Esempio n. 1
0
    def test_self_loop_raises_error(self):
        """Test graphs with self loop raises ValueError"""
        g = nx.complete_graph(3).to_directed()
        edge_weight_data = {edge: (i + 1) * 0.5 for i, edge in enumerate(g.edges)}
        for k, v in edge_weight_data.items():
            g[k[0]][k[1]]["weight"] = v

        g.add_edge(1, 1)  # add self loop

        with pytest.raises(ValueError, match="Graph contains self-loops"):
            loss_hamiltonian(g)
Esempio n. 2
0
    def test_loss_hamiltonian_complete(self):
        """Test if the loss_hamiltonian function returns the expected result on a
        manually-calculated example of a 3-node complete digraph"""
        g = nx.complete_graph(3).to_directed()
        edge_weight_data = {
            edge: (i + 1) * 0.5
            for i, edge in enumerate(g.edges)
        }
        for k, v in edge_weight_data.items():
            g[k[0]][k[1]]["weight"] = v
        h = loss_hamiltonian(g)

        expected_ops = [
            qml.PauliZ(0),
            qml.PauliZ(1),
            qml.PauliZ(2),
            qml.PauliZ(3),
            qml.PauliZ(4),
            qml.PauliZ(5),
        ]
        expected_coeffs = [
            np.log(0.5),
            np.log(1),
            np.log(1.5),
            np.log(2),
            np.log(2.5),
            np.log(3)
        ]

        assert expected_coeffs == h.coeffs
        assert all(
            [op.wires == exp.wires for op, exp in zip(h.ops, expected_ops)])
        assert all(
            [type(op) is type(exp) for op, exp in zip(h.ops, expected_ops)])
Esempio n. 3
0
    def test_missing_edge_weight_data_raises_error(self):
        """Test graphs with no edge weight data raises `KeyError`"""
        g = nx.complete_graph(3).to_directed()

        with pytest.raises(KeyError, match="does not contain weight data"):
            loss_hamiltonian(g)