def setUp(self):
     self.data = data.fromfile(testfile('testdata10.txt'))
     self.neteval = evaluator.NetworkEvaluator(
         self.data, 
         network.fromdata(self.data), 
         prior.UniformPrior(self.data.variables.size))
     self.neteval.network.edges.add_many([(1,0),(2,0),(3,0)])
 def setUp(self):
     a,b,c,d,e = 0,1,2,3,4
     
     self.data = data.fromfile(testfile('testdata9.txt'))
     self.net = network.fromdata(self.data)
     self.net.edges.add_many([(a,c), (b,c), (c,d), (c,e)])
     self.neteval1 = self.neteval_type(self.data, self.net, max_iterations="10*n**2")
Esempio n. 3
0
 def setUp(self):
     dat = data.fromfile(testfile("testdata5.txt"))
     dat.discretize()
     g = greedy.GreedyLearner(dat, max_iterations=100)
     g.run()
     self.result = g.result
     self.tempdir = tempfile.mkdtemp()
     self.result.tohtml(self.tempdir)
Esempio n. 4
0
def test_arity_checking2():
    try:
        # arity specified is MORE than number of unique values. this is ok.
        dataset = data.fromfile(testfile('testdata7.txt'))
    except:
        assert False
    
    assert [v.arity for v in dataset.variables] == [3,4,3,6]
Esempio n. 5
0
def test_arity_checking():
    try:
        # arity specified is less than number of unique values!!
        dataset = data.fromfile(testfile('testdata6.txt'))
    except data.IncorrectArityError:
        assert True
    else:
        assert False
Esempio n. 6
0
def test_arity_checking2():
    try:
        # arity specified is MORE than number of unique values. this is ok.
        dataset = data.fromfile(testfile('testdata7.txt'))
    except:
        assert False

    assert [v.arity for v in dataset.variables] == [3, 4, 3, 6]
Esempio n. 7
0
 def test_tc(self):
     d = data.fromfile(testfile("testdata5.txt"))
     d.discretize()
     tasks = [greedy.GreedyLearner(d) for x in range(5)]
     tc = ipy1.IPython1Controller("127.0.0.1:10113")
     results = tc.run(tasks)
     results = result.merge(results)
     assert isinstance(results, result.LearnerResult)
Esempio n. 8
0
def test_arity_checking():
    try:
        # arity specified is less than number of unique values!!
        dataset = data.fromfile(testfile('testdata6.txt'))
    except data.IncorrectArityError:
        assert True
    else:
        assert False
Esempio n. 9
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata4.txt')) # no tab before variable names
     self.expected_observations = N.array([[0, 0], [1, 1], [1,2]])
     self.expected_missing = N.array([[0, 0], [0, 0], [0, 0]], dtype=bool)
     self.expected_interventions = N.array([[1, 1], [0, 1], [0, 0]], dtype=bool)
     self.expected_varnames = ['shh', 'ptchp']
     self.expected_samplenames = ['sample1', 'sample2', 'sample3']
     self.expected_arities = [2,3]
     self.expected_dtype = N.dtype(int)
Esempio n. 10
0
    def setUp(self):
        a, b, c, d, e = 0, 1, 2, 3, 4

        self.data = data.fromfile(testfile('testdata9.txt'))
        self.net = network.fromdata(self.data)
        self.net.edges.add_many([(a, c), (b, c), (c, d), (c, e)])
        self.neteval1 = self.neteval_type(self.data,
                                          self.net,
                                          max_iterations="10*n**2")
Esempio n. 11
0
    def test_example1(self):
        outdir = os.path.join(self.tmpdir, "example1-result")

        dataset = data.fromfile(testfile("pebl-tutorial-data1.txt"))
        dataset.discretize()
        learner = greedy.GreedyLearner(dataset)
        ex1result = learner.run()
        ex1result.tohtml(outdir)

        assert os.path.exists(os.path.join(outdir, 'index.html'))
Esempio n. 12
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata3.txt'))
     self.expected_observations = N.array([[0, 0], [1, 1], [1, 2]])
     self.expected_missing = N.array([[0, 0], [0, 0], [0, 0]], dtype=bool)
     self.expected_interventions = N.array([[1, 1], [0, 1], [0, 0]],
                                           dtype=bool)
     self.expected_varnames = ['shh', 'ptchp']
     self.expected_samplenames = ['sample1', 'sample2', 'sample3']
     self.expected_arities = [2, 3]
     self.expected_dtype = N.dtype(int)
Esempio n. 13
0
    def test_example1(self):
        outdir = os.path.join(self.tmpdir, "example1-result")

        dataset = data.fromfile(testfile("pebl-tutorial-data1.txt"))
        dataset.discretize()
        learner = greedy.GreedyLearner(dataset)
        ex1result = learner.run()
        ex1result.tohtml(outdir)

        assert os.path.exists(os.path.join(outdir, 'index.html'))
def bayesian_structure():
    
#    dataset = data.fromfile("/home/work/pebl-tutorial-data2.txt")
#    dataset = Dataset(points.transpose(), None, None, ['in','tar'], None, None)
    dataset = data.fromfile('/home/work/Projects/EclipseProjects/thesis/Scripts/elements.csv')
    dataset.discretize()
#    dataset.discretize()
#    learners = [ greedy.GreedyLearner(dataset, max_iterations=1000000) for i in range(5) ] + \
#    [ simanneal.SimulatedAnnealingLearner(dataset) for i in range(5) ]
#    merged_result = result.merge([learner.run() for learner in learners])
    learner = greedy.GreedyLearner(dataset)
    merged_result = learner.run()
    merged_result.tohtml("example-result")
Esempio n. 15
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata1.txt'))
     self.expected_observations = N.array([[2.5, 0., 1.7], [1.1, 1.7, 2.3],
                                           [4.2, 999.3, 12.]])
     self.expected_dtype = N.dtype(float)
     self.expected_varnames = ['var1', 'var2', 'var3']
     self.expected_missing = N.array(
         [[False, True, False], [False, False, False],
          [False, False, False]],
         dtype=bool)
     self.expected_interventions = N.array(
         [[True, True, False], [False, True, False], [False, False, False]],
         dtype=bool)
     self.expected_arities = [-1, -1, -1]
Esempio n. 16
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata2.txt'))
     self.expected_observations = N.array([[ 0.  ,  0.  ,  1.25,  0.  ],
                                           [ 1.  ,  1.  ,  1.1 ,  1.  ],
                                           [ 1.  ,  2.  ,  0.45,  1.  ]])
     self.expected_dtype = N.dtype(float) # because one continuous variable
     self.expected_varnames = ['shh', 'ptchp', 'smo', 'outcome']
     self.expected_interventions = N.array([[ True,  True, False, False],
                                            [False,  True, False, False],
                                            [False, False, False, False]], dtype=bool)
     self.expected_missing = N.array([[False, False, False, False],
                                      [False, False, False, False],
                                      [False, False, False, False]], dtype=bool)
     self.expected_arities = [2, 3, -1, 2]         
Esempio n. 17
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata1.txt'))
     self.expected_observations = N.array([[   2.5,    0. ,    1.7],
                                           [   1.1,    1.7,    2.3],
                                           [   4.2,  999.3,   12. ]])
     self.expected_dtype = N.dtype(float)
     self.expected_varnames = ['var1', 'var2', 'var3']
     self.expected_missing = N.array([[False,  True, False],
                                      [False, False, False],
                                      [False, False, False]], dtype=bool)
     self.expected_interventions = N.array([[ True,  True, False],
                                            [False,  True, False],
                                            [False, False, False]], dtype=bool)
     self.expected_arities = [-1,-1,-1]
Esempio n. 18
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata2.txt'))
     self.expected_observations = N.array([[0., 0., 1.25, 0.],
                                           [1., 1., 1.1, 1.],
                                           [1., 2., 0.45, 1.]])
     self.expected_dtype = N.dtype(float)  # because one continuous variable
     self.expected_varnames = ['shh', 'ptchp', 'smo', 'outcome']
     self.expected_interventions = N.array(
         [[True, True, False, False], [False, True, False, False],
          [False, False, False, False]],
         dtype=bool)
     self.expected_missing = N.array(
         [[False, False, False, False], [False, False, False, False],
          [False, False, False, False]],
         dtype=bool)
     self.expected_arities = [2, 3, -1, 2]
Esempio n. 19
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5m.txt'))
     self.data.discretize()
     self.expected_original = \
         N.array([[ 1.2,  1.4,  2.1,  2.2,  1.1],
                  [ 2.3,  1.1,  2.1,  3.2,  1.3],
                  [ 3.2,  0. ,  1.2,  2.5,  1.6],
                  [ 4.2,  2.4,  3.2,  2.1,  2.8],
                  [ 2.7,  1.5,  0. ,  1.5,  1.1],
                  [ 1.1,  2.3,  2.1,  1.7,  3.2],
                  [ 2.3,  1.1,  4.3,  2.3,  1.1],
                  [ 3.2,  2.6,  1.9,  1.7,  1.1],
                  [ 2.1,  1.5,  3. ,  1.4,  1.1],
                  [ 0. ,  0. ,  0. ,  0. ,  0. ],
                  [ 0. ,  0. ,  0. ,  0. ,  0. ],
                  [ 0. ,  0. ,  0. ,  0. ,  0. ]])
     self.expected_discretized = \
         N.array([[0, 1, 1, 1, 0],
                 [1, 0, 1, 2, 1],
                 [2, 0, 0, 2, 2],
                 [2, 2, 2, 1, 2],
                 [1, 1, 0, 0, 0],
                 [0, 2, 1, 0, 2],
                 [1, 0, 2, 2, 0],
                 [2, 2, 0, 0, 0],
                 [0, 1, 2, 0, 0],
                 [0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0]])
     self.expected_arities = [3,3,3,3,3]
     self.expected_missing = N.array([[False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [False, False, False, False, False],
                                      [True , True , True , True , True ],
                                      [True , True , True , True , True ],
                                      [True , True , True , True , True ]], 
                                     dtype=bool)
Esempio n. 20
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5m.txt'))
     self.data.discretize()
     self.expected_original = \
         N.array([[ 1.2,  1.4,  2.1,  2.2,  1.1],
                  [ 2.3,  1.1,  2.1,  3.2,  1.3],
                  [ 3.2,  0. ,  1.2,  2.5,  1.6],
                  [ 4.2,  2.4,  3.2,  2.1,  2.8],
                  [ 2.7,  1.5,  0. ,  1.5,  1.1],
                  [ 1.1,  2.3,  2.1,  1.7,  3.2],
                  [ 2.3,  1.1,  4.3,  2.3,  1.1],
                  [ 3.2,  2.6,  1.9,  1.7,  1.1],
                  [ 2.1,  1.5,  3. ,  1.4,  1.1],
                  [ 0. ,  0. ,  0. ,  0. ,  0. ],
                  [ 0. ,  0. ,  0. ,  0. ,  0. ],
                  [ 0. ,  0. ,  0. ,  0. ,  0. ]])
     self.expected_discretized = \
         N.array([[0, 1, 1, 1, 0],
                 [1, 0, 1, 2, 1],
                 [2, 0, 0, 2, 2],
                 [2, 2, 2, 1, 2],
                 [1, 1, 0, 0, 0],
                 [0, 2, 1, 0, 2],
                 [1, 0, 2, 2, 0],
                 [2, 2, 0, 0, 0],
                 [0, 1, 2, 0, 0],
                 [0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0]])
     self.expected_arities = [3, 3, 3, 3, 3]
     self.expected_missing = N.array(
         [[False, False, False, False, False],
          [False, False, False, False, False],
          [False, False, False, False, False],
          [False, False, False, False, False],
          [False, False, False, False, False],
          [False, False, False, False, False],
          [False, False, False, False, False],
          [False, False, False, False, False],
          [False, False, False, False, False],
          [True, True, True, True, True], [True, True, True, True, True],
          [True, True, True, True, True]],
         dtype=bool)
Esempio n. 21
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5.txt'))
     self.data.discretize(excludevars=[0, 1])
     self.expected_original = \
         N.array([[ 1.2,  1.4,  2.1,  2.2,  1.1],
                  [ 2.3,  1.1,  2.1,  3.2,  1.3],
                  [ 3.2,  0. ,  1.2,  2.5,  1.6],
                  [ 4.2,  2.4,  3.2,  2.1,  2.8],
                  [ 2.7,  1.5,  0. ,  1.5,  1.1],
                  [ 1.1,  2.3,  2.1,  1.7,  3.2],
                  [ 2.3,  1.1,  4.3,  2.3,  1.1],
                  [ 3.2,  2.6,  1.9,  1.7,  1.1],
                  [ 2.1,  1.5,  3. ,  1.4,  1.1]])
     self.expected_discretized = \
         N.array([[ 1.2,  1.4,  1. ,  1. ,  0. ],
                 [ 2.3,  1.1,  1. ,  2. ,  1. ],
                 [ 3.2,  0. ,  0. ,  2. ,  2. ],
                 [ 4.2,  2.4,  2. ,  1. ,  2. ],
                 [ 2.7,  1.5,  0. ,  0. ,  0. ],
                 [ 1.1,  2.3,  1. ,  0. ,  2. ],
                 [ 2.3,  1.1,  2. ,  2. ,  0. ],
                 [ 3.2,  2.6,  0. ,  0. ,  0. ],
                 [ 2.1,  1.5,  2. ,  0. ,  0. ]])
     self.expected_arities = [-1, -1, 3, 3, 3]
Esempio n. 22
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5.txt'))
     self.data.discretize()
     self.expected_original = \
         N.array([[ 1.2,  1.4,  2.1,  2.2,  1.1],
                  [ 2.3,  1.1,  2.1,  3.2,  1.3],
                  [ 3.2,  0. ,  1.2,  2.5,  1.6],
                  [ 4.2,  2.4,  3.2,  2.1,  2.8],
                  [ 2.7,  1.5,  0. ,  1.5,  1.1],
                  [ 1.1,  2.3,  2.1,  1.7,  3.2],
                  [ 2.3,  1.1,  4.3,  2.3,  1.1],
                  [ 3.2,  2.6,  1.9,  1.7,  1.1],
                  [ 2.1,  1.5,  3. ,  1.4,  1.1]])
     self.expected_discretized = \
         N.array([[0, 1, 1, 1, 0],
                 [1, 0, 1, 2, 1],
                 [2, 0, 0, 2, 2],
                 [2, 2, 2, 1, 2],
                 [1, 1, 0, 0, 0],
                 [0, 2, 1, 0, 2],
                 [1, 0, 2, 2, 0],
                 [2, 2, 0, 0, 0],
                 [0, 1, 2, 0, 0]])
     self.expected_arities = [3, 3, 3, 3, 3]
Esempio n. 23
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5.txt'))
     self.data.discretize()
     self.expected_original = \
         N.array([[ 1.2,  1.4,  2.1,  2.2,  1.1],
                  [ 2.3,  1.1,  2.1,  3.2,  1.3],
                  [ 3.2,  0. ,  1.2,  2.5,  1.6],
                  [ 4.2,  2.4,  3.2,  2.1,  2.8],
                  [ 2.7,  1.5,  0. ,  1.5,  1.1],
                  [ 1.1,  2.3,  2.1,  1.7,  3.2],
                  [ 2.3,  1.1,  4.3,  2.3,  1.1],
                  [ 3.2,  2.6,  1.9,  1.7,  1.1],
                  [ 2.1,  1.5,  3. ,  1.4,  1.1]])
     self.expected_discretized = \
         N.array([[0, 1, 1, 1, 0],
                 [1, 0, 1, 2, 1],
                 [2, 0, 0, 2, 2],
                 [2, 2, 2, 1, 2],
                 [1, 1, 0, 0, 0],
                 [0, 2, 1, 0, 2],
                 [1, 0, 2, 2, 0],
                 [2, 2, 0, 0, 0],
                 [0, 1, 2, 0, 0]])
     self.expected_arities = [3,3,3,3,3]
Esempio n. 24
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5.txt'))
     self.data.discretize(excludevars=[0,1])
     self.expected_original = \
         N.array([[ 1.2,  1.4,  2.1,  2.2,  1.1],
                  [ 2.3,  1.1,  2.1,  3.2,  1.3],
                  [ 3.2,  0. ,  1.2,  2.5,  1.6],
                  [ 4.2,  2.4,  3.2,  2.1,  2.8],
                  [ 2.7,  1.5,  0. ,  1.5,  1.1],
                  [ 1.1,  2.3,  2.1,  1.7,  3.2],
                  [ 2.3,  1.1,  4.3,  2.3,  1.1],
                  [ 3.2,  2.6,  1.9,  1.7,  1.1],
                  [ 2.1,  1.5,  3. ,  1.4,  1.1]])
     self.expected_discretized = \
         N.array([[ 1.2,  1.4,  1. ,  1. ,  0. ],
                 [ 2.3,  1.1,  1. ,  2. ,  1. ],
                 [ 3.2,  0. ,  0. ,  2. ,  2. ],
                 [ 4.2,  2.4,  2. ,  1. ,  2. ],
                 [ 2.7,  1.5,  0. ,  0. ,  0. ],
                 [ 1.1,  2.3,  1. ,  0. ,  2. ],
                 [ 2.3,  1.1,  2. ,  2. ,  0. ],
                 [ 3.2,  2.6,  0. ,  0. ,  0. ],
                 [ 2.1,  1.5,  2. ,  0. ,  0. ]])
     self.expected_arities = [-1,-1,3,3,3]
Esempio n. 25
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata10.txt'))
     self.neteval = evaluator.NetworkEvaluator(
         self.data, network.fromdata(self.data),
         prior.UniformPrior(self.data.variables.size))
     self.neteval.network.edges.add_many([(1, 0), (2, 0), (3, 0)])
Esempio n. 26
0
 def setUp(self):
     config.set('evaluator.missingdata_evaluator', 'exact')
     self.data = data.fromfile(
         testfile('testdata13.txt')).subset(samples=range(5))
     self.learner = greedy.GreedyLearner(self.data, max_iterations=10)
Esempio n. 27
0
 def setUp(self):
     config.set('evaluator.missingdata_evaluator', self.missing_evaluator)
     self.data = data.fromfile(testfile('testdata13.txt'))
     self.learner = self.learnertype(self.data)
Esempio n. 28
0
 def setUp(self):
     self.data = data.fromfile(
         testfile('testdata5.txt')).subset(samples=range(5))
     self.data.discretize()
     self.learner = self.learnertype(self.data)
Esempio n. 29
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5.txt'))
     self.data.discretize()
Esempio n. 30
0
    print "=" * 80
    print "test statistics: "
    if verbose:
        fail_breakdown(merged_result.detail)
    print "Max score: %s" % max(scores)
    print "Min score: %s" % min(scores)
    avg_score = sum(scores) / len(scores)
    print "Average score: %s" % avg_score
    # final_score = sum([r.num_pass for r in results])/\
    # float(sum([r.num_testcase for r in results]))
    final_score = merged_result.score(score_type)[1]
    print "Normalized score: %s" % final_score
    return final_score


if __name__ == "__main__":
    # run a cross validation
    from pebl import data

    # test parameters
    data_file = "/home/drli/code/ml/iris.pebl"
    classifier_type = "tan"
    test_ratio = 0.3
    runs = 2
    verbose = True

    dataset = data.fromfile(data_file)
    # dataset.discretize(numbins=3, excludevars=[dataset.variables.size-1])
    cross_validate(dataset, classifier_type, test_ratio, runs, verbose)
Esempio n. 31
0
args = parser.parse_args()

for f in os.listdir(args.directory)[args.start:args.end]:
    if 'struct' in f:
	continue
    structfile = open(args.directory + '/' + f.replace('.txt', '_struct.txt'))
    peblfile = open(args.directory + '/' + f)
    nodenames = peblfile.readline().strip().split('\t')
    peblfile.close()
    if len(nodenames) > 30:
	continue
    nodes = [data.Variable(name) for name in nodenames]
    edges = [[int(x) for x in l.strip().split('\t')] for l in structfile.readlines()]
    print 'Doing %s' % f
    print nodes
    print edges
    net = network.Network(nodes, edges=edges)
    dataset = data.fromfile(args.directory + '/' + f)
    try:
	dataset.discretize()
	if len(nodenames) <= 10:
	    learner = greedy.GreedyLearner(dataset, seed=net)
	else:
	    learner = greedy.GreedyLearner(dataset)
	res = learner.run()
#    res.outdir = args.directory + '/'
	res.tohtml(args.prefix + '/' + f.replace('.txt', '_html'))
    except Exception as e:
        print 'Could not process %s: exception was %s' % (f, e)

Esempio n. 32
0
 def setUp(self):
     self.data = data.fromfile(testfile("greedytest1-200.txt"))
Esempio n. 33
0
 def setUp(self):
     config.set('evaluator.missingdata_evaluator', 'exact')
     self.data = data.fromfile(testfile('testdata13.txt')).subset(samples=range(5))
     self.learner = greedy.GreedyLearner(self.data, max_iterations=10)
Esempio n. 34
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5.txt')).subset(samples=range(5))
     self.data.discretize()
     self.learner = self.learnertype(self.data)
Esempio n. 35
0
 def setUp(self):
     config.set('evaluator.missingdata_evaluator', self.missing_evaluator)
     self.data = data.fromfile(testfile('testdata13.txt'))
     self.learner = self.learnertype(self.data)
Esempio n. 36
0
start_time = time.time()
classifyUsingNB(trainList, classVariable, testList, testClassVariable)
elapsed_time = time.time() - start_time
print("Time elapsed Gaussian Naive Bayes : ", elapsed_time)

#Decision tree
start_time = time.time()
classifyUsingDecisionTree(trainList, classVariable, testList,
                          testClassVariable)
elapsed_time = time.time() - start_time
print("Time elapsed Decision : ", elapsed_time)

#logistic regression
solver = 'sag'
multiclass = 'ovr'
start_time = time.time()
classifyUsingLogisticRegression(trainList, classVariable, testList,
                                testClassVariable, solver, multiclass)
elapsed_time = time.time() - start_time
print("Time elapsed Logistic Regression : ", elapsed_time)

#Bayesian Network using PEBL for the data
start_time = time.time()
dataset = data.fromfile(trainFileNameForBayesian)
dataset.discretize()
learner = greedy.GreedyLearner(dataset)
ex1result = learner.run()
ex1result.tohtml("dataset")
elapsed_time = time.time() - start_time
print("Time elapsed Bayesian Network : ", elapsed_time)
Esempio n. 37
0
 def setUp(self):
     self.data = data.fromfile(testfile("greedytest1-200.txt"))
Esempio n. 38
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata10.txt'))
     self.neteval = evaluator.NetworkEvaluator(self.data,
                                               network.fromdata(self.data))
     self.neteval.network.edges.add_many([(1, 0), (2, 0),
                                          (3, 0)])  # {1,2,3} --> 0
Esempio n. 39
0
'''
from pebl import data, result
from pebl.learner import *
from pebl_interface import graph2pebl
from pebl_interface import render_pebl_graph
import numpy as np

from time import gmtime, strftime

#TODO: this should take as arguments
#      data  : txt file
#	   labels: node names and types of attributes
#	   conf  : configuration file - type of learnerm number of learners

if __name__ == "__main__":
		dataset = data.fromfile('../datasets/diabetes/diabetes_pebl_train.txt')
		dataset.discretize(numbins=5)
		learner = greedy.GreedyLearner(dataset, max_iterations = 10000)
		#nodes_list = ["SAT","Difficulty","Intelligence","Grade","Letter"]
		#adjacency_matrix = np.array([[0,0,0,0,0],[0,0,0,1,0],[1,0,0,1,0],[0,0,0,0,1],[0,0,0,0,0]])
		#g = graph2pebl(nodes_list, adjacency_matrix)
		#learner.seed = g
		#render_pebl_graph(learner.seed,"initial")
		
		#~ learners = [ greedy.GreedyLearner(dataset, max_iterations=1000000) for i in range(5) ] + \
		#~ [ simanneal.SimulatedAnnealingLearner(dataset) for i in range(5) ]
		#~ merged_result = result.merge([learner.run() for learner in learners])
		
		results = learner.run()
		result_folder_str = "../experiments/diabetes_" + strftime("%Y-%m-%d_%H:%M:%S", gmtime())
		results.tohtml(result_folder_str)
Esempio n. 40
0
DATA_PATH = "data/HR_tab_sep.pebl.tsv"

import numpy as np
from pebl import data
from pebl.prior import Prior

dataset = data.fromfile(DATA_PATH)
n_vars  = len(dataset.variables)

def prohibit_from_left(energy): return energy[6].sum() <= 0

for i in range(n_vars):
  if type(dataset.variables[i]) == data.ContinuousVariable:
    dataset.discretize(i, numbins=10)
  if type(dataset.variables[i]) == data.ClassVariable:
    dataset.discretize(i, numbins=dataset.variables[i].arity)

prohibited_edges = [ (6, i) for i in range(6) + range(6, 10) ]

prior = Prior(len(dataset.variables),
              #np.ones((n_vars, n_vars)) / (n_vars * n_vars))
              #constraints=[prohibit_from_left])
              prohibited_edges=prohibited_edges)

Esempio n. 41
0
from pebl import data, result
from pebl.learner import greedy, simanneal
import numpy as np
from pebl.taskcontroller import multiprocess
dataset = data.fromfile("zinc.txt")


dataset.discretize()

learner1 = greedy.GreedyLearner(dataset, max_iterations=1000)

result1 = learner1.run()

learner2 = greedy.GreedyLearner(dataset, max_iterations=1000)

result2 = learner2.run()

#learners = [ greedy.GreedyLearner(dataset, max_iterations=100) for i in range(5) ] #+ \
           # [ simanneal.SimulatedAnnealingLearner(dataset) for i in range(5) ]

result1.tohtml('example2.out')
result2.tohtml('example3.out')
merged_result = result.merge(result1, result2)
merged_result.tohtml("zinc",)
merged_result.tofile('example.out')
Esempio n. 42
0
from pebl import data
from pebl import prior
from pebl.learner import greedy

dataset = data.fromfile("output.txt")
dataset.discretize(numbins=3)

node_src = [32 for ii in range(32)] + [3 for ii in range(32)] + [
    30 for ii in range(32)
] + [31 for ii in range(32)]
node_dest = range(32) + range(32) + range(32) + range(32)
prior = prior.Prior(33, prohibited_edges=zip(node_src, node_dest))

learner = greedy.GreedyLearner(dataset, prior, max_iterations=120000)
result = learner.run()
result.tohtml()
Esempio n. 43
0
from pebl.learner import greedy
from pebl.taskcontroller import ec2
from pebl.test import testfile

help = """Test the EC2 TaskController.

USAGE: test_ec2.py configfile

You need to provide the configfile for use with EC2Controller.

###############################################################################
    WARNING for pebl devs: 
        Do NOT put your configfile under svn. 
        It contains sensitve information.
###############################################################################
"""

if len(sys.argv) < 2:
    print help
    sys.exit(1)

d = data.fromfile(testfile("testdata5.txt"))
d.discretize()

tc = ec2.EC2Controller(config=sys.argv[1], min_count=3)
results = tc.run([greedy.GreedyLearner(d, max_time=10) for i in xrange(10)])
results = result.merge(results)

print results
print[r.host for r in results.runs]
Esempio n. 44
0
    def setUp(self):
        d = data.fromfile(testfile("testdata5.txt"))
        d.discretize()

        self.proc = subprocess.Popen("ipcluster -n 2 </dev/null 1>&0 2>&0", shell=True)
        time.sleep(5)
Esempio n. 45
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata10.txt'))
     self.ne = evaluator.SmartNetworkEvaluator(
         self.data,
         network.fromdata(self.data))
Esempio n. 46
0
def run_benchmarks(datafile):
    print datafile
    dat = data.fromfile(datafile)
    l = greedy.GreedyLearner(dat)
    l.run()
Esempio n. 47
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata10.txt'))
     self.ne = evaluator.SmartNetworkEvaluator(self.data,
                                               network.fromdata(self.data))
Esempio n. 48
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata10.txt'))
     self.neteval = evaluator.NetworkEvaluator(self.data, network.fromdata(self.data))
     self.neteval.network.edges.add_many([(1,0), (2,0), (3,0)]) # {1,2,3} --> 0
Esempio n. 49
0
#!/usr/bin/env python
# Bayesian with five greedy and 5 simulated annearling learners serially
# http://pythonhosted.org/pebl/tutorial.html

from pebl import data, result
from pebl.learner import greedy, simanneal
from pebl.taskcontroller import multiprocess
dataset = data.fromfile("pebl-tutorial-data2.txt")
learners = [ greedy.GreedyLearner(dataset, max_iterations=1000000) for i in range(5) ] + \
  [ simanneal.SimulatedAnnealingLearner(dataset) for i in range(5) ]
tc = multiprocess.MultiProcessController(poolsize=2)
results = tc.run(learners)
merged_result = result.merge(results)
merged_result.tofile("example4-result")
Esempio n. 50
0
 def setUp(self):
     self.data = data.fromfile(testfile('testdata5.txt'))
     self.data.discretize()
Esempio n. 51
0
from pebl.taskcontroller import xgrid
from pebl.test import testfile

help = """Test the Xgrid TaskController.

USAGE: test_xgrid.py configfile

You need to provide the configfile for use with XGridController.

###############################################################################
    WARNING for pebl devs: 
        Do NOT put your configfile under svn. 
        It contains sensitve information.
###############################################################################
"""

if len(sys.argv) < 2:
    print help
    sys.exit(1)

config.read(sys.argv[1])
d = data.fromfile(testfile("testdata5.txt"))
d.discretize()

tc = xgrid.XgridController()
results = tc.run([greedy.GreedyLearner(d, max_time=10) for i in xrange(10)])
results = result.merge(results)

print results
print [r.host for r in results.runs]
Esempio n. 52
0
 def setUp(self):
     d = data.fromfile(testfile("testdata5.txt"))
     d.discretize()
     
     self.tc = self.tctype(*self.args)
     self.tasks = [greedy.GreedyLearner(d, max_iterations=100) for i in xrange(6)]