Esempio n. 1
0
    def _load_targets(self, RModel):
        """Load data from the intermediate table tp targetdb.target."""

        log.debug('loading data into targetdb.target.')

        n_inserted = (tdb.Target.insert_from(
            cdb.Catalog.select(
                cdb.Catalog.catalogid,
                cdb.Catalog.ra,
                cdb.Catalog.dec,
                cdb.Catalog.pmra,
                cdb.Catalog.pmdec,
                cdb.Catalog.parallax,
                peewee.Value(EPOCH),
            ).join(
                RModel,
                on=(cdb.Catalog.catalogid == RModel.catalogid
                    )).where(RModel.selected >> True).where(~peewee.fn.EXISTS(
                        tdb.Target.select(peewee.SQL('1')).where(
                            tdb.Target.catalogid == RModel.catalogid))),
            [
                tdb.Target.catalogid,
                tdb.Target.ra,
                tdb.Target.dec,
                tdb.Target.pmra,
                tdb.Target.pmdec,
                tdb.Target.parallax,
                tdb.Target.epoch,
            ],
        ).returning().execute())

        log.info(f'Inserted {n_inserted:,} new rows into targetdb.target.')

        return
Esempio n. 2
0
    def build_query(self, version_id, query_region=None):

        optical_prov = peewee.Value('sdss_psfmag_tycho2').cast('text')
        g = peewee.Value(None).cast('real')
        r = peewee.Value(None).cast('real')
        i = peewee.Value(None).cast('real')
        z = peewee.Value(None).cast('real')
        gaia_g = peewee.Value(None).cast('real')

        query = (CatalogToTycho2.select(
            CatalogToTycho2.catalogid, Tycho2.tycid, Tycho2.designation,
            Tycho2.ramdeg.alias('tycho2_ra'),
            Tycho2.demdeg.alias('tycho2_dec'),
            Tycho2.pmra.alias('tycho2_pmra'), Tycho2.pmde.alias('tycho2_pmde'),
            Tycho2.vtmag, Tycho2.btmag, optical_prov.alias('optical_prov'),
            g.alias('g'), r.alias('r'), i.alias('i'), z.alias('z'),
            gaia_g.alias('gaia_g')).join(
                Tycho2,
                on=(CatalogToTycho2.target_id == Tycho2.designation)).where(
                    CatalogToTycho2.version_id == version_id,
                    CatalogToTycho2.best >> True, Tycho2.vtmag < 13))

        if query_region:
            query = (query.join_from(CatalogToTycho2, Catalog).where(
                peewee.fn.q3c_radial_query(Catalog.ra, Catalog.dec,
                                           query_region[0], query_region[1],
                                           query_region[2])))

        return query
Esempio n. 3
0
    def build_query(self, version_id, query_region=None):

        c = Catalog.alias()
        ls = Legacy_Survey_DR8.alias()
        c2ls = CatalogToLegacy_Survey_DR8.alias()
        s2020 = BHM_eFEDS_Veto.alias()
        sV = SDSSV_BOSS_SPALL.alias()

        xx = EROSITASupersetClusters.alias()
        x = (xx.select(
            fn.rank().over(partition_by=[xx.ero_detuid],
                           order_by=[xx.xmatch_metric.desc()]).alias('x_rank'),
            xx.ero_detuid.alias('ero_detuid'),
            xx.ls_id.alias('ls_id'),
            xx.target_has_spec.alias('target_has_spec'),
        ).where(
            (xx.ero_version == self.parameters['ero_version']),
            (xx.xmatch_method == self.parameters['xmatch_method']),
            (xx.xmatch_version == self.parameters['xmatch_version']),
            (xx.opt_cat == self.parameters['opt_cat']),
            (xx.xmatch_metric > self.parameters['xmatch_metric_min']),
            (xx.ero_det_like > self.parameters['det_like_min']),
        ).alias('x'))

        instrument = peewee.Value(self.instrument)
        inertial = peewee.Value(self.inertial).cast('bool')

        fibertotflux_r_max = AB2nMgy(self.parameters['fibertotmag_r_min'])
        fibertotflux_r_min = AB2nMgy(self.parameters['fibertotmag_r_max'])
        fibertotflux_z_max = AB2nMgy(self.parameters['fibertotmag_z_min'])
        fibertotflux_z_min = AB2nMgy(self.parameters['fibertotmag_z_max'])

        fibertotflux_r_min_for_cadence1 = AB2nMgy(
            self.parameters['fibertotmag_r_for_cadence1'])
        fibertotflux_z_min_for_cadence1 = AB2nMgy(
            self.parameters['fibertotmag_z_for_cadence1'])
        fibertotflux_r_min_for_cadence2 = AB2nMgy(
            self.parameters['fibertotmag_r_for_cadence2'])
        gaia_g_max_for_cadence1 = self.parameters['gaia_g_max_for_cadence1']
        gaia_rp_max_for_cadence1 = self.parameters['gaia_rp_max_for_cadence1']

        # flux30 = AB2nMgy(30.00)
        # match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0

        # #########################################################################
        # prepare the spectroscopy catalogues

        match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0
        spec_sn_thresh = self.parameters['spec_sn_thresh']
        spec_z_err_thresh = self.parameters['spec_z_err_thresh']

        # SDSS DR16
        c2s16 = CatalogToSDSS_DR16_SpecObj.alias()
        ss16 = SDSS_DR16_SpecObj.alias()
        s16 = (ss16.select(ss16.specobjid.alias('specobjid'), ).where(
            ss16.snmedian >= spec_sn_thresh,
            ss16.zwarning == 0,
            ss16.zerr <= spec_z_err_thresh,
            ss16.zerr > 0.0,
            ss16.scienceprimary > 0,
        ).alias('s16'))

        # SDSS-IV/eFEDS March2020
        c2s2020 = CatalogToBHM_eFEDS_Veto.alias()
        ss2020 = BHM_eFEDS_Veto.alias()
        s2020 = (ss2020.select(ss2020.pk.alias('pk'), ).where(
            ss2020.sn_median_all >= spec_sn_thresh,
            ss2020.zwarning == 0,
            ss2020.z_err <= spec_z_err_thresh,
            ss2020.z_err > 0.0,
        ).alias('s2020'))

        # SDSS-V spAll
        ssV = SDSSV_BOSS_SPALL.alias()
        sV = (ssV.select(
            ssV.specobjid.alias('specobjid'),
            ssV.plug_ra.alias('plug_ra'),
            ssV.plug_dec.alias('plug_dec'),
        ).where(
            ssV.sn_median_all >= spec_sn_thresh,
            ssV.zwarning == 0,
            ssV.z_err <= spec_z_err_thresh,
            ssV.z_err > 0.0,
            ssV.specprimary > 0,
        ).alias('sV'))

        # SDSS-V plateholes - only consider plateholes that
        # were drilled+shipped but that were not yet observed
        ssph = SDSSV_Plateholes.alias()
        ssphm = SDSSV_Plateholes_Meta.alias()
        ssconf = SDSSV_BOSS_Conflist.alias()
        sph = (ssph.select(
            ssph.pkey.alias('pkey'),
            ssph.target_ra.alias('target_ra'),
            ssph.target_dec.alias('target_dec'),
        ).join(ssphm, on=(ssph.yanny_uid == ssphm.yanny_uid)).join(
            ssconf, JOIN.LEFT_OUTER, on=(ssphm.plateid == ssconf.plate)).where(
                (ssph.holetype == 'BOSS_SHARED'),
                (ssph.sourcetype == 'SCI') | (ssph.sourcetype == 'STA'),
                ssphm.isvalid > 0,
                ssconf.plate.is_null(),
            ).alias('sph'))

        # priority is determined by target rank within cluster
        # start with a priority floor value (per carton)
        # then increment if any conditions are met:

        priority = peewee.Case(None, (
            (x.c.x_rank == 1, self.parameters['priority_floor_bcg']),
            (x.c.x_rank > 1, self.parameters['priority_floor_member'] +
             fn.least(self.parameters['priority_levels'] - 2, x.c.x_rank - 2)),
        ), None)

        value = peewee.Case(None, (
            (x.c.x_rank == 1, self.parameters['value_bcg']),
            (x.c.x_rank > 1, self.parameters['value_member']),
        ), None).cast('float')

        # choose cadence based on fiber magnitude in r-band
        cadence1 = self.parameters['cadence1']
        cadence2 = self.parameters['cadence2']
        cadence3 = self.parameters['cadence3']
        cadence4 = 'unknown_cadence'  # catch failures
        cadence = peewee.Case(None, (
            (((ls.fibertotflux_r > fibertotflux_r_min_for_cadence1) |
              (ls.fibertotflux_z > fibertotflux_z_min_for_cadence1) |
              (ls.gaia_phot_g_mean_mag.between(0.1, gaia_g_max_for_cadence1)) |
              (ls.gaia_phot_rp_mean_mag.between(
                  0.1, gaia_rp_max_for_cadence1))), cadence1),
            (ls.fibertotflux_r > fibertotflux_r_min_for_cadence2, cadence2),
            (ls.fibertotflux_r <= fibertotflux_r_min_for_cadence2, cadence3),
        ), cadence4)

        # compute transformed SDSS mags for pointlike and extended sources uniformly
        # transform the legacysurvey grz into sdss psfmag griz

        # extract coeffs from fit logs via:
        # awk 'BEGIN {print("coeffs = {")} /POLYFIT/{ if($3~/sdss_psfmag/){pe="p"} else if ($3~/sdss_fiber2mag/){pe="e"} else{pe="error"}; printf("\"%s%d_%s\": %s,\n", substr($3,length($3)), $8, pe, $10)} END {print("}")}'  bhm_spiders_clusters_lsdr8/lsdr8_fibermag_to_sdss_fiber2mag_?_results.log   # noqa
        coeffs = {
            "g2_e": -0.897719,
            "g1_e": 2.298300,
            "g0_e": -1.019299,
            "i2_e": -0.950114,
            "i1_e": 0.981972,
            "i0_e": -0.261645,
            "r2_e": -0.201741,
            "r1_e": 0.697128,
            "r0_e": -0.120926,
            "z2_e": -1.424312,
            "z1_e": 2.415301,
            "z0_e": -0.677163,
        }

        nMgy_min = 1e-3  # equiv to AB=30
        # extended - start from ls8 fiberfluxes
        g0_e = (
            22.5 -
            2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.fiberflux_g)))
        r0_e = (
            22.5 -
            2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.fiberflux_r)))
        z0_e = (
            22.5 -
            2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.fiberflux_z)))
        g_r_e = (-2.5 * peewee.fn.log(
            peewee.fn.greatest(nMgy_min, ls.fiberflux_g) /
            peewee.fn.greatest(nMgy_min, ls.fiberflux_r)))
        r_z_e = (-2.5 * peewee.fn.log(
            peewee.fn.greatest(nMgy_min, ls.fiberflux_r) /
            peewee.fn.greatest(nMgy_min, ls.fiberflux_z)))

        g_e = (g0_e + coeffs['g0_e'] + coeffs['g1_e'] * g_r_e +
               coeffs['g2_e'] * g_r_e * g_r_e)
        r_e = (r0_e + coeffs['r0_e'] + coeffs['r1_e'] * g_r_e +
               coeffs['r2_e'] * g_r_e * g_r_e)
        i_e = (r0_e + coeffs['i0_e'] + coeffs['i1_e'] * r_z_e +
               coeffs['i2_e'] * r_z_e * r_z_e)
        z_e = (z0_e + coeffs['z0_e'] + coeffs['z1_e'] * r_z_e +
               coeffs['z2_e'] * r_z_e * r_z_e)

        # validity checks
        valid = (g0_e.between(0.1, 29.9) & r0_e.between(0.1, 29.9)
                 & z0_e.between(0.1, 29.9))

        opt_prov = peewee.Case(None, ((valid, 'sdss_fiber2mag_from_lsdr8'), ),
                               'undefined')
        magnitude_g = peewee.Case(None, ((valid, g_e), ), 'NaN')
        magnitude_r = peewee.Case(None, ((valid, r_e), ), 'NaN')
        magnitude_i = peewee.Case(None, ((valid, i_e), ), 'NaN')
        magnitude_z = peewee.Case(None, ((valid, z_e), ), 'NaN')
        magnitude_gaia_g = peewee.Case(None, ((ls.gaia_phot_g_mean_mag.between(
            0.1, 29.9), ls.gaia_phot_g_mean_mag), ), 'NaN')
        magnitude_gaia_bp = peewee.Case(
            None, ((ls.gaia_phot_bp_mean_mag.between(
                0.1, 29.9), ls.gaia_phot_bp_mean_mag), ), 'NaN')
        magnitude_gaia_rp = peewee.Case(
            None, ((ls.gaia_phot_rp_mean_mag.between(
                0.1, 29.9), ls.gaia_phot_rp_mean_mag), ), 'NaN')

        # # We want to switch between psfmags and fibertotmags depending on
        # # ls.type parameter (PSF or extended)
        # # For 'PSF' targets, we use psfmags, but for extended sources use fiber2mags
        # opt_prov = peewee.Case(
        #     ls.type,
        #     (('PSF', 'ls_psfmag'),),
        #     'ls_fibertotmag')
        #
        # magnitude_g = peewee.Case(
        #     ls.type,
        #     (('PSF', (22.5 - 2.5 * fn.log10(fn.greatest(flux30, ls.flux_g))).cast('float')),),
        #     (22.5 - 2.5 * fn.log10(fn.greatest(flux30, ls.fibertotflux_g))).cast('float'))
        #
        # magnitude_r = peewee.Case(
        #     ls.type,
        #     (('PSF', (22.5 - 2.5 * fn.log10(fn.greatest(flux30, ls.flux_r))).cast('float')),),
        #     (22.5 - 2.5 * fn.log10(fn.greatest(flux30, ls.fibertotflux_r))).cast('float'))
        #
        # magnitude_z = peewee.Case(
        #     ls.type,
        #     (('PSF', (22.5 - 2.5 * fn.log10(fn.greatest(flux30, ls.flux_z))).cast('float')),),
        #     (22.5 - 2.5 * fn.log10(fn.greatest(flux30, ls.fibertotflux_z))).cast('float'))
        #
        # magnitude_i = peewee.Case(
        #     ls.type,
        #     (('PSF',
        #       (22.5 - 2.5 * fn.log10(
        #           fn.greatest(flux30, 0.5 * (ls.flux_r + ls.flux_z)))).cast('float')),),
        #     (22.5 - 2.5 * fn.log10(
        #         fn.greatest(flux30, 0.5 * (ls.fibertotflux_r +
        #                                    ls.fibertotflux_z)))).cast('float'))

        spec_sn_thresh = self.parameters['spec_sn_thresh']
        spec_z_err_thresh = self.parameters['spec_z_err_thresh']

        query = (
            c.select(
                c.catalogid.alias('catalogid'),
                ls.ls_id.alias('ls_id'),  # extra
                x.c.ero_detuid.cast('text').alias('ero_detuid'),  # extra
                c.ra.alias('ra'),  # extra
                c.dec.alias('dec'),  # extra
                priority.alias('priority'),
                value.alias('value'),
                cadence.alias('cadence'),
                instrument.alias('instrument'),
                opt_prov.alias('optical_prov'),
                magnitude_g.alias('g'),
                magnitude_r.alias('r'),
                magnitude_i.alias('i'),
                magnitude_z.alias('z'),
                magnitude_gaia_g.alias('gaia_g'),
                magnitude_gaia_bp.alias('bp'),
                magnitude_gaia_rp.alias('rp'),
                inertial.alias('inertial'),
                g0_e.alias('ls8_fibermag_g'),  # extra
                r0_e.alias('ls8_fibermag_r'),  # extra
                z0_e.alias('ls8_fibermag_z'),  # extra
            ).join(c2ls).join(ls).join(x, on=(ls.ls_id == x.c.ls_id))
            # start joining the spectroscopy
            .switch(c).join(c2s16, JOIN.LEFT_OUTER).join(
                s16,
                JOIN.LEFT_OUTER,
                on=((c2s16.target_id == s16.c.specobjid) &
                    (c2s16.version_id == version_id))).switch(c).join(
                        c2s2020, JOIN.LEFT_OUTER).join(
                            s2020,
                            JOIN.LEFT_OUTER,
                            on=((c2s2020.target_id == s2020.c.pk) &
                                (c2s2020.version_id == version_id))).join(
                                    sV,
                                    JOIN.LEFT_OUTER,
                                    on=(fn.q3c_join(
                                        sV.c.plug_ra, sV.c.plug_dec, c.ra,
                                        c.dec, match_radius_spectro))).join(
                                            sph,
                                            JOIN.LEFT_OUTER,
                                            on=(fn.q3c_join(
                                                sph.c.target_ra,
                                                sph.c.target_dec, c.ra, c.dec,
                                                match_radius_spectro)))
            # finished joining the spectroscopy
            .where(c.version_id == version_id, c2ls.version_id == version_id,
                   c2ls.best >> True).where(
                       s16.c.specobjid.is_null(
                           True),  # all of these must be satisfied
                       s2020.c.pk.is_null(True),
                       sV.c.specobjid.is_null(True),
                       sph.c.pkey.is_null(True),
                   ).where(
                       ((ls.fibertotflux_r.between(fibertotflux_r_min,
                                                   fibertotflux_r_max)) |
                        (ls.fibertotflux_z.between(fibertotflux_z_min,
                                                   fibertotflux_z_max))),
                       (x.c.target_has_spec == 0),
                       # gaia safety checks to avoid bad ls photometry
                       ~(ls.gaia_phot_g_mean_mag.between(
                           0.1, self.parameters['gaia_g_mag_limit'])),
                       ~(ls.gaia_phot_rp_mean_mag.between(
                           0.1, self.parameters['gaia_rp_mag_limit'])),
                   ))

        if query_region:
            query = query.where(
                peewee.fn.q3c_radial_query(c.ra, c.dec, query_region[0],
                                           query_region[1], query_region[2]))

        return query
Esempio n. 4
0
    def build_query(self, version_id, query_region=None):

        c = Catalog.alias()
        ps = Panstarrs1.alias()
        c2ps = CatalogToPanstarrs1.alias(
        )  # only exists after v0.5 cross-match
        # s2020 = BHM_eFEDS_Veto.alias()
        # sV = SDSSV_BOSS_SPALL.alias()

        xx = EROSITASupersetClusters.alias()
        x = (xx.select(
            fn.rank().over(partition_by=[xx.ero_detuid],
                           order_by=[xx.xmatch_metric.desc()]).alias('x_rank'),
            xx.ero_detuid.alias('ero_detuid'),
            xx.ps1_dr2_id.alias('ps1_dr2_id'),
            xx.target_has_spec.alias('target_has_spec'),
        ).where(
            (xx.ero_version == self.parameters['ero_version']),
            (xx.xmatch_method == self.parameters['xmatch_method']),
            (xx.xmatch_version == self.parameters['xmatch_version']),
            (xx.opt_cat == self.parameters['opt_cat']),
            (xx.xmatch_metric > self.parameters['xmatch_metric_min']),
            (xx.ero_det_like > self.parameters['det_like_min']),
        ).alias('x'))

        instrument = peewee.Value(self.instrument)
        inertial = peewee.Value(self.inertial).cast('bool')

        r_psf_flux_max = AB2Jy(self.parameters['r_psf_mag_min'])
        i_psf_flux_max = AB2Jy(self.parameters['i_psf_mag_min'])
        z_psf_flux_max = AB2Jy(self.parameters['z_psf_mag_min'])
        r_psf_flux_min_for_cadence1 = AB2Jy(
            self.parameters['r_psf_mag_max_for_cadence1'])
        i_psf_flux_min_for_cadence1 = AB2Jy(
            self.parameters['i_psf_mag_max_for_cadence1'])
        z_psf_flux_min_for_cadence1 = AB2Jy(
            self.parameters['z_psf_mag_max_for_cadence1'])
        r_psf_flux_min_for_cadence2 = AB2Jy(
            self.parameters['r_psf_mag_max_for_cadence2'])
        i_psf_flux_min_for_cadence2 = AB2Jy(
            self.parameters['i_psf_mag_max_for_cadence2'])
        z_psf_flux_min_for_cadence2 = AB2Jy(
            self.parameters['z_psf_mag_max_for_cadence2'])

        # match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0

        # #########################################################################
        # prepare the spectroscopy catalogues

        match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0
        spec_sn_thresh = self.parameters['spec_sn_thresh']
        spec_z_err_thresh = self.parameters['spec_z_err_thresh']

        # SDSS DR16
        c2s16 = CatalogToSDSS_DR16_SpecObj.alias()
        ss16 = SDSS_DR16_SpecObj.alias()
        s16 = (ss16.select(ss16.specobjid.alias('specobjid'), ).where(
            ss16.snmedian >= spec_sn_thresh,
            ss16.zwarning == 0,
            ss16.zerr <= spec_z_err_thresh,
            ss16.zerr > 0.0,
            ss16.scienceprimary > 0,
        ).alias('s16'))

        # SDSS-IV/eFEDS March2020
        c2s2020 = CatalogToBHM_eFEDS_Veto.alias()
        ss2020 = BHM_eFEDS_Veto.alias()
        s2020 = (ss2020.select(ss2020.pk.alias('pk'), ).where(
            ss2020.sn_median_all >= spec_sn_thresh,
            ss2020.zwarning == 0,
            ss2020.z_err <= spec_z_err_thresh,
            ss2020.z_err > 0.0,
        ).alias('s2020'))

        # SDSS-V spAll
        ssV = SDSSV_BOSS_SPALL.alias()
        sV = (ssV.select(
            ssV.specobjid.alias('specobjid'),
            ssV.plug_ra.alias('plug_ra'),
            ssV.plug_dec.alias('plug_dec'),
        ).where(
            ssV.sn_median_all >= spec_sn_thresh,
            ssV.zwarning == 0,
            ssV.z_err <= spec_z_err_thresh,
            ssV.z_err > 0.0,
            ssV.specprimary > 0,
        ).alias('sV'))

        # SDSS-V plateholes - only consider plateholes that
        # were drilled+shipped but that were not yet observed
        ssph = SDSSV_Plateholes.alias()
        ssphm = SDSSV_Plateholes_Meta.alias()
        ssconf = SDSSV_BOSS_Conflist.alias()
        sph = (ssph.select(
            ssph.pkey.alias('pkey'),
            ssph.target_ra.alias('target_ra'),
            ssph.target_dec.alias('target_dec'),
        ).join(ssphm, on=(ssph.yanny_uid == ssphm.yanny_uid)).join(
            ssconf, JOIN.LEFT_OUTER, on=(ssphm.plateid == ssconf.plate)).where(
                (ssph.holetype == 'BOSS_SHARED'),
                (ssph.sourcetype == 'SCI') | (ssph.sourcetype == 'STA'),
                ssphm.isvalid > 0,
                ssconf.plate.is_null(),
            ).alias('sph'))

        # priority is determined by target rank within cluster
        # start with a priority floor value (per carton)
        # then increment if any conditions are met:

        priority = peewee.Case(None, (
            (x.c.x_rank == 1, self.parameters['priority_floor_bcg']),
            (x.c.x_rank > 1, self.parameters['priority_floor_member'] +
             fn.least(self.parameters['priority_levels'] - 2, x.c.x_rank - 2)),
        ), None)

        value = peewee.Case(None, (
            (x.c.x_rank == 1, self.parameters['value_bcg']),
            (x.c.x_rank > 1, self.parameters['value_member']),
        ), None)

        # choose cadence based on psf_flux magnitude in panstarrs1 g,r,i-bands
        cadence1 = self.parameters['cadence1']
        cadence2 = self.parameters['cadence2']
        cadence3 = self.parameters['cadence3']
        cadence4 = 'unknown_cadence'
        cadence = peewee.Case(None, (
            ((ps.r_stk_psf_flux > r_psf_flux_min_for_cadence1) |
             (ps.i_stk_psf_flux > i_psf_flux_min_for_cadence1) |
             (ps.z_stk_psf_flux > z_psf_flux_min_for_cadence1), cadence1),
            ((ps.r_stk_psf_flux > r_psf_flux_min_for_cadence2) |
             (ps.i_stk_psf_flux > i_psf_flux_min_for_cadence2) |
             (ps.z_stk_psf_flux > z_psf_flux_min_for_cadence2), cadence2),
            ((ps.r_stk_psf_flux <= r_psf_flux_min_for_cadence2) &
             (ps.i_stk_psf_flux <= i_psf_flux_min_for_cadence2) &
             (ps.z_stk_psf_flux <= z_psf_flux_min_for_cadence2), cadence3),
        ), cadence4)

        # compute transformed SDSS mags for all sources uniformly
        # transform the panstarrs1-dr2 griz into sdss psfmag griz

        # extract coeffs from fit logs via:
        # awk 'BEGIN {print("coeffs = {")} /POLYFIT/{ if($3~/sdss_psfmag/){pe="p"} else if ($3~/sdss_fiber2mag/){pe="e"} else{pe="error"}; printf("\"%s%d_%s\": %s,\n", substr($3,length($3)), $8, pe, $10)} END {print("}")}'  bhm_spiders_clusters_ps1dr2/ps1dr2_stk_psf_to_sdss_fiber2mag_?_results.log  # noqa
        coeffs = {
            "g2_e": -0.353294,
            "g1_e": 0.699658,
            "g0_e": 0.581569,
            "i2_e": -0.446208,
            "i1_e": 0.776628,
            "i0_e": 0.421538,
            "r2_e": -0.123243,
            "r1_e": 0.401786,
            "r0_e": 0.422531,
            "z2_e": -0.488437,
            "z1_e": 0.595132,
            "z0_e": 0.439771,
        }

        Jy_min = AB2Jy(30.00)

        # start from ps1dr2 stk psf fluxes
        g0 = (
            8.9 -
            2.5 * peewee.fn.log(peewee.fn.greatest(Jy_min, ps.g_stk_psf_flux)))
        r0 = (
            8.9 -
            2.5 * peewee.fn.log(peewee.fn.greatest(Jy_min, ps.r_stk_psf_flux)))
        i0 = (
            8.9 -
            2.5 * peewee.fn.log(peewee.fn.greatest(Jy_min, ps.i_stk_psf_flux)))
        z0 = (
            8.9 -
            2.5 * peewee.fn.log(peewee.fn.greatest(Jy_min, ps.z_stk_psf_flux)))
        g_r = g0 - r0
        r_i = r0 - i0
        i_z = i0 - z0

        # use single set of transform coeffs
        g_e = (g0 + coeffs['g0_e'] + coeffs['g1_e'] * g_r +
               coeffs['g2_e'] * g_r * g_r)
        r_e = (r0 + coeffs['r0_e'] + coeffs['r1_e'] * g_r +
               coeffs['r2_e'] * g_r * g_r)
        i_e = (i0 + coeffs['i0_e'] + coeffs['i1_e'] * r_i +
               coeffs['i2_e'] * r_i * r_i)
        z_e = (z0 + coeffs['z0_e'] + coeffs['z1_e'] * i_z +
               coeffs['z2_e'] * i_z * i_z)

        # validity checks
        valid = (g0.between(0.1, 29.9) & r0.between(0.1, 29.9)
                 & i0.between(0.1, 29.9) & z0.between(0.1, 29.9))

        opt_prov = peewee.Case(None, ((valid, 'sdss_fiber2mag_from_ps1dr2'), ),
                               'undefined')
        magnitude_g = peewee.Case(None, ((valid, g_e), ), 'NaN')
        magnitude_r = peewee.Case(None, ((valid, r_e), ), 'NaN')
        magnitude_i = peewee.Case(None, ((valid, i_e), ), 'NaN')
        magnitude_z = peewee.Case(None, ((valid, z_e), ), 'NaN')

        # # We want to switch between psfmags and fibertotmags depending on
        # # ps.flags EXT+EXT_ALT (i.e. extended sources)
        # # For non-extended targets, we use psfmags, but for extended sources use apermag
        # flux30 = AB2Jy(30.00)
        # ps1_ext_flags = 8388608 + 16777216
        # ps1_good_stack_flag = 134217728
        # opt_prov = peewee.Case(
        #     ps.flags.bin_and(ps1_ext_flags),
        #     ((0, 'ps_psfmag'),),
        #     'ps_apermag')
        #
        # magnitude_g = peewee.Case(
        #     ps.flags.bin_and(ps1_ext_flags),
        #     ((0, (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.g_stk_psf_flux))).cast('float')),),
        #     (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.g_stk_aper_flux))).cast('float'))
        #
        # magnitude_r = peewee.Case(
        #     ps.flags.bin_and(ps1_ext_flags),
        #     ((0, (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.r_stk_psf_flux))).cast('float')),),
        #     (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.r_stk_aper_flux))).cast('float'))
        #
        # magnitude_i = peewee.Case(
        #     ps.flags.bin_and(ps1_ext_flags),
        #     ((0, (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.i_stk_psf_flux))).cast('float')),),
        #     (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.i_stk_aper_flux))).cast('float'))
        #
        # magnitude_z = peewee.Case(
        #     ps.flags.bin_and(ps1_ext_flags),
        #     ((0, (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.z_stk_psf_flux))).cast('float')),),
        #     (8.9 - 2.5 * fn.log10(fn.greatest(flux30, ps.z_stk_aper_flux))).cast('float'))

        # these control matching to spectroscopy
        match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0
        spec_sn_thresh = self.parameters['spec_sn_thresh']
        spec_z_err_thresh = self.parameters['spec_z_err_thresh']

        # this controls use of bad panstarrs photometry
        ps1_good_stack_flag = 134217728

        query = (
            c.select(
                c.catalogid.alias('catalogid'),
                ps.catid_objid.alias('ps1_catid_objid'),  # extra
                x.c.ero_detuid.cast('text').alias('ero_detuid'),  # extra
                c.ra.alias('ra'),  # extra
                c.dec.alias('dec'),  # extra
                priority.alias('priority'),
                value.cast('float').alias('value'),
                cadence.alias('cadence'),
                instrument.alias('instrument'),
                opt_prov.alias('optical_prov'),
                magnitude_g.alias('g'),
                magnitude_r.alias('r'),
                magnitude_i.alias('i'),
                magnitude_z.alias('z'),
                (ps.flags.bin_and(ps1_good_stack_flag) >
                 0).cast('bool').alias('ps1_good_stack_flag'),  # extra
                inertial.alias('inertial'),
            ).join(c2ps).join(ps).join(x,
                                       on=(ps.catid_objid == x.c.ps1_dr2_id))
            # start joining the spectroscopy
            .switch(c).join(c2s16, JOIN.LEFT_OUTER).join(
                s16,
                JOIN.LEFT_OUTER,
                on=((c2s16.target_id == s16.c.specobjid) &
                    (c2s16.version_id == version_id))).switch(c).join(
                        c2s2020, JOIN.LEFT_OUTER).join(
                            s2020,
                            JOIN.LEFT_OUTER,
                            on=((c2s2020.target_id == s2020.c.pk) &
                                (c2s2020.version_id == version_id))).join(
                                    sV,
                                    JOIN.LEFT_OUTER,
                                    on=(fn.q3c_join(
                                        sV.c.plug_ra, sV.c.plug_dec, c.ra,
                                        c.dec, match_radius_spectro))).join(
                                            sph,
                                            JOIN.LEFT_OUTER,
                                            on=(fn.q3c_join(
                                                sph.c.target_ra,
                                                sph.c.target_dec, c.ra, c.dec,
                                                match_radius_spectro)))
            # finished joining the spectroscopy
            .where(c.version_id == version_id, c2ps.version_id == version_id,
                   c2ps.best >> True).where(
                       s16.c.specobjid.is_null(
                           True),  # all of these must be satisfied
                       s2020.c.pk.is_null(True),
                       sV.c.specobjid.is_null(True),
                       sph.c.pkey.is_null(True),
                   ).
            where(
                (x.c.target_has_spec == 0),
                (ps.r_stk_psf_flux < r_psf_flux_max),
                (ps.i_stk_psf_flux < i_psf_flux_max),
                (ps.z_stk_psf_flux < z_psf_flux_max),
                (ps.r_stk_psf_flux !=
                 'NaN'),  # TODO check this is correct test via peewee
                (ps.i_stk_psf_flux != 'NaN'),
                (ps.z_stk_psf_flux != 'NaN'),
                # TODO - check panstarrs photometry quality ??
                # (ps.flags.bin_and(ps1_good_stack_flag) > 0),
                # TODO gaia safety checks to avoid bad ls photometry???
            ).order_by(x.c.ps1_dr2_id, x.c.x_rank.asc()).distinct([
                x.c.ps1_dr2_id,
            ])  # avoid duplicate entries
        )

        if query_region:
            query = query.where(
                peewee.fn.q3c_radial_query(c.ra, c.dec, query_region[0],
                                           query_region[1], query_region[2]))

        return query
Esempio n. 5
0
        def build_query(self, version_id, query_region=None):

            self.log.debug(f'Processing file {self._file_path}.')

            # We need to copy the data to a temporary table so that we can
            # join on it. We could use a Peewee ValueList but for large tables
            # that will hit the limit of 1GB in PSQL.

            # Create model for temporary table from FITS table columns.
            # This works fine because we know there are no arrays.
            temp_table = self.name.lower() + '_temp'
            temp = create_model_from_table(temp_table, self._table)
            temp._meta.database = self.database
            temp.create_table(temporary=True)

            # Copy data.
            copy_data(self._table, self.database, temp_table)

            self.database.execute_sql(f'CREATE INDEX ON "{temp_table}" ("Gaia_DR2_Source_ID")')
            self.database.execute_sql(f'CREATE INDEX ON "{temp_table}" ("LegacySurvey_DR8_ID")')
            self.database.execute_sql(f'CREATE INDEX ON "{temp_table}" ("PanSTARRS_DR2_ID")')
            self.database.execute_sql(f'CREATE INDEX ON "{temp_table}" ("TwoMASS_ID")')
            vacuum_table(self.database, temp_table, vacuum=False, analyze=True)

            inertial_case = peewee.Case(
                None,
                ((temp.inertial.cast('boolean').is_null(), False),),
                temp.inertial.cast('boolean'))

            query_common = (Catalog
                            .select(Catalog.catalogid,
                                    temp.Gaia_DR2_Source_ID.alias('gaia_source_id'),
                                    temp.LegacySurvey_DR8_ID.alias('ls_id'),
                                    temp.PanSTARRS_DR2_ID.alias('catid_objid'),
                                    temp.TwoMASS_ID.alias('designation'),
                                    Catalog.ra,
                                    Catalog.dec,
                                    temp.delta_ra.cast('double precision'),
                                    temp.delta_dec.cast('double precision'),
                                    inertial_case.alias('inertial'),
                                    temp.cadence,
                                    temp.priority,
                                    temp.instrument,
                                    peewee.Value(0).alias('value'))
                            .distinct(Catalog.catalogid))

            query_gaia_dr2 = \
                (query_common
                 .join(CatalogToTIC_v8)
                 .join(TIC_v8, on=(CatalogToTIC_v8.target_id == TIC_v8.id))
                 .join(Gaia_DR2, on=(TIC_v8.gaia_int == Gaia_DR2.source_id))
                 .join(temp,
                       on=(temp.Gaia_DR2_Source_ID == Gaia_DR2.source_id))
                 .switch(Catalog)
                 .where(CatalogToTIC_v8.version_id == version_id,
                        (CatalogToTIC_v8.best >> True) |
                        CatalogToTIC_v8.best.is_null(),
                        Catalog.version_id == version_id))

            query_legacysurvey_dr8 = \
                (query_common
                 .join(CatalogToLegacy_Survey_DR8)
                 .join(Legacy_Survey_DR8)
                 .join(temp,
                       on=(temp.LegacySurvey_DR8_ID == Legacy_Survey_DR8.ls_id))
                 .switch(Catalog)
                 .where(CatalogToLegacy_Survey_DR8.version_id == version_id,
                        (CatalogToLegacy_Survey_DR8.best >> True) |
                        CatalogToLegacy_Survey_DR8.best.is_null(),
                        Catalog.version_id == version_id))

            query_panstarrs_dr2 = \
                (query_common
                 .join(CatalogToPanstarrs1)
                 .join(Panstarrs1)
                 .join(temp,
                       on=(temp.PanSTARRS_DR2_ID == Panstarrs1.catid_objid))
                 .switch(Catalog)
                 .where(CatalogToPanstarrs1.version_id == version_id,
                        (CatalogToPanstarrs1.best >> True) |
                        CatalogToPanstarrs1.best.is_null(),
                        Catalog.version_id == version_id))

            query_twomass_psc = \
                (query_common
                 .join(CatalogToTIC_v8,
                       on=(Catalog.catalogid == CatalogToTIC_v8.catalogid))
                 .join(TIC_v8,
                       on=(CatalogToTIC_v8.target_id == TIC_v8.id))
                 .join(TwoMassPSC,
                       on=(TIC_v8.twomass_psc == TwoMassPSC.designation))
                 .join(temp,
                       on=(temp.TwoMASS_ID == TwoMassPSC.designation))
                 .switch(Catalog)
                 .where(CatalogToTIC_v8.version_id == version_id,
                        (CatalogToTIC_v8.best >> True) |
                        CatalogToTIC_v8.best.is_null(),
                        Catalog.version_id == version_id))

            len_table = len(self._table)

            len_gaia_dr2 =\
                len(self._table[self._table['Gaia_DR2_Source_ID'] > 0])

            len_legacysurvey_dr8 =\
                len(self._table[self._table['LegacySurvey_DR8_ID'] > 0])

            len_panstarrs_dr2 =\
                len(self._table[self._table['PanSTARRS_DR2_ID'] > 0])

            # TwoMass_ID corresponds to the designation column of
            # the table catalogdb.twomass_psc.
            # Since the designation column is a text column, below
            # we are comparing it to the string 'NA' and not the integer 0.
            #
            len_twomass_psc =\
                len(self._table[self._table['TwoMASS_ID'] != 'NA'])

            # There must be exactly one non-zero id per row else raise an exception.
            if ((len_gaia_dr2 + len_legacysurvey_dr8 +
                 len_panstarrs_dr2 + len_twomass_psc) != len_table):
                raise TargetSelectionError('error in get_file_carton(): ' +
                                           '(len_gaia_dr2 + len_legacysurvey_dr8 + ' +
                                           'len_panstarrs_dr2 + len_twomass_psc) != ' +
                                           'len_table')

            if (len_gaia_dr2 > 0):
                is_gaia_dr2 = True
            else:
                is_gaia_dr2 = False

            if (len_legacysurvey_dr8 > 0):
                is_legacysurvey_dr8 = True
            else:
                is_legacysurvey_dr8 = False

            if (len_panstarrs_dr2 > 0):
                is_panstarrs_dr2 = True
            else:
                is_panstarrs_dr2 = False

            if (len_twomass_psc > 0):
                is_twomass_psc = True
            else:
                is_twomass_psc = False

            query = None

            if(is_gaia_dr2 is True):
                if(query is None):
                    query = query_gaia_dr2
                else:
                    query = query | query_gaia_dr2

            if(is_legacysurvey_dr8 is True):
                if(query is None):
                    query = query_legacysurvey_dr8
                else:
                    query = query | query_legacysurvey_dr8

            if(is_panstarrs_dr2 is True):
                if(query is None):
                    query = query_panstarrs_dr2
                else:
                    query = query | query_panstarrs_dr2

            if(is_twomass_psc is True):
                if(query is None):
                    query = query_twomass_psc
                else:
                    query = query | query_twomass_psc

            if(query is None):
                # At least one of the four boolean variables above
                # must be True, so we should not get here.
                raise TargetSelectionError('error in get_file_carton(): ' +
                                           '(is_gaia_dr2 is False) and ' +
                                           '(is_legacysurvey_dr8 is False) and ' +
                                           '(is_panstarrs_dr2 is False) and ' +
                                           '(is_twomass_psc is False)')

            if 'lambda_eff' in self._table.colnames:
                query = query.select_extend(temp.lambda_eff.alias('lambda_eff'))

            return query
Esempio n. 6
0
    def build_query(self, version_id, query_region=None):
        c = Catalog.alias()
        c2t = CatalogToBHM_RM_v0.alias()
        t = BHM_RM_v0_2.alias()
        stw = BHM_RM_Tweaks.alias()
        self.alias_c = c
        self.alias_t = t

        fieldlist = self.get_fieldlist()

        tw = (stw.select(
            stw.pkey.alias('pkey'),
            stw.ra.alias('ra'),
            stw.dec.alias('dec'),
            stw.rm_suitability.alias('rm_suitability'),
        ).where((stw.date_set == '30-Nov-2020')
                | (stw.date_set == '25-May-2021')))
        self.alias_tw = tw
        # #########################################################################
        # prepare the spectroscopy catalogues

        # SDSS-V spAll - select only objects we want to exclude on
        # the basis of their pipeline classifications
        # Currently this is only for secure STARs in the COSMOS field
        ssV = SDSSV_BOSS_SPALL.alias()
        sV = (
            ssV.select(
                ssV.specobjid.alias('specobjid'),
                ssV.plug_ra.alias('plug_ra'),
                ssV.plug_dec.alias('plug_dec'),
                fn.rank().over(partition_by=[ssV.catalogid],
                               order_by=[ssV.sn_median_all.desc()
                                         ]).alias('sn_rank'),
            ).where(
                ssV.programname.contains('RM'),
                ssV.firstcarton.contains('bhm_rm_'),
                ssV.class_ == 'STAR',
                ssV.zwarning == 0,
                ssV.sn_median_all > 2.0,
                # select only COSMOS plates
                ssV.plate << [15038, 15070, 15071, 15252, 15253, 15289
                              ]).alias('sV'))

        # SDSS-V plateholes - only consider plateholes that
        # were drilled+shipped and that have firstcarton ~ 'bhm_rm_'
        ssph = SDSSV_Plateholes.alias()
        ssphm = SDSSV_Plateholes_Meta.alias()
        sph = (ssph.select(
            ssph.pkey.alias('pkey'),
            ssph.target_ra.alias('target_ra'),
            ssph.target_dec.alias('target_dec'),
        ).join(ssphm, on=(ssph.yanny_uid == ssphm.yanny_uid)).where(
            ssph.holetype == 'BOSS_SHARED',
            ssph.sourcetype == 'SCI',
            ssph.firstcarton.contains('bhm_rm_'),
            ssphm.isvalid > 0,
        ).distinct([ssph.catalogid]).alias('sph'))

        # fold in tiers of magnitude-based priority
        priority_mag_step = 0.5
        priority_mag_bright = 17.0
        priority_mag_faint = 22.0
        priority_mag_bright_known_spec = 20.5
        priority_floor = self.parameters.get('priority', 10000)
        priority1 = peewee.Case(None, (
            ((t.mi <= priority_mag_bright), priority_floor + 0),
            (((self.name == 'bhm_rm_known_spec')
              & ~(t.field_name.contains('SDSS-RM')) &
              (t.mi <= priority_mag_bright_known_spec)), priority_floor + 0),
            ((t.mi <= priority_mag_faint), priority_floor + 5 *
             (1 + peewee.fn.floor(
                 (t.mi - priority_mag_bright) / priority_mag_step).cast('int'))
             ),
            ((t.mi > priority_mag_faint), priority_floor + 95),
        ), None)
        # # this secondary priority rule is based on whether this target was
        # # assigned a platehole during the SDSSV plate programme
        # # boost the priorities of those targets that were put onto plates
        # priority2 = peewee.Case(
        #     None,
        #     (
        #         (sph.c.pkey.is_null(False), -100),
        #         (sph.c.pkey.is_null(True), 0),
        #     ),
        #     None
        # )

        # this secondary priority rule boosts the priority of targets that
        # have rm_suitability >= 1 in the bhm_rm_tweaks table
        priority2 = peewee.Case(None, ((tw.c.rm_suitability >= 1, -100), ), 0)

        # combine the two priorities
        priority = priority1 + priority2

        # this just checks if this target was
        # assigned a platehole during the SDSSV plate programme
        # for information only - no action taken
        in_SDSSV_plates = peewee.Case(None,
                                      ((sph.c.pkey.is_null(False), True), ),
                                      False).cast('bool')

        value = peewee.Value(self.parameters.get('value', 1.0)).cast('float')
        instrument = peewee.Value(self.instrument)
        inertial = peewee.Value(self.inertial).cast('bool')
        match_radius_spectro = 1.0 / 3600.0

        # This is the scheme used in v0
        cadence_v0 = peewee.Case(
            None, ((t.field_name.contains('S-CVZ'), 'bhm_rm_lite5_100x8'), ),
            'bhm_rm_174x8')

        # this gives the new names for the same cadences assumed in v0
        cadence_v0p5 = peewee.Case(
            None, ((t.field_name.contains('S-CVZ'), 'dark_100x8'), ),
            'dark_174x8')

        # the following will replace old generic cadences when relevant table has been populated
        # TODO - replace when correct cadences are loaded
        cadence_v1p0 = peewee.Case(None, (
            (t.field_name.contains('SDSS-RM'), 'bhm_rm_sdss-rm'),
            (t.field_name.contains('COSMOS'), 'bhm_rm_cosmos'),
            (t.field_name.contains('XMM-LSS'), 'bhm_rm_xmm-lss'),
            (t.field_name.contains('S-CVZ'), 'bhm_rm_cvz-s'),
            (t.field_name.contains('CDFS'), 'bhm_rm_cdfs'),
            (t.field_name.contains('ELIAS-S1'), 'bhm_rm_elias-s1'),
        ), 'dark_174x8')

        # Photometric precedence: DES>PS1>SDSS(>Gaia)>NSC.
        opt_prov = peewee.Case(None, (
            (t.sdss == 1, 'sdss_psfmag'),
            (t.des == 1, 'psfmag'),
            (t.ps1 == 1, 'ps_psfmag'),
            (t.optical_survey == 'Gaia', 'other'),
            (t.nsc == 1, 'psfmag'),
        ), 'other')

        magnitude_g = peewee.Case(
            None,
            (
                ((t.sdss == 1) & (t.psfmag_sdss[1] > 0.0), t.psfmag_sdss[1]),
                ((t.des == 1) & (t.psfmag_des[0] > 0.0), t.psfmag_des[0]),
                ((t.ps1 == 1) & (t.psfmag_ps1[0] > 0.0), t.psfmag_ps1[0]),
                ((t.optical_survey == 'Gaia') & (t.mag_gaia[0] > 0.0),
                 t.mag_gaia[0]),  # just using gaia G for now
                ((t.nsc == 1) & (t.mag_nsc[0] > 0.0), t.mag_nsc[0]),
            ),
            99.9)  # should never get here
        magnitude_r = peewee.Case(None, (
            ((t.sdss == 1) & (t.psfmag_sdss[2] > 0.0), t.psfmag_sdss[2]),
            ((t.des == 1) & (t.psfmag_des[1] > 0.0), t.psfmag_des[1]),
            ((t.ps1 == 1) & (t.psfmag_ps1[1] > 0.0), t.psfmag_ps1[1]),
            ((t.nsc == 1) & (t.mag_nsc[1] > 0.0), t.mag_nsc[1]),
        ), 99.9)  # should never get here
        magnitude_i = peewee.Case(
            None,
            (
                ((t.sdss == 1) & (t.psfmag_sdss[3] > 0.0), t.psfmag_sdss[3]),
                ((t.des == 1) & (t.psfmag_des[2] > 0.0), t.psfmag_des[2]),
                ((t.ps1 == 1) & (t.psfmag_ps1[2] > 0.0), t.psfmag_ps1[2]),
                ((t.nsc == 1) & (t.mag_nsc[2] > 0.0), t.mag_nsc[2]),
                (t.mi > 0.0, t.mi),
                ((t.optical_survey == 'Gaia') & (t.mag_gaia[2] > 0.0),
                 t.mag_gaia[2]),  # just using gaia RP for now
            ),
            99.9)  # should never get here
        magnitude_z = peewee.Case(None, (
            ((t.sdss == 1) & (t.psfmag_sdss[4] > 0.0), t.psfmag_sdss[4]),
            ((t.des == 1) & (t.psfmag_des[3] > 0.0), t.psfmag_des[3]),
            ((t.ps1 == 1) & (t.psfmag_ps1[3] > 0.0), t.psfmag_ps1[3]),
            ((t.nsc == 1) & (t.mag_nsc[3] > 0.0), t.mag_nsc[3]),
        ), 99.9)  # should never get here

        query = (
            c.select(
                c.catalogid,
                c.ra,  # extra
                c.dec,  # extra
                t.field_name.alias('rm_field_name'),  # extra
                t.pk.alias('rm_pk'),  # extra
                instrument.alias('instrument'),
                priority.alias('priority'),
                priority1.alias('priority1'),
                priority2.alias('priority2'),
                value.alias('value'),
                cadence_v0p5.alias('cadence'),
                cadence_v0.alias('cadence_v0'),  # extra
                cadence_v0p5.alias('cadence_v0p5'),  # extra
                cadence_v1p0.alias('cadence_v1p0'),  # extra
                magnitude_g.alias('g'),
                magnitude_r.alias('r'),
                magnitude_i.alias('i'),
                magnitude_z.alias('z'),
                opt_prov.alias('optical_prov'),
                inertial.alias('inertial'),
                t.optical_survey.alias('optical_survey'),  # extra
                c2t.best.alias("c2t_best"),  # extra
                in_SDSSV_plates.alias('in_SDSSV_plates'),  # extra
                tw.c.rm_suitability.cast('int').alias(
                    'rm_suitability'),  # extra
            ).join(c2t)
            # An explicit join is needed because we are using c2t for Catalog_to_BHM_RM_v0
            # rather than a native c2t for Catalog_to_BHM_RM_v0_2
            .join(t, on=(c2t.target_id == t.pk)).where(
                c.version_id == version_id,
                c2t.version_id == version_id,
                # c2t.best >> True   # TODO check if this is dropping RM targets
                #                    # like it does for AQMES
            ).where(((t.mi >= self.parameters['mag_i_min'])
                     & (t.mi < self.parameters['mag_i_max'])) | (
                         # S-CVZ targets often have only Gaia photom
                         (t.field_name.contains('S-CVZ'))
                         & (t.mg >= self.parameters['mag_g_min_cvz_s'])
                         & (t.mg < self.parameters['mag_g_max_cvz_s']))).
            switch(c).join(
                tw,
                JOIN.LEFT_OUTER,
                on=(fn.q3c_join(
                    tw.c.ra, tw.c.dec, c.ra, c.dec,
                    match_radius_spectro))).join(
                        sV,
                        JOIN.LEFT_OUTER,
                        on=(
                            fn.q3c_join(sV.c.plug_ra, sV.c.plug_dec, c.ra,
                                        c.dec, match_radius_spectro) &
                            (sV.c.sn_rank == 1
                             )  # only consider the best spectrum per object
                        )).join(sph,
                                JOIN.LEFT_OUTER,
                                on=(fn.q3c_join(sph.c.target_ra,
                                                sph.c.target_dec, c.ra, c.dec,
                                                match_radius_spectro))).
            where(
                # Reject any objects where the highest SNR spectrum for
                # this target in sdssv_boss_spall is classified as STAR
                sV.c.specobjid.is_null(True),
                #
                # Reject any targets that are flagged as being unsuitable for RM in bhm_rm_tweaks
                # bhm_rm_tweaks.rm_suitability==0 means:
                # 'target is probably unsuitable for RM, do not observe in the future'
                (tw.c.pkey.is_null(True) |
                 (tw.c.rm_suitability != 0))).distinct(
                     [t.pk])  # avoid duplicates - trust the RM parent sample
            # - only needed if NOT using c2t.best = True condition
        )
        query = self.append_spatial_query(query, fieldlist)

        return query
Esempio n. 7
0
    def build_query(self, version_id, query_region=None):
        c = Catalog.alias()
        c2s = CatalogToSDSS_DR16_SpecObj.alias()
        s = SDSS_DR16_SpecObj.alias()
        t = SDSS_DR16_QSO.alias()
        self.alias_c = c
        self.alias_t = t
        self.alias_c2s = c2s

        # SDSS-V plateholes - only consider plateholes that
        # were drilled+shipped and that have firstcarton ~ 'bhm_aqmes_'
        ssph = SDSSV_Plateholes.alias()
        ssphm = SDSSV_Plateholes_Meta.alias()
        sph = (
            ssph.select(
                ssph.pkey.alias('pkey'),
                ssph.target_ra.alias('target_ra'),
                ssph.target_dec.alias('target_dec'),
            )
            .join(
                ssphm,
                on=(ssph.yanny_uid == ssphm.yanny_uid)
            )
            .where(
                ssph.holetype == 'BOSS_SHARED',
                ssph.sourcetype == 'SCI',
                ssph.firstcarton.contains('bhm_aqmes_'),
                ssphm.isvalid > 0,
            )
            .distinct([ssph.catalogid])
            .alias('sph')
        )

        # set the Carton priority+values here - read from yaml
        priority_floor = peewee.Value(int(self.parameters.get('priority', 999999)))
        value = peewee.Value(self.parameters.get('value', 1.0)).cast('float')
        instrument = peewee.Value(self.instrument)
        inertial = peewee.Value(self.inertial).cast('bool')
        opt_prov = peewee.Value('sdss_psfmag')
        cadence_v0 = peewee.Value(cadence_map_v0p5_to_v0[self.cadence_v0p5]).cast('text')
        # cadence = peewee.Value(cadence_v0)
        cadence = peewee.Value(self.cadence_v0p5).cast('text')

        # # this is DEBUG until the new v0.5 cadences exist in the DB
        # # - doesn't work because self.cadence is checked before this point
        # # - so give up until targetdb.cadence is populated
        # assert self.cadence in cadence_map_v0p5_to_v0
        # v0_cadence = cadence_map_v0p5_to_v0[self.cadence]
        # cadence = peewee.Value(v0_cadence).alias('cadence')

        match_radius_spectro = 1.0 / 3600.0

        priority_boost = peewee.Case(
            None,
            (
                (sph.c.pkey.is_null(False), 0),  # has a platehole entry
                (sph.c.pkey.is_null(True), 1),   # not in plate programme
            ),
            None
        )
        priority = priority_floor + priority_boost

        magnitude_sdss_g = peewee.Case(
            None, ((t.psfmag[1].between(0.1, 29.9), t.psfmag[1]),), 'NaN').cast('float')
        magnitude_sdss_r = peewee.Case(
            None, ((t.psfmag[2].between(0.1, 29.9), t.psfmag[2]),), 'NaN').cast('float')
        magnitude_sdss_i = peewee.Case(
            None, ((t.psfmag[3].between(0.1, 29.9), t.psfmag[3]),), 'NaN').cast('float')
        magnitude_sdss_z = peewee.Case(
            None, ((t.psfmag[4].between(0.1, 29.9), t.psfmag[4]),), 'NaN').cast('float')
        magnitude_gaia_g = peewee.Case(
            None, ((t.gaia_g_mag.between(0.1, 29.9), t.gaia_g_mag),), 'NaN').cast('float')
        magnitude_gaia_bp = peewee.Case(
            None, ((t.gaia_bp_mag.between(0.1, 29.9), t.gaia_bp_mag),), 'NaN').cast('float')
        magnitude_gaia_rp = peewee.Case(
            None, ((t.gaia_rp_mag.between(0.1, 29.9), t.gaia_rp_mag),), 'NaN').cast('float')

        bquery = (
            c.select(
                c.catalogid,
                t.pk.alias('dr16q_pk'),  # extra
                s.specobjid.cast('text').alias('dr16_specobjid'),  # extra
                c.ra,   # extra
                c.dec,   # extra
                priority.alias('priority'),
                value.alias('value'),
                inertial.alias('inertial'),
                instrument.alias('instrument'),
                cadence.alias('cadence'),
                cadence_v0.alias('cadence_v0'),
                opt_prov.alias('optical_prov'),
                magnitude_sdss_g.alias('g'),
                magnitude_sdss_r.alias('r'),
                magnitude_sdss_i.alias('i'),
                magnitude_sdss_z.alias('z'),
                magnitude_gaia_g.alias('gaia_g'),
                magnitude_gaia_bp.alias('bp'),
                magnitude_gaia_rp.alias('rp'),
                t.plate.alias('dr16q_plate'),   # extra
                t.mjd.alias('dr16q_mjd'),   # extra
                t.fiberid.alias('dr16q_fiberid'),   # extra
                t.ra.alias("dr16q_ra"),   # extra
                t.dec.alias("dr16q_dec"),   # extra
                t.gaia_ra.alias("dr16q_gaia_ra"),   # extra
                t.gaia_dec.alias("dr16q_gaia_dec"),   # extra
                t.sdss2gaia_sep.alias("dr16q_sdss2gaia_sep"),   # extra
                t.z.alias("dr16q_redshift"),   # extra
                c2s.best.alias("c2s_best"),  # extra
            )
            .join(c2s)
            .join(s)
            .join(
                t,
                on=((s.plate == t.plate) &
                    (s.mjd == t.mjd) &
                    (s.fiberid == t.fiberid))
            )
            .join(
                sph, JOIN.LEFT_OUTER,
                on=(
                    fn.q3c_join(sph.c.target_ra, sph.c.target_dec,
                                c.ra, c.dec,
                                match_radius_spectro)
                )
            )
            .where(
                c.version_id == version_id,
                c2s.version_id == version_id,
                # c2s.best >> True,   # TODO check this is working in v0.5
                #                     # - this condition killed many AQMES
                #                     #   targets in v0 cross-match
            )
            .where
            (
                t.psfmag[3] >= self.parameters['mag_i_min'],
                t.psfmag[3] < self.parameters['mag_i_max'],
                # (t.z >= self.parameters['redshift_min']), # not needed
                # (t.z <= self.parameters['redshift_max']),
            )
            # .distinct([t.pk])   # avoid duplicates - trust the QSO parent sample
            .distinct([c.catalogid])   # avoid duplicates - trust the catalog
            .cte('bquery', materialized=True)
        )

        query = bquery.select(peewee.SQL('bquery.*'))
        query = self.append_spatial_query(query, bquery, self.get_fieldlist())
        query = query.with_cte(bquery)

        return query
Esempio n. 8
0
    def build_query(self, version_id, query_region=None):

        # Do a quick check to be sure the GG carton exists in targetdb.
        gg_exists = (targetdb.Carton.select().join(targetdb.Version).where(
            targetdb.Carton.carton == 'mwm_galactic_core',
            targetdb.Version.plan == self.plan,
            targetdb.Version.target_selection >> True).exists())
        if not gg_exists:
            raise RuntimeError('mwm_galactic has not been loaded yet.')

        fn = peewee.fn

        # GG quality flags
        ph_qual = TwoMassPSC.ph_qual
        cc_flg = TwoMassPSC.cc_flg
        rd_flg = TwoMassPSC.rd_flg
        rd_flag_1 = peewee.fn.substr(rd_flg, 2, 1).cast('integer')
        gal_contam = TwoMassPSC.gal_contam

        gallong = TIC_v8.gallong
        gallat = TIC_v8.gallat

        ipar = 1. / TIC_v8.plx  # kpc
        zz = ipar * fn.sin(fn.radians(gallat))
        xx = ipar * fn.cos(fn.radians(gallat)) * fn.cos(fn.radians(gallong))
        yy = ipar * fn.cos(fn.radians(gallat)) * fn.sin(fn.radians(gallong))

        dist = fn.sqrt(fn.pow(xx, 2) + fn.pow(yy, 2) + fn.pow(zz, 2))

        aks_glimpse = 0.918 * (GLIMPSE.mag_h - GLIMPSE.mag4_5 - 0.08)
        aks_allwise = 0.918 * (AllWise.h_m_2mass - AllWise.w2mpro - 0.08)
        aks = fn.coalesce(aks_glimpse, aks_allwise)

        Ej_ks = 1.5 * aks

        j_ks_0_glimpse = GLIMPSE.mag_j - GLIMPSE.mag_ks - Ej_ks
        j_ks_0_allwise = AllWise.j_m_2mass - AllWise.k_m_2mass - Ej_ks
        j_ks_0 = fn.coalesce(j_ks_0_glimpse, j_ks_0_allwise)

        plxfracunc = TIC_v8.e_plx / TIC_v8.plx
        dm = 5 * fn.log(1000. / TIC_v8.plx / 10)
        absmag = TIC_v8.kmag - aks - dm

        query = (
            CatalogToTIC_v8.select(
                CatalogToTIC_v8.catalogid,
                peewee.Value(False).alias('selected'),  # Set selected to False
                TIC_v8.gaia_int.alias('gaia_souce_id'),
                TIC_v8.gallong,
                TIC_v8.gallat,
                TIC_v8.plx,
                TIC_v8.gaiamag,
                TIC_v8.hmag,
                TIC_v8.kmag,
                aks.alias('a_ks'),
                j_ks_0.alias('j_ks_0')).join(TIC_v8).join_from(
                    CatalogToTIC_v8,
                    CatalogToAllWise,
                    peewee.JOIN.LEFT_OUTER,
                    on=(CatalogToAllWise.catalogid == CatalogToTIC_v8.catalogid
                        )).join(AllWise, peewee.JOIN.LEFT_OUTER).join_from(
                            TIC_v8, TwoMassPSC,
                            peewee.JOIN.LEFT_OUTER).join_from(
                                CatalogToAllWise,
                                CatalogToGLIMPSE,
                                peewee.JOIN.LEFT_OUTER,
                                on=(CatalogToGLIMPSE.catalogid ==
                                    CatalogToAllWise.catalogid)).join(
                                        GLIMPSE, peewee.JOIN.LEFT_OUTER).
            where(((CatalogToAllWise.version_id == version_id)
                   & (CatalogToAllWise.best >> True))
                  | (CatalogToAllWise.catalogid >> None)).where(
                      CatalogToTIC_v8.version_id == version_id,
                      CatalogToTIC_v8.best >> True).
            where(((CatalogToGLIMPSE.version_id == version_id)
                   & (CatalogToGLIMPSE.best >> True))
                  | (CatalogToGLIMPSE.catalogid >> None)).where(
                      TIC_v8.hmag < 11.2,
                      fn.abs(zz) < 0.2, j_ks_0.is_null(False), j_ks_0 > 0.5,
                      dist < 5, plxfracunc < 0.2, plxfracunc > 0,
                      absmag < 2.6).where(
                          ph_qual.regexp('.(A|B).'), gal_contam == 0,
                          peewee.fn.substr(cc_flg, 2, 1) == '0', rd_flag_1 > 0,
                          rd_flag_1 <= 3))

        if query_region:
            query = (query.join_from(CatalogToAllWise, Catalog).where(
                peewee.fn.q3c_radial_query(Catalog.ra, Catalog.dec,
                                           query_region[0], query_region[1],
                                           query_region[2])))

        return query
Esempio n. 9
0
    def build_query(self, version_id, query_region=None):
        ps = Panstarrs1.alias()
        c2ps = CatalogToPanstarrs1.alias()
        tic = TIC_v8.alias()
        c2tic = CatalogToTIC_v8.alias()

        # an alias to simplify accessing the query parameters:
        pars = self.parameters

        # transform the panstarrs1-dr2 griz into sdss psfmag griz
        # use transforms decribed here:
        # https://wiki.sdss.org/display/OPS/All-sky+BOSS+standards#All-skyBOSSstandards-TransformingphotometryofeBOSS-likestandardsintoSDSSsystem  # noqa
        # extract coeffs from fit logs via:
        # awk 'BEGIN {print("coeffs = {")} /POLYFIT/{ pe=""; printf("\"%s%d_%s\": %s,\n", substr($3,length($3)), $8, pe, $10)} END {print("}")}'  ops_std_eboss/ps1dr2_chp_psf_to_sdss_psfmag_?_results.log  # noqa

        coeffs = {
            "g2": 0.115563,
            "g1": 0.068765,
            "g0": 0.012047,
            "i2": -0.385214,
            "i1": 0.149677,
            "i0": -0.026127,
            "r2": -0.070151,
            "r1": 0.070129,
            "r0": -0.014197,
            "z2": -2.141255,
            "z1": 0.147746,
            "z0": -0.034845,
        }

        # start from ps1dr2 chp psf mags
        g_r = ps.g_chp_psf - ps.r_chp_psf
        r_i = ps.r_chp_psf - ps.i_chp_psf
        i_z = ps.i_chp_psf - ps.z_chp_psf

        # compute apparent sdss psfmags
        g = (ps.g_chp_psf + coeffs['g0'] + coeffs['g1'] * g_r + coeffs['g2'] * g_r * g_r)
        r = (ps.r_chp_psf + coeffs['r0'] + coeffs['r1'] * g_r + coeffs['r2'] * g_r * g_r)
        i = (ps.i_chp_psf + coeffs['i0'] + coeffs['i1'] * r_i + coeffs['i2'] * r_i * r_i)
        z = (ps.z_chp_psf + coeffs['z0'] + coeffs['z1'] * i_z + coeffs['z2'] * i_z * i_z)

        # dereddining steps

        # extinction terms for Panstarrs
        # Use R_b from Schlafly & Finkbeiner 2011, Table 6
        # https://ui.adsabs.harvard.edu/abs/2011ApJ...737..103S/abstract
        # assume R_V = 3.1
        # R_b = A_V / E(B-V)
        # for Panstarrs1 grizy bands we have:
        R_g = 3.172
        R_r = 2.271
        R_i = 1.682
        R_z = 1.322
        # R_y = 1.087
        E_g_r = R_g - R_r
        E_r_i = R_r - R_i
        E_i_z = R_i - R_z

        # extinction terms for Gaia
        # Use table 3 from Wang & Chen 2019
        # https://ui.adsabs.harvard.edu/abs/2019ApJ...877..116W/abstract
        # R_G = 1.890
        # R_BP = 2.429
        # R_RP = 1.429
        # These R_b are expressed with E(BP-RP) as the denominator - so need to convert to
        # using E(B-V) as denominator instead

        # an email from Keivan Stassun helps with this:
        #   Hi Jennifer, we had to work
        #   these out for the TIC paper because we used Gaia G mags and
        #   Bp-Rp colors for everything... you can see the details in
        #   Section 2.3.3 of Stassun et al (2019), but here's the final
        #   relations we adopted:
        #   E(${G}_{\mathrm{BP}}$ − ${G}_{\mathrm{RP}}$) = 1.31 E(B − V)
        #   AG = 2.72 E(B − V)

        E_bp_rp = 1.31
        R_gaia_g = 1.890 * E_bp_rp
        R_gaia_bp = 2.429 * E_bp_rp
        # R_gaia_rp = 1.429 * 1.31
        E_bp_g = R_gaia_bp - R_gaia_g    # = 0.7061

        # use ebv from tic_v8 match
        g_r_dered = g_r - tic.ebv * E_g_r
        r_i_dered = r_i - tic.ebv * E_r_i
        i_z_dered = i_z - tic.ebv * E_i_z
        bp_rp_dered = tic.gaiabp - tic.gaiarp - tic.ebv * E_bp_rp
        bp_g_dered = tic.gaiabp - tic.gaiamag - tic.ebv * E_bp_g

        g_r_dered_nominal = pars['g_r_dered_nominal']
        r_i_dered_nominal = pars['r_i_dered_nominal']
        i_z_dered_nominal = pars['i_z_dered_nominal']
        bp_rp_dered_nominal = pars['bp_rp_dered_nominal']
        bp_g_dered_nominal = pars['bp_g_dered_nominal']

        dered_dist2 = (
            (g_r_dered - g_r_dered_nominal) * (g_r_dered - g_r_dered_nominal) +
            (r_i_dered - r_i_dered_nominal) * (r_i_dered - r_i_dered_nominal) +
            (i_z_dered - i_z_dered_nominal) * (i_z_dered - i_z_dered_nominal) +
            (bp_rp_dered - bp_rp_dered_nominal) * (bp_rp_dered - bp_rp_dered_nominal) +
            (bp_g_dered - bp_g_dered_nominal) * (bp_g_dered - bp_g_dered_nominal)
        )

        optical_prov = peewee.Value('sdss_psfmag_from_ps1dr2')

        ext_flags = 8388608 + 16777216
        dered_dist_max2 = pars['dered_dist_max'] * pars['dered_dist_max']

        # the following are just to bracket the result to make the query run faster
        r_stk_psf_flux_min = AB2Jy(pars['mag_ps_r_max'] + 0.2)
        r_stk_psf_flux_max = AB2Jy(pars['mag_ps_r_min'] - 0.2)

        query = (
            Catalog
            .select(
                Catalog.catalogid,
                Catalog.ra,
                Catalog.dec,
                ps.catid_objid.alias('ps1_catid_objid'),
                tic.gaia_int.alias('gaia_source'),
                ps.g_chp_psf.alias("ps1dr2_chp_psfmag_g"),
                ps.r_chp_psf.alias("ps1dr2_chp_psfmag_r"),
                ps.i_chp_psf.alias("ps1dr2_chp_psfmag_i"),
                ps.z_chp_psf.alias("ps1dr2_chp_psfmag_z"),
                g_r.alias("ps1dr2_chp_psfmag_g_r"),
                r_i.alias("ps1dr2_chp_psfmag_r_i"),
                i_z.alias("ps1dr2_chp_psfmag_i_z"),
                tic.ebv.alias("tic_ebv"),
                g_r_dered.alias("ps1dr2_chp_psfmag_g_r_dered"),
                r_i_dered.alias("ps1dr2_chp_psfmag_r_i_dered"),
                i_z_dered.alias("ps1dr2_chp_psfmag_i_z_dered"),
                bp_rp_dered.alias("gdr2_mag_dered_bp_rp"),
                bp_g_dered.alias("gdr2_mag_dered_bp_g"),
                dered_dist2.alias("dered_dist2"),
                optical_prov.alias('optical_prov'),
                g.alias("g"),
                r.alias("r"),
                i.alias("i"),
                z.alias("z"),
                tic.gaiamag.alias("gaia_g"),
                tic.gaiabp.alias("bp"),
                tic.gaiarp.alias("rp"),
                tic.jmag.alias("j"),
                tic.hmag.alias("h"),
                tic.kmag.alias("k"),
                tic.plx.alias('parallax'),
                tic.e_plx.alias('parallax_error'),
            )
            .join(c2ps,
                  on=(Catalog.catalogid == c2ps.catalogid))
            .join(ps,
                  on=(c2ps.target_id == ps.catid_objid))
            .join(c2tic,
                  on=(Catalog.catalogid == c2tic.catalogid))
            .join(tic,
                  on=(c2tic.target_id == tic.id))
            .where(
                c2ps.version_id == version_id,
                c2tic.version_id == version_id,
                c2ps.best >> True,
                c2tic.best >> True,
                ps.flags.bin_and(ext_flags) == 0,
                tic.plx < pars['parallax_max'],
                tic.plx > (
                    pars['parallax_min_at_g16'] +
                    (tic.gaiamag - 16.0) * pars['parallax_min_slope']
                ),
                dered_dist2 < dered_dist_max2,
                ps.r_chp_psf.between(pars['mag_ps_r_min'], pars['mag_ps_r_max']),
                # the following are just to bracket the result to make the query run faster
                tic.gaiamag.between(pars['mag_gaia_g_min'], pars['mag_gaia_g_max']),
                ps.r_stk_psf_flux.between(r_stk_psf_flux_min, r_stk_psf_flux_max),
            )
        )

        # Below ra, dec and radius are in degrees
        # query_region[0] is ra of center of the region
        # query_region[1] is dec of center of the region
        # query_region[2] is radius of the region
        if query_region:
            query = (
                query.where(
                    peewee.fn.q3c_radial_query(Catalog.ra,
                                               Catalog.dec,
                                               query_region[0],
                                               query_region[1],
                                               query_region[2]),
                )
            )

        return query
Esempio n. 10
0
    def build_query(self, version_id, query_region=None):
        ls = Legacy_Survey_DR8.alias()
        c2ls = CatalogToLegacy_Survey_DR8.alias()

        # an alias to simplify accessing the query parameters:
        pars = self.parameters

        # safety catch to avoid log-of-zero and divide by zero errors.
        # => use a flux in nano-maggies below which we give up
        nMgy_min = 1e-3  # equiv to AB=30

        # Below line is used to avoid divide by zero or log of zero,
        #     peewee.fn.greatest(nMgy_min, Legacy_Survey_DR8.flux_g)
        # Below peewee.fn.log is log to the base 10.
        # peewee.fn.log(peewee.fn.greatest(nMgy_min, Legacy_Survey_DR8.flux_r))

        # transform the legacysurvey grz into sdss psfmag griz
        # use transforms decribed here:
        # https://wiki.sdss.org/display/OPS/All-sky+BOSS+standards#All-skyBOSSstandards-TransformingphotometryofeBOSS-likestandardsintoSDSSsystem  # noqa
        # extract coeffs from fit logs via:
        # gawk 'BEGIN {print("coeffs = {")} /POLYFIT/{printf("\"%s%d\": %s,\n", substr($3,length($3)), $8, $10)} END {print("}")}'  ops_std_eboss/lsdr8_mag_to_sdss_psfmag_*.log  # noqa
        coeffs = {
            "g2": 0.193896,
            "g1": -0.051181,
            "g0": 0.032614,
            "i2": 0.044794,
            "i1": -0.513119,
            "i0": -0.021466,
            "r2": -0.034595,
            "r1": 0.132328,
            "r0": 0.011408,
            "z2": -0.381446,
            "z1": 0.135980,
            "z0": -0.020589,
        }

        g0 = (22.5 - 2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_g)))
        r0 = (22.5 - 2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_r)))
        z0 = (22.5 - 2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_z)))
        g_r = (-2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_g) /
                                    peewee.fn.greatest(nMgy_min, ls.flux_r)))
        r_z = (-2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_r) /
                                    peewee.fn.greatest(nMgy_min, ls.flux_z)))

        g = (g0 + coeffs['g0'] + coeffs['g1'] * g_r + coeffs['g2'] * g_r * g_r)
        r = (r0 + coeffs['r0'] + coeffs['r1'] * g_r + coeffs['r2'] * g_r * g_r)
        i = (r0 + coeffs['i0'] + coeffs['i1'] * r_z + coeffs['i2'] * r_z * r_z)
        z = (z0 + coeffs['z0'] + coeffs['z1'] * r_z + coeffs['z2'] * r_z * r_z)

        g0_dered = (22.5 - 2.5 * peewee.fn.log(
            peewee.fn.greatest(nMgy_min, ls.flux_g / ls.mw_transmission_g)))
        r0_dered = (22.5 - 2.5 * peewee.fn.log(
            peewee.fn.greatest(nMgy_min, ls.flux_r / ls.mw_transmission_r)))
        z0_dered = (22.5 - 2.5 * peewee.fn.log(
            peewee.fn.greatest(nMgy_min, ls.flux_z / ls.mw_transmission_z)))

        g_r_dered = (-2.5 * peewee.fn.log(
            peewee.fn.greatest(nMgy_min, ls.flux_g / ls.mw_transmission_g) /
            peewee.fn.greatest(nMgy_min, ls.flux_r / ls.mw_transmission_r)))
        r_z_dered = (-2.5 * peewee.fn.log(
            peewee.fn.greatest(nMgy_min, ls.flux_r / ls.mw_transmission_r) /
            peewee.fn.greatest(nMgy_min, ls.flux_z / ls.mw_transmission_z)))

        # lsdr8 quotes ebv so we can go straight to E(G_BP-G_RP) and E(G_BP-G) directly
        # using the Stassun et al relation:
        # E(BP-RP) = 1.31 * E(B-V)
        # NO! # but we first need to recalibrate the SFD E(B-V) following Schlafly&Finkbeiner2011
        # NO! # such that SF11 E(B-V) = SFD EB(-V) * 0.884
        # NO! E_b_v_corr = 0.884
        # NO! E_bp_rp = 1.31 * E_b_v_corr
        E_bp_rp = 1.31
        R_gaia_g = 1.890 * E_bp_rp
        R_gaia_bp = 2.429 * E_bp_rp
        E_bp_g = R_gaia_bp - R_gaia_g     # = 0.7061

        bp_rp_dered = (ls.gaia_phot_bp_mean_mag - ls.gaia_phot_rp_mean_mag
                       - ls.ebv * E_bp_rp)
        bp_g_dered = (ls.gaia_phot_bp_mean_mag - ls.gaia_phot_g_mean_mag
                      - ls.ebv * E_bp_g)

        # bp_rp_dered = (
        #     (
        #         ls.gaia_phot_bp_mean_mag
        #         + 2.5 * peewee.fn.log(ls.mw_transmission_g)
        #     ) - (
        #         ls.gaia_phot_rp_mean_mag
        #         + 2.5 * peewee.fn.log(0.5 * (ls.mw_transmission_r + ls.mw_transmission_z))
        #     )
        # )
        # bp_g_dered = (
        #     (
        #         ls.gaia_phot_bp_mean_mag
        #         + 2.5 * peewee.fn.log(ls.mw_transmission_g)
        #     ) - (
        #         ls.gaia_phot_g_mean_mag
        #         + 2.5 * peewee.fn.log(ls.mw_transmission_r)
        #     )
        # )

        g_r_dered_nominal = pars['g_r_dered_nominal']
        r_z_dered_nominal = pars['r_z_dered_nominal']
        bp_rp_dered_nominal = pars['bp_rp_dered_nominal']
        bp_g_dered_nominal = pars['bp_g_dered_nominal']

        dered_dist2 = (
            (g_r_dered - g_r_dered_nominal) * (g_r_dered - g_r_dered_nominal) +
            (r_z_dered - r_z_dered_nominal) * (r_z_dered - r_z_dered_nominal) +
            (bp_rp_dered - bp_rp_dered_nominal) * (bp_rp_dered - bp_rp_dered_nominal) +
            (bp_g_dered - bp_g_dered_nominal) * (bp_g_dered - bp_g_dered_nominal)
        )
        dered_dist_max2 = pars['dered_dist_max'] * pars['dered_dist_max']

        optical_prov = peewee.Value('sdss_psfmag_from_lsdr8')

        query = (
            Catalog
            .select(
                Catalog.catalogid,
                Catalog.ra,
                Catalog.dec,
                ls.ls_id,
                # ls.flux_g,
                # ls.flux_r,
                # ls.flux_z,
                # ls.flux_w1,
                # ls.flux_ivar_g,
                # ls.flux_ivar_r,
                # ls.flux_ivar_z,
                # ls.flux_ivar_w1,
                g0.alias("ls8_mag_g"),
                r0.alias("ls8_mag_r"),
                z0.alias("ls8_mag_z"),
                g_r.alias("ls8_mag_g_r"),
                r_z.alias("ls8_mag_r_z"),
                g0_dered.alias("ls8_mag_dered_g"),
                r0_dered.alias("ls8_mag_dered_r"),
                z0_dered.alias("ls8_mag_dered_z"),
                g_r_dered.alias("ls8_mag_dered_g_r"),
                r_z_dered.alias("ls8_mag_dered_r_z"),
                bp_rp_dered.alias("gdr2_mag_dered_bp_rp"),
                bp_g_dered.alias("gdr2_mag_dered_bp_g"),
                dered_dist2.alias("dered_dist2"),
                optical_prov.alias('optical_prov'),
                g.alias("g"),
                r.alias("r"),
                i.alias("i"),
                z.alias("z"),
                ls.gaia_phot_g_mean_mag.alias("gaia_g"),
                ls.gaia_phot_bp_mean_mag.alias("bp"),
                ls.gaia_phot_rp_mean_mag.alias("rp"),
                ls.ebv.alias("ls8_ebv"),
                ls.mw_transmission_g.alias("ls8_mw_transmission_g"),
                ls.mw_transmission_r.alias("ls8_mw_transmission_r"),
                ls.mw_transmission_z.alias("ls8_mw_transmission_z"),
                ls.parallax,
                ls.parallax_ivar,
                ls.nobs_g.alias("ls8_nobs_g"),
                ls.nobs_r.alias("ls8_nobs_r"),
                ls.nobs_z.alias("ls8_nobs_z"),
                # ls.maskbits,
            )
            .join(c2ls,
                  on=(Catalog.catalogid == c2ls.catalogid))
            .join(ls,
                  on=(c2ls.target_id == ls.ls_id))
            .where(
                c2ls.version_id == version_id,
                c2ls.best >> True,
                ls.type == 'PSF',
                ls.ref_cat == 'G2',
                ls.gaia_phot_g_mean_mag > pars['mag_gaia_g_min'],
                ls.parallax < pars['parallax_max'],
                ls.parallax > (
                    pars['parallax_min_at_g16'] +
                    (ls.gaia_phot_g_mean_mag - 16.0) * pars['parallax_min_slope']
                ),
                ls.gaia_duplicated_source >> False,
                ls.nobs_g >= 1,   # TODO increase to >= 2 in lsdr9
                ls.nobs_r >= 1,   # TODO increase to >= 2 in lsdr9
                ls.nobs_z >= 1,   # TODO increase to >= 2 in lsdr9
                ls.flux_g > nMgy_min,
                ls.flux_r > nMgy_min,
                ls.flux_z > nMgy_min,
                ls.maskbits == 0,
                dered_dist2 < dered_dist_max2,
                r0.between(pars['mag_ls_r_min'], pars['mag_ls_r_max']),
                #
                # g_r.between(pars['ls_g_r_min'], pars['ls_g_r_max']),
                # r_z.between(pars['ls_r_z_min'], pars['ls_r_z_max']),
                # (ls.gaia_phot_bp_mean_mag - ls.gaia_phot_rp_mean_mag)
                # .between(pars['gaia_bp_rp_min'], pars['gaia_bp_rp_max']),
                # (ls.gaia_phot_g_mean_mag - r0)
                # .between(pars['gaia_g_ls_r_min'], pars['gaia_g_ls_r_max'])
                # # (22.5 -
                # #  2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_r)))  # noqa: E501
                # # .between(pars['mag_ls_r_min'], pars['mag_ls_r_max']),
                # # (-2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_g) /  # noqa: E501
                # #                       peewee.fn.greatest(nMgy_min, ls.flux_r)))  # noqa: E501
                # # .between(pars['ls_g_r_min'], pars['ls_g_r_max']),
                # # (-2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_r) /  # noqa: E501
                # #                       peewee.fn.greatest(nMgy_min, ls.flux_z)))  # noqa: E501
                # # .between(pars['ls_r_z_min'], pars['ls_r_z_max']),
                # # (ls.gaia_phot_g_mean_mag -
                # #  (22.5 -
                # #   2.5 * peewee.fn.log(peewee.fn.greatest(nMgy_min, ls.flux_r))))  # noqa: E501
                # # .between(pars['gaia_g_ls_r_min'], pars['gaia_g_ls_r_max'])
            )
        )

        # Below ra, dec and radius are in degrees
        # query_region[0] is ra of center of the region
        # query_region[1] is dec of center of the region
        # query_region[2] is radius of the region
        if query_region:
            query = (
                query.where(
                    peewee.fn.q3c_radial_query(Catalog.ra,
                                               Catalog.dec,
                                               query_region[0],
                                               query_region[1],
                                               query_region[2]),
                    peewee.fn.q3c_radial_query(ls.ra,
                                               ls.dec,
                                               query_region[0],
                                               query_region[1],
                                               query_region[2]),
                )
            )
        return query
Esempio n. 11
0
    def build_query(self, version_id, query_region=None):
        tic = TIC_v8.alias()
        c2tic = CatalogToTIC_v8.alias()

        # an alias to simplify accessing the query parameters:
        pars = self.parameters

        # transform the gaia g,bp,rp into sdss psfmag griz
        # use transforms decribed here:
        # https://wiki.sdss.org/display/OPS/All-sky+BOSS+standards#All-skyBOSSstandards-TransformingphotometryofeBOSS-likestandardsintoSDSSsystem  # noqa
        # extract coeffs from fit logs via:
        # awk 'BEGIN {print("coeffs = {")} /POLYFIT/{ pe=""; printf("\"%s%d%s\": %s,\n", substr($3,length($3)), $8, pe, $10)} END {print("}")}'  ops_std_eboss/gdr2_mag_to_sdss_psfmag_?_results.log  # noqa

        coeffs = {
            "g2": 0.226514,
            "g1": 0.373358,
            "g0": -0.073834,
            "i2": 0.038586,
            "i1": -0.505039,
            "i0": 0.216803,
            "r2": 0.212874,
            "r1": -0.381950,
            "r0": 0.156923,
            "z2": -0.246274,
            "z1": -0.372790,
            "z0": 0.235517,
        }

        bp_rp = tic.gaiabp - tic.gaiarp
        # compute apparent sdss psfmags
        g = (tic.gaiamag + coeffs['g0'] + coeffs['g1'] * bp_rp +
             coeffs['g2'] * bp_rp * bp_rp)
        r = (tic.gaiamag + coeffs['r0'] + coeffs['r1'] * bp_rp +
             coeffs['r2'] * bp_rp * bp_rp)
        i = (tic.gaiamag + coeffs['i0'] + coeffs['i1'] * bp_rp +
             coeffs['i2'] * bp_rp * bp_rp)
        z = (tic.gaiamag + coeffs['z0'] + coeffs['z1'] * bp_rp +
             coeffs['z2'] * bp_rp * bp_rp)

        # dereddining steps

        # extinction terms for Gaia
        # Use Stassun+19 (Ticv8) presciption
        E_bp_rp = 1.31
        R_gaia_g = 1.890 * E_bp_rp
        R_gaia_bp = 2.429 * E_bp_rp
        R_gaia_rp = 1.429 * E_bp_rp
        E_bp_g = R_gaia_bp - R_gaia_g    # = 0.7061
        E_g_rp = R_gaia_g - R_gaia_rp    # = 0.6039

        # use ebv from tic_v8 match
        bp_rp_dered = tic.gaiabp - tic.gaiarp - tic.ebv * E_bp_rp
        bp_g_dered = tic.gaiabp - tic.gaiamag - tic.ebv * E_bp_g
        g_rp_dered = tic.gaiamag - tic.gaiarp - tic.ebv * E_g_rp

        bp_rp_dered_nominal = pars['bp_rp_dered_nominal']
        bp_g_dered_nominal = pars['bp_g_dered_nominal']
        g_rp_dered_nominal = pars['g_rp_dered_nominal']

        dered_dist2 = (
            (bp_rp_dered - bp_rp_dered_nominal) * (bp_rp_dered - bp_rp_dered_nominal) +
            (bp_g_dered - bp_g_dered_nominal) * (bp_g_dered - bp_g_dered_nominal) +
            (g_rp_dered - g_rp_dered_nominal) * (g_rp_dered - g_rp_dered_nominal)
        )

        optical_prov = peewee.Value('sdss_psfmag_from_gaia')

        dered_dist_max2 = pars['dered_dist_max'] * pars['dered_dist_max']

        query = (
            Catalog
            .select(
                Catalog.catalogid,
                Catalog.ra,
                Catalog.dec,
                tic.id.alias('tic_id'),  # extra
                tic.gaia_int.alias('gaia_source'),  # extra
                tic.ebv.alias("tic_ebv"),  # extra
                bp_rp_dered.alias("gdr2_mag_dered_bp_rp"),  # extra
                bp_g_dered.alias("gdr2_mag_dered_bp_g"),  # extra
                g_rp_dered.alias("gdr2_mag_dered_g_rp"),  # extra
                dered_dist2.alias("dered_dist2"),   # extra
                optical_prov.alias('optical_prov'),
                g.alias("g"),
                r.alias("r"),
                i.alias("i"),
                z.alias("z"),
                tic.gaiamag.alias("gaia_g"),
                tic.gaiabp.alias("bp"),
                tic.gaiarp.alias("rp"),
                tic.jmag.alias("j"),
                tic.hmag.alias("h"),
                tic.kmag.alias("k"),
                tic.plx.alias('parallax'),  # extra
                tic.e_plx.alias('parallax_error'),  # extra
                tic.gallong.alias('tic_gal_l'),  # extra
                tic.gallat.alias('tic_gal_b'),  # extra
            )
            .join(c2tic,
                  on=(Catalog.catalogid == c2tic.catalogid))
            .join(tic,
                  on=(c2tic.target_id == tic.id))
            .where(
                c2tic.version_id == version_id,
                c2tic.best >> True,
                tic.plx < pars['parallax_max'],
                tic.plx > (
                    pars['parallax_min_at_g16'] +
                    (tic.gaiamag - 16.0) * pars['parallax_min_slope']
                ),
                dered_dist2 < dered_dist_max2,
                tic.gaiamag.between(pars['mag_gaia_g_min'], pars['mag_gaia_g_max']),
                # the following are just to bracket the result to make the query run faster
                tic.gaiabp.between(pars['mag_gaia_bp_min'], pars['mag_gaia_bp_max']),
                tic.gaiarp.between(pars['mag_gaia_rp_min'], pars['mag_gaia_rp_max']),
                tic.ebv < pars['ebv_max'],
                ~(tic.gallat.between(-10., 10.0)),
            )
        )

        # Below ra, dec and radius are in degrees
        # query_region[0] is ra of center of the region
        # query_region[1] is dec of center of the region
        # query_region[2] is radius of the region
        if query_region:
            query = (
                query.where(
                    peewee.fn.q3c_radial_query(Catalog.ra,
                                               Catalog.dec,
                                               query_region[0],
                                               query_region[1],
                                               query_region[2]),
                )
            )

        return query
Esempio n. 12
0
    def _load_carton_to_target(self, RModel):
        """Populate targetdb.carton_to_target."""

        log.debug('Loading data into targetdb.carton_to_target.')

        version_pk = tdb.Version.get(
            plan=self.plan,
            tag=self.tag,
            target_selection=True,
        )
        carton_pk = tdb.Carton.get(carton=self.name, version_pk=version_pk).pk

        Target = tdb.Target
        CartonToTarget = tdb.CartonToTarget

        select_from = (RModel.select(Target.pk, carton_pk).join(
            Target, on=(Target.catalogid == RModel.catalogid)
        ).where(RModel.selected >> True).where(~peewee.fn.EXISTS(
            CartonToTarget.select(peewee.SQL('1')).join(tdb.Carton).where(
                CartonToTarget.target_pk == Target.pk,
                CartonToTarget.carton_pk == carton_pk,
                tdb.Carton.version_pk == version_pk,
            ))))

        if self.cadence is not None:

            # Check that not both the carton cadence and the cadence column
            # are not null.
            if 'cadence' in RModel._meta.fields:
                if RModel.select().where(~(RModel.cadence >> None)).exists():
                    raise TargetSelectionError(
                        'both carton cadence and target '
                        'cadence defined. This is not '
                        'allowed.')

            cadence_pk = tdb.Cadence.get(label=self.cadence)
            select_from = select_from.select_extend(cadence_pk)

            if not self.value:
                # improve robustness of cadence name pattern matching slightly:
                try:
                    cadence_payload = [
                        s for s in self.cadence.split("_") if 'x' in s
                    ][0].split('x')
                except BaseException:
                    raise ("Uninterpretable cadence name: ", self.cadence)

                self.value = float(
                    numpy.multiply(
                        # *map(int, self.cadence.split('_')[-1].split('x'))
                        *map(int, cadence_payload)))

        else:

            # If all cadences are null we'll set that as a value and save us
            # a costly join.
            if not RModel.select().where(~(RModel.cadence >> None)).exists():
                select_from = select_from.select_extend(peewee.SQL('null'))
            else:
                select_from = (select_from.select_extend(
                    tdb.Cadence.pk).switch(RModel).join(
                        tdb.Cadence,
                        'LEFT OUTER JOIN',
                        on=(tdb.Cadence.label == RModel.cadence),
                    ))

        if self.priority is None:
            select_from = select_from.select_extend(RModel.priority)
        else:
            select_from = select_from.select_extend(self.priority)

        if self.value is not None:
            select_from = select_from.select_extend(self.value)
        else:
            # We will use the cadence to determine the value. First, if there is
            # not a user-defined value column, create it.
            if 'value' not in RModel._meta.columns:
                self.database.execute_sql(f'ALTER TABLE {self.path} '
                                          'ADD COLUMN value REAL;')

                # We need to add the field like this and not call get_model() because
                # at this point the temporary table is locked and reflection won't work.
                RModel._meta.add_field('value', peewee.FloatField())

            # Get the value as the n_epochs * n_exposures_per_epoch. Probably this can
            # be done directly in SQL but it's just easier in Python. Note that because
            # we set value above in the case when cadence is a single value, if we
            # are here that means there is a cadence column.

            data = numpy.array(
                RModel.select(RModel.catalogid, RModel.cadence).where(
                    RModel.cadence.is_null(False)).tuples())

            if data.size > 0:

                values = tuple(
                    int(
                        numpy.multiply(
                            # *map(int, cadence.split('_')[-1].split('x'))))
                            # improve robustness of cadence name pattern matching slightly:
                            *map(int,
                                 [s for s in cadence.split("_")
                                  if 'x' in s][0].split('x'))))
                    for cadence in data[:, 1])

                catalogid_values = zip(map(int, data[:, 0]), values)

                vl = peewee.ValuesList(catalogid_values,
                                       columns=('catalogid', 'value'),
                                       alias='vl')

                (RModel.update(value=vl.c.value).from_(vl).where(
                    RModel.catalogid == vl.c.catalogid).where(
                        RModel.value.is_null())).execute()

            select_from = select_from.select_extend(RModel.value)

        if 'instrument' in RModel._meta.columns:
            select_from = (select_from.select_extend(
                tdb.Instrument.pk).switch(RModel).join(
                    tdb.Instrument,
                    'LEFT OUTER JOIN',
                    on=(tdb.Instrument.label == RModel.instrument)))
        elif self.instrument is not None:
            select_from = select_from.select_extend(
                tdb.Instrument.get(label=self.instrument).pk)
        else:
            raise RuntimeError(
                f'Instrument not defined for carton {self.name}')

        for colname in ['delta_ra', 'delta_dec', 'inertial']:
            if colname in RModel._meta.columns:
                select_from = select_from.select_extend(
                    RModel._meta.columns[colname])
            else:
                if colname == 'inertial':
                    select_from = select_from.select_extend(
                        peewee.Value(False))
                else:
                    select_from = select_from.select_extend(peewee.Value(0.0))

        if 'lambda_eff' in RModel._meta.columns:
            select_from = select_from.select_extend(
                RModel._meta.columns['lambda_eff'])
        else:
            if self.instrument is not None:
                instrument = self.instrument
            else:
                instrument = RModel.instrument
            select_from = select_from.select_extend(
                tdb.Instrument.select(tdb.Instrument.default_lambda_eff).where(
                    tdb.Instrument.label == instrument))

        # Now do the insert
        n_inserted = (CartonToTarget.insert_from(
            select_from,
            [
                CartonToTarget.target_pk, CartonToTarget.carton_pk,
                CartonToTarget.cadence_pk, CartonToTarget.priority,
                CartonToTarget.value, CartonToTarget.instrument_pk,
                CartonToTarget.delta_ra, CartonToTarget.delta_dec,
                CartonToTarget.inertial, CartonToTarget.lambda_eff
            ],
        ).returning().execute())

        log.info(
            f'Inserted {n_inserted:,} rows into targetdb.carton_to_target.')
Esempio n. 13
0
    def add_optical_magnitudes(self):
        """Adds ``gri`` magnitude columns."""

        Model = self.RModel

        magnitudes = ['g', 'r', 'i', 'z']

        # Check if ALL the columns have already been created in the query.
        # If so, just return.
        if any([mag in Model._meta.columns for mag in magnitudes]):
            if not all([mag in Model._meta.columns for mag in magnitudes]):
                raise TargetSelectionError(
                    'Some optical magnitudes are defined in the query '
                    'but not all of them.')
            if 'optical_prov' not in Model._meta.columns:
                raise TargetSelectionError(
                    'optical_prov column does not exist.')
            warnings.warn(
                'All optical magnitude columns are defined in the query.',
                TargetSelectionUserWarning)
            return

        # First create the columns. Also create z to speed things up. We won't
        # use transformations for z but we can use the initial query to populate
        # it and avoid doing the same query later when loading the magnitudes.
        for mag in magnitudes:
            self.database.execute_sql(
                f'ALTER TABLE {self.path} ADD COLUMN {mag} REAL;')
            Model._meta.add_field(mag, peewee.FloatField())

        self.database.execute_sql(
            f'ALTER TABLE {self.path} ADD COLUMN optical_prov TEXT;')
        Model._meta.add_field('optical_prov', peewee.TextField())

        # Step 1: join with sdss_dr13_photoobj and use SDSS magnitudes.

        with self.database.atomic():

            self.database.execute_sql('DROP TABLE IF EXISTS ' +
                                      self.table_name + '_sdss')
            temp_table = peewee.Table(self.table_name + '_sdss')

            (Model.select(
                Model.catalogid, cdb.SDSS_DR13_PhotoObj.psfmag_g,
                cdb.SDSS_DR13_PhotoObj.psfmag_r,
                cdb.SDSS_DR13_PhotoObj.psfmag_i,
                cdb.SDSS_DR13_PhotoObj.psfmag_z).join(
                    cdb.CatalogToSDSS_DR13_PhotoObj_Primary,
                    on=(cdb.CatalogToSDSS_DR13_PhotoObj_Primary.catalogid ==
                        Model.catalogid)).join(
                            cdb.SDSS_DR13_PhotoObj,
                            on=(cdb.CatalogToSDSS_DR13_PhotoObj_Primary.
                                target_id == cdb.SDSS_DR13_PhotoObj.objid)).
             where(
                 cdb.CatalogToSDSS_DR13_PhotoObj_Primary.best >> True,
                 cdb.CatalogToSDSS_DR13_PhotoObj_Primary.version_id == self.
                 get_version_id()).where(Model.selected >> True).create_table(
                     temp_table._path[0], temporary=True))

            nrows = (Model.update({
                Model.g:
                temp_table.c.psfmag_g,
                Model.r:
                temp_table.c.psfmag_r,
                Model.i:
                temp_table.c.psfmag_i,
                Model.optical_prov:
                peewee.Value('sdss_psfmag')
            }).from_(temp_table).where(
                Model.catalogid == temp_table.c.catalogid).where(
                    temp_table.c.psfmag_g.is_null(False)
                    & temp_table.c.psfmag_r.is_null(False)
                    & temp_table.c.psfmag_i.is_null(False))).execute()

        self.log.debug(f'{nrows:,} associated with SDSS magnitudes.')

        # Step 2: localise entries with empty magnitudes and use PanSTARRS1
        # transformations.

        # PS1 fluxes are in Janskys. We use stacked fluxes instead of mean
        # magnitudes since they are more complete on the faint end.
        ps1_g = 8.9 - 2.5 * peewee.fn.log(cdb.Panstarrs1.g_stk_psf_flux)
        ps1_r = 8.9 - 2.5 * peewee.fn.log(cdb.Panstarrs1.r_stk_psf_flux)
        ps1_i = 8.9 - 2.5 * peewee.fn.log(cdb.Panstarrs1.i_stk_psf_flux)

        # Use transformations to SDSS from Tonry et al. 2012 (section 3.2, table 6).
        x = ps1_g - ps1_r
        ps1_sdss_g = 0.013 + 0.145 * x + 0.019 * x * x + ps1_g
        ps1_sdss_r = -0.001 + 0.004 * x + 0.007 * x * x + ps1_r
        ps1_sdss_i = -0.005 + 0.011 * x + 0.010 * x * x + ps1_i

        with self.database.atomic():

            self.database.execute_sql('DROP TABLE IF EXISTS ' +
                                      self.table_name + '_ps1')
            temp_table = peewee.Table(self.table_name + '_ps1')

            (Model.select(
                Model.catalogid, ps1_sdss_g.alias('ps1_sdss_g'),
                ps1_sdss_r.alias('ps1_sdss_r'),
                ps1_sdss_i.alias('ps1_sdss_i')).join(
                    cdb.CatalogToPanstarrs1,
                    on=(cdb.CatalogToPanstarrs1.catalogid == Model.catalogid)).
             join(cdb.Panstarrs1,
                  on=(cdb.CatalogToPanstarrs1.target_id ==
                      cdb.Panstarrs1.catid_objid)).where(Model.g.is_null()
                                                         | Model.r.is_null()
                                                         | Model.i.is_null()).
             where(Model.selected >> True).where(
                 cdb.CatalogToPanstarrs1.best >> True,
                 cdb.CatalogToPanstarrs1.version_id == self.get_version_id()
             ).where(
                 cdb.Panstarrs1.g_stk_psf_flux.is_null(False)
                 & (cdb.Panstarrs1.g_stk_psf_flux > 0)).where(
                     cdb.Panstarrs1.r_stk_psf_flux.is_null(False)
                     & (cdb.Panstarrs1.r_stk_psf_flux > 0)).where(
                         cdb.Panstarrs1.i_stk_psf_flux.is_null(False)
                         & (cdb.Panstarrs1.i_stk_psf_flux > 0)).create_table(
                             temp_table._path[0], temporary=True))

            nrows = (Model.update({
                Model.g:
                temp_table.c.ps1_sdss_g,
                Model.r:
                temp_table.c.ps1_sdss_r,
                Model.i:
                temp_table.c.ps1_sdss_i,
                Model.optical_prov:
                peewee.Value('sdss_psfmag_ps1')
            }).from_(temp_table).where(
                Model.catalogid == temp_table.c.catalogid).where(
                    temp_table.c.ps1_sdss_g.is_null(False)
                    & temp_table.c.ps1_sdss_r.is_null(False)
                    & temp_table.c.ps1_sdss_i.is_null(False))).execute()

        self.log.debug(f'{nrows:,} associated with PS1 magnitudes.')

        # Step 3: localise entries with empty magnitudes and use Gaia transformations
        # from Evans et al (2018).

        gaia_G = cdb.Gaia_DR2.phot_g_mean_mag
        gaia_BP = cdb.Gaia_DR2.phot_bp_mean_mag
        gaia_RP = cdb.Gaia_DR2.phot_rp_mean_mag

        x = gaia_BP - gaia_RP
        x2 = x * x
        x3 = x * x * x
        gaia_sdss_g = -1 * (0.13518 - 0.46245 * x - 0.25171 * x2 +
                            0.021349 * x3) + gaia_G
        gaia_sdss_r = -1 * (-0.12879 + 0.24662 * x - 0.027464 * x2 -
                            0.049465 * x3) + gaia_G
        gaia_sdss_i = -1 * (-0.29676 + 0.64728 * x - 0.10141 * x2) + gaia_G

        with self.database.atomic():

            self.database.execute_sql('DROP TABLE IF EXISTS ' +
                                      self.table_name + '_gaia')
            temp_table = peewee.Table(self.table_name + '_gaia')

            (Model.select(
                Model.catalogid, gaia_sdss_g.alias('gaia_sdss_g'),
                gaia_sdss_r.alias('gaia_sdss_r'),
                gaia_sdss_i.alias('gaia_sdss_i')).join(
                    cdb.CatalogToTIC_v8,
                    on=(cdb.CatalogToTIC_v8.catalogid == Model.catalogid
                        )).join(cdb.TIC_v8).join(cdb.Gaia_DR2).
             where(Model.g.is_null() | Model.r.is_null()
                   | Model.i.is_null()).where(Model.selected >> True).where(
                       cdb.CatalogToTIC_v8.best >> True,
                       cdb.CatalogToTIC_v8.version_id == self.get_version_id()
                   ).where(
                       cdb.Gaia_DR2.phot_g_mean_mag.is_null(False)).where(
                           cdb.Gaia_DR2.phot_bp_mean_mag.is_null(False)).where(
                               cdb.Gaia_DR2.phot_rp_mean_mag.is_null(
                                   False)).create_table(temp_table._path[0],
                                                        temporary=True))

            nrows = (Model.update({
                Model.g:
                temp_table.c.gaia_sdss_g,
                Model.r:
                temp_table.c.gaia_sdss_r,
                Model.i:
                temp_table.c.gaia_sdss_i,
                Model.optical_prov:
                peewee.Value('sdss_psfmag_gaia')
            }).from_(temp_table).where(
                Model.catalogid == temp_table.c.catalogid).where(
                    temp_table.c.gaia_sdss_g.is_null(False)
                    & temp_table.c.gaia_sdss_r.is_null(False)
                    & temp_table.c.gaia_sdss_i.is_null(False))).execute()

        self.log.debug(f'{nrows:,} associated with Gaia magnitudes.')

        # Finally, check if there are any rows in which at least some of the
        # magnitudes are null.

        n_empty = (Model.select().where(Model.g.is_null() | Model.r.is_null()
                                        | Model.i.is_null()).where(
                                            Model.selected >> True).count())

        if n_empty > 0:
            warnings.warn(f'Found {n_empty} entries with empty magnitudes.',
                          TargetSelectionUserWarning)
Esempio n. 14
0
    def build_query(self, version_id, query_region=None):
        c = Catalog.alias()
        # ## c2t = CatalogToGaia_unWISE_AGN.alias() - deprecated - but leave this as a reminder
        c2tic = CatalogToTIC_v8.alias()
        tic = TIC_v8.alias()
        # s2020 = BHM_eFEDS_Veto.alias()
        # sV = SDSSV_BOSS_SPALL.alias()
        # ph = SDSSV_Plateholes.alias()
        # phm = SDSSV_Plateholes_Meta.alias()

        # g2 = Gaia_DR2.alias()
        t = Gaia_unWISE_AGN.alias()

        match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0
        spec_sn_thresh = self.parameters['spec_sn_thresh']
        spec_z_err_thresh = self.parameters['spec_z_err_thresh']

        # #########################################################################
        # prepare the spectroscopy catalogues

        # SDSS DR16
        c2s16 = CatalogToSDSS_DR16_SpecObj.alias()
        ss16 = SDSS_DR16_SpecObj.alias()
        s16 = (ss16.select(ss16.specobjid.alias('specobjid'), ).where(
            ss16.snmedian >= spec_sn_thresh,
            ss16.zwarning == 0,
            ss16.zerr <= spec_z_err_thresh,
            ss16.zerr > 0.0,
            ss16.scienceprimary > 0,
        ).alias('s16'))

        # SDSS-IV/eFEDS March2020
        c2s2020 = CatalogToBHM_eFEDS_Veto.alias()
        ss2020 = BHM_eFEDS_Veto.alias()
        s2020 = (ss2020.select(ss2020.pk.alias('pk'), ).where(
            ss2020.sn_median_all >= spec_sn_thresh,
            ss2020.zwarning == 0,
            ss2020.z_err <= spec_z_err_thresh,
            ss2020.z_err > 0.0,
        ).alias('s2020'))

        # SDSS-V spAll
        ssV = SDSSV_BOSS_SPALL.alias()
        sV = (ssV.select(
            ssV.specobjid.alias('specobjid'),
            ssV.plug_ra.alias('plug_ra'),
            ssV.plug_dec.alias('plug_dec'),
        ).where(ssV.sn_median_all >= spec_sn_thresh, ssV.zwarning == 0,
                ssV.z_err <= spec_z_err_thresh, ssV.z_err > 0.0,
                ssV.specprimary > 0, ssV.specobjid.is_null()))

        # SDSS-V plateholes - only consider plateholes that
        # were drilled+shipped but that were not yet observed
        ssph = SDSSV_Plateholes.alias()
        ssphm = SDSSV_Plateholes_Meta.alias()
        ssconf = SDSSV_BOSS_Conflist.alias()
        sph = (ssph.select(
            ssph.pkey.alias('pkey'),
            ssph.target_ra.alias('target_ra'),
            ssph.target_dec.alias('target_dec'),
        ).join(ssphm,
               on=(ssph.yanny_uid == ssphm.yanny_uid)).join(
                   ssconf, JOIN.LEFT_OUTER,
                   on=(ssphm.plateid == ssconf.plate)).where(
                       (ssph.holetype == 'BOSS_SHARED'),
                       (ssph.sourcetype == 'SCI') | (ssph.sourcetype == 'STA'),
                       ssphm.isvalid > 0, ssconf.plate.is_null(),
                       ssph.pkey.is_null()))

        # set the Carton priority+values here - read from yaml
        priority = peewee.Value(int(self.parameters.get('priority', 10000)))
        value = peewee.Value(self.parameters.get('value', 1.0)).cast('float')
        inertial = peewee.Value(True)
        cadence = peewee.Value(self.parameters['cadence'])
        instrument = peewee.Value(self.instrument)

        match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0
        spec_sn_thresh = self.parameters['spec_sn_thresh']
        spec_z_err_thresh = self.parameters['spec_z_err_thresh']

        # compute transformed SDSS mags for pointlike and extended sources separately
        # transform the Gaia dr2 G,BP,RP into sdss psfmag griz

        # extract coeffs from fit logs via:
        # awk 'BEGIN {print("coeffs = {")} /POLYFIT/{ if($3~/sdss_psfmag/){pe="p"} else if ($3~/sdss_fiber2mag/){pe="e"} else{pe="error"}; printf("\"%s%d_%s\": %s,\n", substr($3,length($3)), $8, pe, $10)} END {print("}")}'  bhm_gua/gdr2_mag_to_sdss_psfmag_?_results.log  # noqa
        coeffs = {
            "g3_p": 0.184158,
            "g2_p": -0.457316,
            "g1_p": 0.553505,
            "g0_p": -0.029152,
            "i3_p": 0.709818,
            "i2_p": -2.207549,
            "i1_p": 1.520957,
            "i0_p": -0.417666,
            "r3_p": 0.241611,
            "r2_p": -0.803702,
            "r1_p": 0.599944,
            "r0_p": -0.119959,
            "z3_p": 0.893988,
            "z2_p": -2.759177,
            "z1_p": 1.651668,
            "z0_p": -0.440676,
        }

        bp_rp = t.bp - t.rp
        g = (t.g + coeffs['g0_p'] + coeffs['g1_p'] * bp_rp +
             coeffs['g2_p'] * bp_rp * bp_rp +
             coeffs['g3_p'] * bp_rp * bp_rp * bp_rp)
        r = (t.g + coeffs['r0_p'] + coeffs['r1_p'] * bp_rp +
             coeffs['r2_p'] * bp_rp * bp_rp +
             coeffs['r3_p'] * bp_rp * bp_rp * bp_rp)
        i = (t.g + coeffs['i0_p'] + coeffs['i1_p'] * bp_rp +
             coeffs['i2_p'] * bp_rp * bp_rp +
             coeffs['i3_p'] * bp_rp * bp_rp * bp_rp)
        z = (t.g + coeffs['z0_p'] + coeffs['z1_p'] * bp_rp +
             coeffs['z2_p'] * bp_rp * bp_rp +
             coeffs['z3_p'] * bp_rp * bp_rp * bp_rp)

        # validity checks - set limits semi-manually
        bp_rp_min = 0.0
        bp_rp_max = 1.8
        valid = (t.g.between(0.1, 29.9) & t.bp.between(0.1, 29.9)
                 & t.rp.between(0.1, 29.9)
                 & bp_rp.between(bp_rp_min, bp_rp_max))

        opt_prov = peewee.Case(None, ((valid, 'sdss_psfmag_from_gaiadr2'), ),
                               'undefined')
        magnitude_g = peewee.Case(None, ((valid, g), ), 'NaN')
        magnitude_r = peewee.Case(None, ((valid, r), ), 'NaN')
        magnitude_i = peewee.Case(None, ((valid, i), ), 'NaN')
        magnitude_z = peewee.Case(None, ((valid, z), ), 'NaN')

        # Create temporary tables for the base query and the Q3C cross-match
        # tables.

        bquery = (
            c.select(
                c.catalogid,
                c.ra,  # extra
                c.dec,  # extra
                t.gaia_sourceid,  # extra
                t.unwise_objid,  # extra
                priority.alias('priority'),
                value.alias('value'),
                inertial.alias('inertial'),
                cadence.alias('cadence'),
                instrument.alias('instrument'),
                opt_prov.alias('optical_prov'),
                magnitude_g.alias('g'),
                magnitude_r.alias('r'),
                magnitude_i.alias('i'),
                magnitude_z.alias('z'),
                t.g.alias('gaia_g'),
                t.bp.alias('bp'),
                t.rp.alias('rp'),
                t.w1.alias('gua_w1'),  # extra
                t.w2.alias('gua_w2'),  # extra
                t.prob_rf.alias('gua_prob_rf'),  # extra
                t.phot_z.alias('gua_phot_z'),  # extra
                # rely on the centralised magnitude routines for 'real' griz, bp,rp,gaia_g
            ).join(c2tic).join(tic)
            # .join(g2)    # can skip this join using the gaia_int from the TIC
            # .join(t, on=(g2.source_id == t.gaia_sourceid))
            .join(t, on=(tic.gaia_int == t.gaia_sourceid))
            # start joining the spectroscopy
            .switch(c).join(c2s16, JOIN.LEFT_OUTER).join(
                s16,
                JOIN.LEFT_OUTER,
                on=((c2s16.target_id == s16.c.specobjid)
                    # (c2s16.version_id == version_id)
                    )).switch(c).join(c2s2020, JOIN.LEFT_OUTER).join(
                        s2020,
                        JOIN.LEFT_OUTER,
                        on=((c2s2020.target_id == s2020.c.pk)
                            # (c2s2020.version_id == version_id)
                            ))
            # finished joining the spectroscopy
            .where(
                c.version_id == version_id,
                # c2tic.version_id == version_id,
                c2tic.best >> True,
            ).where(
                (t.prob_rf >= self.parameters['prob_rf_min']),
                (t.g >= self.parameters['mag_g_min']),
                (t.rp >= self.parameters['mag_rp_min']),
                ((t.g < self.parameters['mag_g_max']) |
                 (t.rp < self.parameters['mag_rp_max'])),
            )
            # then reject any GUA targets with existing good DR16+SDSS-V spectroscopy
            .where(s16.c.specobjid.is_null(True), s2020.c.pk.is_null(True))
            # avoid duplicates - trust the gaia ids in the GUA parent sample
            .distinct([t.gaia_sourceid]))

        # Below ra, dec and radius are in degrees
        # query_region[0] is ra of center of the region
        # query_region[1] is dec of center of the region
        # query_region[2] is radius of the region
        if query_region:
            bquery = (bquery.where(
                peewee.fn.q3c_radial_query(c.ra, c.dec, query_region[0],
                                           query_region[1], query_region[2])))

        self.log.debug('Creating temporary table for base query ...')
        bquery.create_table(self.name + '_bquery', temporary=True)
        self.database.execute_sql(
            f'CREATE INDEX ON {self.name}_bquery (ra, dec)')
        self.database.execute_sql(f'ANALYZE {self.name}_bquery')

        sph.create_table(self.name + '_sph', temporary=True)
        self.database.execute_sql(
            f'CREATE INDEX ON {self.name}_sph (target_ra, target_dec)')
        self.database.execute_sql(f'ANALYZE {self.name}_sph')

        sV.create_table(self.name + '_sv', temporary=True)
        self.database.execute_sql(
            f'CREATE INDEX ON {self.name}_sv (plug_ra, plug_dec)')
        self.database.execute_sql(f'ANALYZE {self.name}_sv')

        bquery_table = peewee.Table(f'{self.name}_bquery', alias='bquery')
        sph_table = peewee.Table(f'{self.name}_sph')
        sV_table = peewee.Table(f'{self.name}_sv')

        query = (
            bquery_table.select(peewee.SQL('bquery.*')).join(
                sV_table,
                JOIN.LEFT_OUTER,
                on=(fn.q3c_join(bquery_table.c.ra, bquery_table.c.dec,
                                sV_table.c.plug_ra, sV_table.c.plug_dec,
                                match_radius_spectro))).join(
                                    sph_table,
                                    JOIN.LEFT_OUTER,
                                    on=(fn.q3c_join(bquery_table.c.ra,
                                                    bquery_table.c.dec,
                                                    sph_table.c.target_ra,
                                                    sph_table.c.target_dec,
                                                    match_radius_spectro)))
            # then reject any GUA targets with existing good SDSS-V spectroscopy or a platehole
            .where(
                sV_table.c.specobjid.is_null(True),
                sph_table.c.pkey.is_null(True),
            ))

        return query
Esempio n. 15
0
    def build_query(self, version_id, query_region=None):
        c = Catalog.alias()
        c2t = CatalogToBHM_CSC.alias()
        t = BHM_CSC.alias()
        self.alias_t = t
        # c2s16 = CatalogToSDSS_DR16_SpecObj.alias()
        # s16 = SDSS_DR16_SpecObj.alias()
        # s2020 = BHM_eFEDS_Veto.alias()
        # sV = SDSSV_BOSS_SPALL.alias()
        # ph = SDSSV_Plateholes.alias()
        # phm = SDSSV_Plateholes_Meta.alias()

        # set the Carton priority+values here - read from yaml
        value = peewee.Value(self.parameters.get('value', 1.0)).cast('float')
        instrument = peewee.Value(self.instrument)
        cadence = peewee.Value(self.this_cadence)
        # opt_prov = peewee.Value('ps1_psfmag')

        if (self.instrument == 'BOSS'):

            # #########################################################################
            # prepare the spectroscopy catalogues
            match_radius_spectro = self.parameters['spec_join_radius'] / 3600.0
            spec_sn_thresh = self.parameters['spec_sn_thresh']
            spec_z_err_thresh = self.parameters['spec_z_err_thresh']
            dpriority_has_spec = self.parameters['dpriority_has_spec']

            # SDSS DR16
            c2s16 = CatalogToSDSS_DR16_SpecObj.alias()
            ss16 = SDSS_DR16_SpecObj.alias()
            s16 = (
                ss16.select(
                    ss16.specobjid.alias('specobjid'),
                )
                .where(
                    ss16.snmedian >= spec_sn_thresh,
                    ss16.zwarning == 0,
                    ss16.zerr <= spec_z_err_thresh,
                    ss16.zerr > 0.0,
                    ss16.scienceprimary > 0,
                )
                .alias('s16')
            )

            # SDSS-IV/eFEDS March2020
            c2s2020 = CatalogToBHM_eFEDS_Veto.alias()
            ss2020 = BHM_eFEDS_Veto.alias()
            s2020 = (
                ss2020.select(
                    ss2020.pk.alias('pk'),
                )
                .where(
                    ss2020.sn_median_all >= spec_sn_thresh,
                    ss2020.zwarning == 0,
                    ss2020.z_err <= spec_z_err_thresh,
                    ss2020.z_err > 0.0,
                )
                .alias('s2020')
            )

            # SDSS-V spAll
            ssV = SDSSV_BOSS_SPALL.alias()
            sV = (
                ssV.select(
                    ssV.specobjid.alias('specobjid'),
                    ssV.plug_ra.alias('plug_ra'),
                    ssV.plug_dec.alias('plug_dec'),
                )
                .where(
                    ssV.sn_median_all >= spec_sn_thresh,
                    ssV.zwarning == 0,
                    ssV.z_err <= spec_z_err_thresh,
                    ssV.z_err > 0.0,
                    ssV.specprimary > 0,
                )
                .alias('sV')
            )

            # SDSS-V plateholes - only consider plateholes that
            # were drilled+shipped but that were not yet observed
            ssph = SDSSV_Plateholes.alias()
            ssphm = SDSSV_Plateholes_Meta.alias()
            ssconf = SDSSV_BOSS_Conflist.alias()
            sph = (
                ssph.select(
                    ssph.pkey.alias('pkey'),
                    ssph.target_ra.alias('target_ra'),
                    ssph.target_dec.alias('target_dec'),
                )
                .join(
                    ssphm,
                    on=(ssph.yanny_uid == ssphm.yanny_uid)
                )
                .join(
                    ssconf, JOIN.LEFT_OUTER,
                    on=(ssphm.plateid == ssconf.plate)
                )
                .where(
                    (ssph.holetype == 'BOSS_SHARED'),
                    (ssph.sourcetype == 'SCI') | (ssph.sourcetype == 'STA'),
                    ssphm.isvalid > 0,
                    ssconf.plate.is_null(),
                )
                .alias('sph')
            )

            # adjust priority if target aleady has an SDSS spectrum
            priority_1 = peewee.Case(
                None,
                (
                    (s16.c.specobjid.is_null(False), 1),  # any of these can be satisfied
                    (s2020.c.pk.is_null(False), 1),
                    (sV.c.specobjid.is_null(False), 1),
                    (sph.c.pkey.is_null(False), 1),
                ),
                0)
            #
            # Compute net priority
            priority = (
                peewee.Value(self.parameters['priority_floor']) +
                priority_1 * dpriority_has_spec
            )
        else:
            priority = peewee.Value(self.parameters['priority_floor'])

        # compute transformed SDSS mags for pointlike and extended sources separately
        # transform the csc (panstarrs1-dr1) griz into sdss psfmag griz

        # extract coeffs from fit logs via:
        # awk 'BEGIN {print("coeffs = {")} /POLYFIT/{ if($3~/sdss_psfmag/){pe="p"} else if ($3~/sdss_fiber2mag/){pe="e"} else{pe="error"}; printf("\"%s%d_%s\": %s,\n", substr($3,length($3)), $8, pe, $10)} END {print("}")}'  bhm_csc_boss/ts_mag_to_sdss_psfmag_?_results.log  # noqa

        coeffs = {
            "g2_p": 0.087878,
            "g1_p": 0.063329,
            "g0_p": 0.021488,
            "i2_p": -0.011220,
            "i1_p": 0.020782,
            "i0_p": 0.000154,
            "r2_p": -0.093371,
            "r1_p": 0.136032,
            "r0_p": -0.011477,
            "z2_p": -0.180526,
            "z1_p": 0.007284,
            "z0_p": -0.037933,
        }
        # Note that the corrections for r and i are very small,
        # however g+z both have non-negligible colour terms

        g0 = peewee.Case(None, ((t.mag_g <= 0.0, None),), t.mag_g)
        r0 = peewee.Case(None, ((t.mag_r <= 0.0, None),), t.mag_r)
        i0 = peewee.Case(None, ((t.mag_i <= 0.0, None),), t.mag_i)
        z0 = peewee.Case(None, ((t.mag_z <= 0.0, None),), t.mag_z)
        g_r = g0 - r0
        r_i = r0 - i0
        i_z = i0 - z0

        # use single set of transforms because we do not have any info in csc parent table to
        # differentiate between pointlike and extended sources)
        g = (g0 + coeffs['g0_p'] + coeffs['g1_p'] * g_r + coeffs['g2_p'] * g_r * g_r)
        r = (r0 + coeffs['r0_p'] + coeffs['r1_p'] * g_r + coeffs['r2_p'] * g_r * g_r)
        i = (i0 + coeffs['i0_p'] + coeffs['i1_p'] * r_i + coeffs['i2_p'] * r_i * r_i)
        z = (z0 + coeffs['z0_p'] + coeffs['z1_p'] * i_z + coeffs['z2_p'] * i_z * i_z)

        # validity checks (only griz) - set limits semi-manually
        g_r_min = -0.3
        g_r_max = 1.7
        r_i_min = -0.5
        r_i_max = 2.5
        i_z_min = -0.3
        i_z_max = 1.25
        valid = (g0.between(0.1, 29.9) &
                 r0.between(0.1, 29.9) &
                 i0.between(0.1, 29.9) &
                 z0.between(0.1, 29.9) &
                 g_r.between(g_r_min, g_r_max) &
                 r_i.between(r_i_min, r_i_max) &
                 i_z.between(i_z_min, i_z_max))

        opt_prov = peewee.Case(None, ((valid, 'sdss_psfmag_from_csc'),), 'undefined')
        magnitude_g = peewee.Case(None, ((valid, g),), 'NaN')
        magnitude_r = peewee.Case(None, ((valid, r),), 'NaN')
        magnitude_i = peewee.Case(None, ((valid, i),), 'NaN')
        magnitude_z = peewee.Case(None, ((valid, z),), 'NaN')
        magnitude_h = peewee.Case(None, ((t.mag_h <= 0.0, None),), t.mag_h).cast('float')

        # # Process the bhm_csc.[g,r,i,z,h] magnitudes to deal with zeros
        # magnitude_g = peewee.Case(None, ((t.mag_g <= 0.0, None),), t.mag_g).cast('float')
        # magnitude_r = peewee.Case(None, ((t.mag_r <= 0.0, None),), t.mag_r).cast('float')
        # magnitude_i = peewee.Case(None, ((t.mag_i <= 0.0, None),), t.mag_i).cast('float')
        # magnitude_z = peewee.Case(None, ((t.mag_z <= 0.0, None),), t.mag_z).cast('float')
        # magnitude_h = peewee.Case(None, ((t.mag_h <= 0.0, None),), t.mag_h).cast('float')

        # Create a subquery that will calculate the minimum catalog_to_bhm_csc.distance for each
        # csc candidate target
        subq = (
            c2t
            .select(
                c2t.target_id,
                fn.MIN(c2t.distance).alias('min_distance'))
            .where(
                c2t.version_id == version_id,
                c2t.best >> True
            )
            .group_by(c2t.target_id)
            .alias('min_dist_subq')
        )

        query = (
            c.select(
                c.catalogid,
                t.cxo_name,   # extra
                t.pk.alias('csc_pk'),   # extra
                c.ra,  # extra
                c.dec,  # extra
                priority.alias('priority'),
                value.alias('value'),
                cadence.alias('cadence'),
                instrument.alias('instrument'),
                opt_prov.alias('optical_prov'),
                magnitude_g.alias('g'),
                magnitude_r.alias('r'),
                magnitude_i.alias('i'),
                magnitude_z.alias('z'),
                magnitude_h.alias('h'),
                t.mag_g.alias('csc_mag_g'),   # extra
                t.mag_r.alias('csc_mag_r'),   # extra
                t.mag_i.alias('csc_mag_i'),   # extra
                t.mag_z.alias('csc_mag_z'),   # extra
                t.oir_ra.alias('csc_ra'),   # extra
                t.oir_dec.alias('csc_dec'),   # extra
            )
            .join(c2t)
            .join(t)
            .join(
                subq,
                on=(
                    (c2t.target_id == subq.c.target_id) &
                    (
                        (c2t.distance == subq.c.min_distance) |
                        (c2t.distance.is_null() & subq.c.min_distance.is_null())
                    )
                ),
            )
            .where(
                c.version_id == version_id,
                c2t.version_id == version_id,
                c2t.best >> True
            )
            # .distinct([c2t.target_id])  # avoid duplicates - trust the CSC parent sample,
            # .distinct([c.catalogid])  # avoid duplicates - trust the catalogid,
            # avoid duplicates - trust uniquness in both CSC name and catalogid
            .distinct([c.catalogid])
            # .distinct([t.cxo_name])
            .where
            (
                t.spectrograph == self.instrument
            )
        )

        if (self.instrument == 'BOSS'):
            # Append the spectro query
            query = (
                query
                .switch(c)
                .join(c2s16, JOIN.LEFT_OUTER)
                .join(
                    s16, JOIN.LEFT_OUTER,
                    on=(
                        (c2s16.target_id == s16.c.specobjid) &
                        (c2s16.version_id == version_id)
                    )
                )
                .switch(c)
                .join(c2s2020, JOIN.LEFT_OUTER)
                .join(
                    s2020, JOIN.LEFT_OUTER,
                    on=(
                        (c2s2020.target_id == s2020.c.pk) &
                        (c2s2020.version_id == version_id)
                    )
                )
                .join(
                    sV, JOIN.LEFT_OUTER,
                    on=(
                        fn.q3c_join(sV.c.plug_ra, sV.c.plug_dec,
                                    c.ra, c.dec,
                                    match_radius_spectro)
                    )
                )
                .join(
                    sph, JOIN.LEFT_OUTER,
                    on=(
                        fn.q3c_join(sph.c.target_ra, sph.c.target_dec,
                                    c.ra, c.dec,
                                    match_radius_spectro)
                    )
                )
            )

        if query_region:
            query = query.where(peewee.fn.q3c_radial_query(c.ra, c.dec,
                                                           query_region[0],
                                                           query_region[1],
                                                           query_region[2]))

        return query