Esempio n. 1
0
def faster_correlation(fname, tr):
    # Load the ds114_sub009_t2r1.nii image
    img = nib.load(fname + ".nii")

    # Get the number of volumes in ds114_sub009_t2r1.nii
    n_trs = img.shape[-1]

    # Time between 3D volumes in seconds
    TR = tr

    # Get on-off timecourse
    time_course = events2neural(fname + "_cond.txt", TR, n_trs)

    # Drop the first 4 volumes, and the first 4 on-off values
    data = img.get_data()
    data = data[..., 4:]
    time_course = time_course[4:]

    # Calculate the number of voxels (number of elements in one volume)
    n_voxels = np.prod(data.shape[:-1])

    # Reshape 4D array to 2D array n_voxels by n_volumes
    data_2d = np.reshape(data, (n_voxels, data.shape[-1]))

    # Transpose 2D array to give n_volumes, n_voxels array
    data_2d_T = data_2d.T

    # Calculate 1D vector length n_voxels of correlation coefficients
    correlation_1d = pearson.pearson_2d(time_course, data_2d_T)

    # Reshape the correlations array back to 3D
    correlation_3d = correlation_1d.reshape(data.shape[:-1])

    return correlation_3d
def test_pearson_2d():
    # Test pearson_2d routine
    x = np.random.rand(22)
    Y = np.random.normal(size=(22, 12))
    # Does routine give same answers as np.corrcoef?
    expected = np.corrcoef(x, Y.T)[0, 1:]
    actual = pearson.pearson_2d(x, Y)
    # Did you, gentle user, forget to return the value?
    if actual is None:
        raise RuntimeError("function returned None")
    assert_almost_equal(expected, actual)
Esempio n. 3
0
def test_pearson_2d():
    # Test pearson_2d routine
    x = np.random.rand(22)
    Y = np.random.normal(size=(22, 12))
    # Does routine give same answers as np.corrcoef?
    expected = np.corrcoef(x, Y.T)[0, 1:]
    actual = pearson.pearson_2d(x, Y)
    # Did you, gentle user, forget to return the value?
    if actual is None:
        raise RuntimeError("function returned None")
    assert_almost_equal(expected, actual)