Esempio n. 1
0
def _decomposition_3_cnots(U, wires):
    r"""The most general form of this decomposition is U = (A \otimes B) V (C \otimes D),
    where V is as depicted in the circuit below:
     -╭U- = -C--╭X--RZ(d)--╭C---------╭X--A-
     -╰U- = -D--╰C--RY(b)--╰X--RY(a)--╰C--B-
    """

    # First we add a SWAP as per v1 of arXiv:0308033, which helps with some
    # rearranging of gates in the decomposition (it will cancel out the fact
    # that we need to add a SWAP to fix the determinant in another part later).
    swap_U = np.exp(1j * np.pi / 4) * math.dot(math.cast_like(SWAP, U), U)

    # Choose the rotation angles of RZ, RY in the two-qubit decomposition.
    # They are chosen as per Proposition V.1 in quant-ph/0308033 and are based
    # on the phases of the eigenvalues of :math:`E^\dagger \gamma(U) E`, where
    #    \gamma(U) = (E^\dag U E) (E^\dag U E)^T.
    # The rotation angles can be computed as follows (any three eigenvalues can be used)
    u = math.dot(Edag, math.dot(swap_U, E))
    gammaU = math.dot(u, math.T(u))
    evs, _ = math.linalg.eig(gammaU)

    # We will sort the angles so that results are consistent across interfaces.
    angles = math.sort([math.angle(ev) for ev in evs])

    x, y, z = angles[0], angles[1], angles[2]

    # Compute functions of the eigenvalues; there are different options in v1
    # vs. v3 of the paper, I'm not entirely sure why. This is the version from v3.
    alpha = (x + y) / 2
    beta = (x + z) / 2
    delta = (z + y) / 2

    # This is the interior portion of the decomposition circuit
    interior_decomp = [
        qml.CNOT(wires=[wires[1], wires[0]]),
        qml.RZ(delta, wires=wires[0]),
        qml.RY(beta, wires=wires[1]),
        qml.CNOT(wires=wires),
        qml.RY(alpha, wires=wires[1]),
        qml.CNOT(wires=[wires[1], wires[0]]),
    ]

    # We need the matrix representation of this interior part, V, in order to
    # decompose U = (A \otimes B) V (C \otimes D)
    #
    # Looking at the decomposition above, V has determinant -1 (because there
    # are 3 CNOTs, each with determinant -1). The relationship between U and V
    # requires that both are in SU(4), so we add a SWAP after to V. We will see
    # how this gets fixed later.
    #
    # -╭V- = -╭X--RZ(d)--╭C---------╭X--╭SWAP-
    # -╰V- = -╰C--RY(b)--╰X--RY(a)--╰C--╰SWAP-

    RZd = qml.RZ(math.cast_like(delta, 1j), wires=wires[0]).matrix
    RYb = qml.RY(beta, wires=wires[0]).matrix
    RYa = qml.RY(alpha, wires=wires[0]).matrix

    V_mats = [
        CNOT10,
        math.kron(RZd, RYb), CNOT01,
        math.kron(math.eye(2), RYa), CNOT10, SWAP
    ]

    V = math.convert_like(math.eye(4), U)

    for mat in V_mats:
        V = math.dot(math.cast_like(mat, U), V)

    # Now we need to find the four SU(2) operations A, B, C, D
    A, B, C, D = _extract_su2su2_prefactors(swap_U, V)

    # At this point, we have the following:
    # -╭U-╭SWAP- = --C--╭X-RZ(d)-╭C-------╭X-╭SWAP--A
    # -╰U-╰SWAP- = --D--╰C-RZ(b)-╰X-RY(a)-╰C-╰SWAP--B
    #
    # Using the relationship that SWAP(A \otimes B) SWAP = B \otimes A,
    # -╭U-╭SWAP- = --C--╭X-RZ(d)-╭C-------╭X--B--╭SWAP-
    # -╰U-╰SWAP- = --D--╰C-RZ(b)-╰X-RY(a)-╰C--A--╰SWAP-
    #
    # Now the SWAPs cancel, giving us the desired decomposition
    # (up to a global phase).
    # -╭U- = --C--╭X-RZ(d)-╭C-------╭X--B--
    # -╰U- = --D--╰C-RZ(b)-╰X-RY(a)-╰C--A--

    A_ops = zyz_decomposition(A, wires[1])
    B_ops = zyz_decomposition(B, wires[0])
    C_ops = zyz_decomposition(C, wires[0])
    D_ops = zyz_decomposition(D, wires[1])

    # Return the full decomposition
    return C_ops + D_ops + interior_decomp + A_ops + B_ops
Esempio n. 2
0
def merge_amplitude_embedding(tape):
    r"""Quantum function transform to combine amplitude embedding templates that act on different qubits.

    Args:
        qfunc (function): A quantum function.

    Returns:
        function: the transformed quantum function

    **Example**

    Consider the following quantum function.

    .. code-block:: python

        def qfunc():
            qml.CNOT(wires = [0,1])
            qml.AmplitudeEmbedding([0,1], wires = 2)
            qml.AmplitudeEmbedding([0,1], wires = 3)
            return qml.state()

    The circuit before compilation will not work because of using two amplitude embedding.

    Using the transformation we can join the different amplitude embedding into a single one:

    >>> dev = qml.device('default.qubit', wires=4)
    >>> optimized_qfunc = qml.transforms.merge_amplitude_embedding(qfunc)
    >>> optimized_qnode = qml.QNode(optimized_qfunc, dev)
    >>> print(qml.draw(optimized_qnode)())
      0: ──╭C───────────────────────╭┤ State
      1: ──╰X───────────────────────├┤ State
      2: ──╭AmplitudeEmbedding(M0)──├┤ State
      3: ──╰AmplitudeEmbedding(M0)──╰┤ State
      M0 = [0.+0.j 0.+0.j 0.+0.j 1.+0.j]

    """
    # Make a working copy of the list to traverse
    list_copy = tape.operations.copy()
    not_amplitude_embedding = []
    visited_wires = set()
    input_wires, input_vectors = [], []
    while len(list_copy) > 0:
        current_gate = list_copy[0]
        wires_set = set(current_gate.wires)

        # Check if the current gate is an AmplitudeEmbedding.
        if not isinstance(current_gate, AmplitudeEmbedding):
            not_amplitude_embedding.append(current_gate)
            list_copy.pop(0)
            visited_wires = visited_wires.union(wires_set)
            continue

        # Check the qubits have not been used.
        if len(visited_wires.intersection(wires_set)) > 0:
            raise DeviceError(
                f"Operation {current_gate.name} cannot be used after other Operation applied in the same qubit "
            )
        input_wires.append(current_gate.wires)
        input_vectors.append(current_gate.parameters[0])
        list_copy.pop(0)
        visited_wires = visited_wires.union(wires_set)

    if len(input_wires) > 0:
        final_wires = input_wires[0]
        final_vector = input_vectors[0]

        # Merge all parameters and qubits into a single one.
        for w, v in zip(input_wires[1:], input_vectors[1:]):
            final_vector = kron(final_vector, v)
            final_wires = final_wires + w

        AmplitudeEmbedding(final_vector, wires=final_wires)

    for gate in not_amplitude_embedding:
        apply(gate)

    # Queue the measurements normally
    for m in tape.measurements:
        apply(m)
Esempio n. 3
0
def _decomposition_2_cnots(U, wires):
    r"""If 2 CNOTs are required, we can write the circuit as
     -╭U- = -A--╭X--RZ(d)--╭X--C-
     -╰U- = -B--╰C--RX(p)--╰C--D-
    We need to find the angles for the Z and X rotations such that the inner
    part has the same spectrum as U, and then we can recover A, B, C, D.
    """
    # Compute the rotation angles
    u = math.dot(Edag, math.dot(U, E))
    gammaU = math.dot(u, math.T(u))
    evs, _ = math.linalg.eig(gammaU)

    # These choices are based on Proposition III.3 of
    # https://arxiv.org/abs/quant-ph/0308045
    # There is, however, a special case where the circuit has the form
    # -╭U- = -A--╭C--╭X--C-
    # -╰U- = -B--╰X--╰C--D-
    #
    # or some variant of this, where the two CNOTs are adjacent.
    #
    # What happens here is that the set of evs is -1, -1, 1, 1 and we can write
    # -╭U- = -A--╭X--SZ--╭X--C-
    # -╰U- = -B--╰C--SX--╰C--D-
    # where SZ and SX are square roots of Z and X respectively. (This
    # decomposition comes from using Hadamards to flip the direction of the
    # first CNOT, and then decomposing them and merging single-qubit gates.) For
    # some reason this case is not handled properly with the full algorithm, so
    # we treat it separately.

    sorted_evs = math.sort(math.real(evs))

    if math.allclose(sorted_evs, [-1, -1, 1, 1]):
        interior_decomp = [
            qml.CNOT(wires=[wires[1], wires[0]]),
            qml.S(wires=wires[0]),
            qml.SX(wires=wires[1]),
            qml.CNOT(wires=[wires[1], wires[0]]),
        ]

        # S \otimes SX
        inner_matrix = S_SX
    else:
        # For the non-special case, the eigenvalues come in conjugate pairs.
        # We need to find two non-conjugate eigenvalues to extract the angles.
        x = math.angle(evs[0])
        y = math.angle(evs[1])

        # If it was the conjugate, grab a different eigenvalue.
        if math.allclose(x, -y):
            y = math.angle(evs[2])

        delta = (x + y) / 2
        phi = (x - y) / 2

        interior_decomp = [
            qml.CNOT(wires=[wires[1], wires[0]]),
            qml.RZ(delta, wires=wires[0]),
            qml.RX(phi, wires=wires[1]),
            qml.CNOT(wires=[wires[1], wires[0]]),
        ]

        RZd = qml.RZ(math.cast_like(delta, 1j), wires=0).matrix
        RXp = qml.RX(phi, wires=0).matrix
        inner_matrix = math.kron(RZd, RXp)

    # We need the matrix representation of this interior part, V, in order to
    # decompose U = (A \otimes B) V (C \otimes D)
    V = math.dot(math.cast_like(CNOT10, U),
                 math.dot(inner_matrix, math.cast_like(CNOT10, U)))

    # Now we find the A, B, C, D in SU(2), and return the decomposition
    A, B, C, D = _extract_su2su2_prefactors(U, V)

    A_ops = zyz_decomposition(A, wires[0])
    B_ops = zyz_decomposition(B, wires[1])
    C_ops = zyz_decomposition(C, wires[0])
    D_ops = zyz_decomposition(D, wires[1])

    return C_ops + D_ops + interior_decomp + A_ops + B_ops