp.CreateDefaultContext() # scene_graph.CreateDefaultContext()
    for joint, position in task.initial_positions.items():
        set_joint_position(joint, context, position)
    for model, pose in task.initial_poses.items():
        set_world_pose(mbp, context, model, pose)
    open_wsg50_gripper(mbp, context, task.gripper)
    #close_wsg50_gripper(mbp, context, task.gripper)
    #set_configuration(mbp, context, task.gripper, [-0.05, 0.05])

    # from underactuated.meshcat_visualizer import MeshcatVisualizer
    # #add_meshcat_visualizer(scene_graph)
    # viz = MeshcatVisualizer(scene_graph, draw_timestep=0.033333)
    # viz.load()
    # viz.draw(context)

    diagram.Publish(diagram_context)
    initial_state = get_state(mbp, context)

    ##################################################

    problem = get_pddlstream_problem(mbp, context, scene_graph, task, collisions=not args.cfree)
    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(problem, planner='ff-wastar2', max_cost=INF, max_time=120, debug=False)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    print_solution(solution)
    plan, cost, evaluations = solution
    if plan is None:
        return
    trajectories = postprocess_plan(mbp, task.gripper, plan)

    ##################################################

    set_state(mbp, context, initial_state)
    if args.simulate:
        splines, gripper_setpoints = convert_splines(mbp, task.robot, task.gripper, context, trajectories)
        sim_duration = compute_duration(splines)
        print('Splines: {}\nDuration: {:.3f} seconds'.format(len(splines), sim_duration))
        set_state(mbp, context, initial_state)

        if True:
            state_machine.Load(splines, gripper_setpoints)
            simulate_splines(diagram, diagram_context, sim_duration)
        else:
            # NOTE: there is a plan that moves home initially for 15 seconds
            from .lab_1.robot_plans import JointSpacePlan
            plan_list = [JointSpacePlan(spline) for spline in splines]
            #meshcat_vis.delete()
            user_input('Simulate?')
            test_manipulation(plan_list, gripper_setpoints)
    else:
        #time_step = None
        #time_step = 0.001
        time_step = 0.02
        step_trajectories(diagram, diagram_context, context, trajectories, time_step=time_step) #, teleport=True)
Esempio n. 26
0
def main(focused=True,
         deterministic=True,
         unit_costs=False,
         use_synthesizers=False):
    np.set_printoptions(precision=2)
    if deterministic:
        seed = 0
        np.random.seed(seed)
    print('Seed:', get_random_seed())
    if use_synthesizers and not has_gurobi():
        use_synthesizers = False
        print(
            'Warning! use_synthesizers=True requires gurobipy. Setting use_synthesizers=False.'
        )
    print('Focused: {} | Costs: {} | Synthesizers: {}'.format(
        focused, not unit_costs, use_synthesizers))

    problem_fn = get_blocked_problem  # get_tight_problem | get_blocked_problem
    tamp_problem = problem_fn()
    print(tamp_problem)

    action_info = {
        #'move': ActionInfo(terminal=True),
        #'pick': ActionInfo(terminal=True),
        #'place': ActionInfo(terminal=True),
    }
    stream_info = {
        't-region': StreamInfo(eager=True, p_success=0),  # bound_fn is None
        't-cfree': StreamInfo(eager=False, negate=True),
        #'distance': FunctionInfo(opt_fn=lambda *args: 1),
        #'gurobi': OptimizerInfo(p_success=0),
        #'rrt': OptimizerInfo(p_success=0),
    }
    hierarchy = [
        #ABSTRIPSLayer(pos_pre=['atconf']), #, horizon=1),
    ]

    synthesizers = [
        #StreamSynthesizer('cfree-motion', {'s-motion': 1, 'trajcollision': 0},
        #                  gen_fn=from_fn(cfree_motion_fn)),
        StreamSynthesizer('optimize', {
            's-region': 1,
            's-ik': 1,
            'posecollision': 0,
            't-cfree': 0,
            'distance': 0
        },
                          gen_fn=from_fn(get_optimize_fn(
                              tamp_problem.regions))),
    ] if use_synthesizers else []

    pddlstream_problem = pddlstream_from_tamp(tamp_problem)
    print('Initial:', str_from_object(pddlstream_problem.init))
    print('Goal:', str_from_object(pddlstream_problem.goal))
    pr = cProfile.Profile()
    pr.enable()
    if focused:
        solution = solve_focused(
            pddlstream_problem,
            action_info=action_info,
            stream_info=stream_info,
            planner='ff-wastar1',
            max_planner_time=10,
            synthesizers=synthesizers,
            verbose=True,
            max_time=300,
            max_cost=INF,
            debug=False,
            hierarchy=hierarchy,
            effort_weight=1,
            search_sampling_ratio=0,  # TODO: run without to see difference
            unit_costs=unit_costs,
            postprocess=False,
            visualize=False)
    else:
        solution = solve_incremental(pddlstream_problem,
                                     layers=1,
                                     hierarchy=hierarchy,
                                     unit_costs=unit_costs,
                                     verbose=False)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is not None:
        display_plan(tamp_problem, plan)
Esempio n. 27
0
def main(viewer=False, display=True, simulate=False, teleport=False):
    # TODO: fix argparse & FastDownward
    # parser = argparse.ArgumentParser()  # Automatically includes help
    # parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    # parser.add_argument('-display', action='store_true', help='enable viewer.')
    # args = parser.parse_args()
    # TODO: getopt

    connect(use_gui=viewer)

    robot, names, movable = load_world()

    saved_world = WorldSaver()
    # dump_world()

    pddlstream_problem = pddlstream_from_problem(robot,
                                                 movable=movable,
                                                 teleport=teleport,
                                                 movable_collisions=True)
    _, _, _, stream_map, init, goal = pddlstream_problem
    synthesizers = [
        StreamSynthesizer(
            'safe-free-motion', {
                'plan-free-motion': 1,
                'trajcollision': 0
            }, from_fn(get_free_motion_synth(robot, movable, teleport))),
        StreamSynthesizer(
            'safe-holding-motion', {
                'plan-holding-motion': 1,
                'trajcollision': 0
            }, from_fn(get_holding_motion_synth(robot, movable, teleport))),
    ] if USE_SYNTHESIZERS else []
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', stream_map.keys())
    print('Synthesizers:', stream_map.keys())
    print('Names:', names)

    # initialize and measure performance
    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             synthesizers=synthesizers,
                             max_cost=INF)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    # print stats
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)

    if plan is None:
        return

    if (not display) or (plan is None):
        disconnect()
        return

    if not viewer:  # TODO: how to reenable the viewer
        disconnect()
        connect(use_gui=True)
        load_world()
    else:
        saved_world.restore()

    command = postprocess_plan(plan)

    #user_input('Execute?')
    if simulate:
        command.control()
    else:
        # command.step()
        command.refine(num_steps=10).execute(time_step=0.001)

    # wait_for_interrupt()
    #user_input('Finish?')
    disconnect()