def test_parabolic_penalty(self): """Test a multipoint optimization, with polysimplification.""" nmap = np.zeros([200, 200]) starting_point = (7, 7) intermediate = (20, int(nmap.shape[1] * 0.8)) ending_point = (nmap.shape[0] - 10, nmap.shape[1] - 10) """Optimization""" max_slope = 0.1 semi_size = 5 neighbors = a_star.precalc_neighbourhood(semi_size) max_dist_index = 100 * np.sum(np.square(nmap.shape)) penalty_factor_xy = 40 penalty_factor_z = 0 heuristic = heuristics.DistanceSlopeMetric(nmap, max_slope, max_dist_index) tentative_heuristic = heuristics.Distance(max_dist_index) penalty = penalties.ParabolicPenalty(neighbors, penalty_factor_xy, penalty_factor_z) astar = a_star.AStarOptimizer(nmap, 5, heuristic, tentative_heuristic, penalty) waypoints = astar.astar([starting_point, intermediate, ending_point]) self.assertGreater(len(waypoints), 0)
def reset_config(self, min_slope, max_slope, semi_size, penalty_factor_xy, penalty_factor_z, exclusion_array): """Create default heuristics, tentative_heuristic and penalty objects. """ max_dist_index = 100 * np.sum( np.square(np.array(self.array) * self.array_resolution_m_per_pix)) neighbors = precalc_neighbourhood(semi_size) if min_slope is None and max_slope is None: self.heuristic = heuristics.DistanceSquaredFakeSlope( max_dist_index) self.tentative_heuristic = heuristics.DistanceSquared( max_dist_index) else: if min_slope is None or min_slope <= 0: self.heuristic = heuristics.DistanceSlopeMetric( self.array, max_slope, max_dist_index) else: self.heuristic = heuristics.DistanceMinMaxSlopeMetric( self.array, max_slope, max_dist_index, min_slope) use_precalc = False if use_precalc: assert (min_slope <= 0) self.tentative_heuristic = \ heuristics.PrecalculatedOptimalDistanceSlopeConstrained( max_dist_index, self.array, max_slope * self.array_resolution_m_per_pix, 1.0, target_scale=None) else: self.tentative_heuristic = heuristics.Distance(max_dist_index) if exclusion_array is not None: """Use specialized class that supports exclusion, slower.""" self.penalty = penalties.ParabolicPenaltyStatic( exclusion_array[::-1] * (3 * max_dist_index), neighbors, penalty_factor_xy, penalty_factor_z) elif penalty_factor_xy != 0 or penalty_factor_z != 0: """Approx. 20% faster than ParabolicPenaltyStatic.""" self.penalty = penalties.ParabolicPenalty(neighbors, penalty_factor_xy, penalty_factor_z) else: self.penalty = penalties.NoPenalty(neighbors)
def _test_full_stack_distance_transform_precalc_penalty(self): """Test a multipoint optimization, with polysimplification.""" nmap = np.zeros([100, 100]) starting_point = (7, 7) intermediate = (20, int(nmap.shape[1] * 0.8)) ending_point = (nmap.shape[0] - 10, nmap.shape[1] - 10) """Optimization""" max_slope = 0.1 semi_size = 5 neighbors = a_star.precalc_neighbourhood(semi_size) max_dist_index = 100 * np.sum(np.square(nmap.shape)) penalty_factor_xy = 40 penalty_factor_z = 0 scale_m_per_pix = 5 heuristic = heuristics.DistanceSlopeMetric(nmap, max_slope, max_dist_index) tentative_heuristic = \ heuristics.PrecalculatedOptimalDistanceSlopeConstrained( max_dist_index, nmap, max_slope, scale_m_per_pix, target_scale=1) penalty = penalties.ParabolicPenalty(neighbors, penalty_factor_xy, penalty_factor_z) astar = a_star.AStarOptimizer(nmap, scale_m_per_pix, heuristic, tentative_heuristic, penalty) waypoints = astar.astar([starting_point, intermediate, ending_point]) path_simplifier = polysimplify.VWSimplifier(waypoints) path_simplified = path_simplifier.from_threshold(0.01) self.assertGreater(len(path_simplified), 0)
neighbors = precalc_neighbourhood(semi_size) max_dist_index = 100 * np.sum(np.square(nmap.shape) * scale_m_per_pix**2) if max_slope is None: heuristic = heuristics.DistanceSquaredFakeSlope(max_dist_index) tentative_heuristic = heuristics.DistanceSquared(max_dist_index) penalty = NoPenalty(neighbors) else: penalty_factor_xy = 40 penalty_factor_z = 0 heuristic = heuristics.DistanceSlopeMetric(nmap, max_slope, max_dist_index) penalty = penalties.ParabolicPenalty(neighbors, penalty_factor_xy, penalty_factor_z) use_precalc = True if use_precalc: tentative_heuristic = \ heuristics.PrecalculatedOptimalDistanceSlopeConstrained( max_dist_index, nmap, max_slope, scale_m_per_pix, target_scale=None) else: tentative_heuristic = heuristics.Distance(max_dist_index) astar = AStarOptimizer(nmap, 1, heuristic, tentative_heuristic, penalty) starting_point = (1, 0)