def __init__(
        self, attack_alias, attack_pars, data, labels, data_conf, target_models
    ):
        pars_descriptors = {}  # No additional parameters

        inference_attacks = []
        for target_model in target_models:
            target_classifier = KerasClassifier(target_model, clip_values=(0, 1))
            inference_attacks.append(
                membership_inference.MembershipInferenceBlackBoxRuleBased(
                    classifier=target_classifier
                )
            )

        super().__init__(
            attack_alias,
            data,
            labels,
            data_conf,
            target_models,
            inference_attacks,
            pars_descriptors,
        )

        self.report_section = report.ReportSection(
            "Membership Inference Black-Box Rule-Based",
            self.attack_alias,
            "ART_MembershipInferenceBlackBoxRuleBased",
        )
Esempio n. 2
0
 def __init__(self, attack_alias, attack_pars, data, labels, data_conf,
              target_models):
     super().__init__(attack_alias, attack_pars, data, labels, data_conf,
                      target_models)
     self.report_section = report.ReportSection(
         "Membership Inference Attack",
         self.attack_alias,
         "mia",
     )
    def __init__(
        self, attack_alias, attack_pars, data, labels, data_conf, target_models
    ):
        pars_descriptors = {
            "attack_model_type": "Attack model type",
            "input_type": "Input type",
            "attack_model": "Attack model",
        }

        # Display warning if no Keras model is provided
        if (
            "attack_model" in attack_pars
            and not isinstance(attack_pars["attack_model"], KerasClassifier)
        ) or "attack_model" not in attack_pars:
            logger.warning(
                "The provided Attack Model (attack_model) seems not to be a Keras "
                "classifier. This may result in stability issues and your runtime may "
                "crash! It is recommended to use a Keras model for this attack."
            )

        # Handle specific attack class parameters
        params = {}
        for k in pars_descriptors:
            if k in attack_pars:
                params[k] = attack_pars[k]

        inference_attacks = []
        for target_model in target_models:
            target_classifier = KerasClassifier(target_model, clip_values=(0, 1))
            inference_attacks.append(
                membership_inference.MembershipInferenceBlackBox(
                    classifier=target_classifier, **params
                )
            )
            if inference_attacks[-1].attack_model_type is "None":
                inference_attacks[-1].attack_model_type = "Custom"

        super().__init__(
            attack_alias,
            data,
            labels,
            data_conf,
            target_models,
            inference_attacks,
            pars_descriptors,
        )

        self.report_section = report.ReportSection(
            "Membership Inference Black-Box",
            self.attack_alias,
            "ART_MembershipInferenceBlackBox",
        )
    def __init__(
        self, attack_alias, attack_pars, data, labels, data_conf, target_models
    ):
        pars_descriptors = {
            "distance_threshold_tau": "Threshold distance",
            # HopSkipJump parameters
            "norm": "Adversarial perturbation norm",
            "max_iter": "Max. iterations",
            "max_eval": "Max. evaluations",
            "init_eval": "Initial evaluations",
            "init_size": "Max. trials",
            "verbose": "Verbose output",
        }

        # Save HopSkipJump parameters
        self.hopskipjump_args = attack_pars.copy()
        del self.hopskipjump_args["distance_threshold_tau"]
        # Hide verbose parameter from report
        if "verbose" in self.hopskipjump_args:
            del self.hopskipjump_args["verbose"]

        inference_attacks = []
        for target_model in target_models:
            target_classifier = KerasClassifier(target_model, clip_values=(0, 1))
            inference_attacks.append(
                membership_inference.LabelOnlyDecisionBoundary(
                    target_classifier,
                    distance_threshold_tau=attack_pars["distance_threshold_tau"],
                )
            )

        super().__init__(
            attack_alias,
            data,
            labels,
            data_conf,
            target_models,
            inference_attacks,
            pars_descriptors,
        )

        self.report_section = report.ReportSection(
            "Label Only Decision Boundary",
            self.attack_alias,
            "ART_LabelOnlyDecisionBoundary",
        )
    def __init__(
        self, attack_alias, attack_pars, data, labels, data_conf, target_models
    ):
        pars_descriptors = {
            "batch_size_fit": "Batch size (thieved classifier)",
            "batch_size_query": "Batch size (victim classifier)",
            "nb_epochs": "Number of epochs for training",
            "nb_stolen": "Number of victim queries",
            "use_probability": "Use probability",
            "sampling_strategy": "Sampling strategy",
            "reward": "Reward type",
            "verbose": "Show progress bars",
        }

        # Handle specific attack class parameters
        params = {}
        for k in pars_descriptors:
            if k in attack_pars:
                params[k] = attack_pars[k]

        extraction_attacks = []
        for target_model in target_models:
            target_classifier = KerasClassifier(target_model, clip_values=(0, 1))
            extraction_attacks.append(
                art.attacks.extraction.KnockoffNets(
                    classifier=target_classifier, **params
                )
            )

        super().__init__(
            attack_alias,
            {"stolen_models": attack_pars["stolen_models"]},
            data,
            labels,
            data_conf,
            target_models,
            extraction_attacks,
            pars_descriptors,
        )

        self.report_section = report.ReportSection(
            "Knockoff Nets",
            self.attack_alias,
            "ART_KnockoffNets",
        )
    def __init__(
        self, attack_alias, attack_pars, data, labels, data_conf, target_models
    ):
        super().__init__(
            attack_alias,
            {},
            data,
            labels,
            data_conf,
            target_models,
        )

        self.pars_descriptors = {
            "max_iter": "Max. iterations",
            "window_length": "Window length",
            "threshold": "Stopping threshold",
            "batch_size": "Batch size",
            "verbose": "Verbose output",
        }

        # Handle specific attack class parameters
        params = {}
        for k in self.pars_descriptors:
            if k in attack_pars:
                params[k] = attack_pars[k]

        self.inference_attacks = []
        for target_model in target_models:
            target_classifier = KerasClassifier(target_model, clip_values=(0, 1))
            self.inference_attacks.append(
                model_inversion.MIFace(target_classifier, **params)
            )

        self.report_section = report.ReportSection(
            "Model Inversion MIFace",
            self.attack_alias,
            "ART_MIFace",
        )