def setUp(self): config.StringParameter('test.param0', 'a param', default='foo') config.StringParameter('test.param1', 'a param', config.oneof('foo', 'bar')) config.IntParameter('test.param2', 'a param', default=20) config.IntParameter('test.param3', 'a param', config.atmost(100)) config.IntParameter('test.param4', 'a param', config.atleast(100)) config.IntParameter('test.param5', 'a param', config.between(10,100)) config.IntParameter('test.param6', 'a param', lambda x: x == 50) config.FloatParameter('test.param7', 'a param', config.between(1.3, 2.7))
# # Parameters # _pmissingdatahandler = config.StringParameter( 'evaluator.missingdata_evaluator', """ Evaluator to use for handling missing data. Choices include: * gibbs: Gibb's sampling * maxentropy_gibbs: Gibbs's sampling over all completions of the missing values that result in maximum entropy discretization for the variables. * exact: exact enumeration of all possible missing values (only useable when there are few missing values) """, config.oneof('gibbs', 'exact', 'maxentropy_gibbs'), default='gibbs' ) _missingdata_evaluators = { 'gibbs': MissingDataNetworkEvaluator, 'exact': MissingDataExactNetworkEvaluator, 'maxentropy_gibbs': MissingDataMaximumEntropyNetworkEvaluator } def fromconfig(data_=None, network_=None, prior_=None): """Create an evaluator based on configuration parameters. This function will return the correct evaluator based on the relevant configuration parameters.