Esempio n. 1
0
    def calculate_roi_perf(self, roi_name):
        input_tac = np.array(self.rois.get_concentrations('aorta'))
        input_tac -= input_tac[0]
        real_tac = np.array(self.rois.get_concentrations(roi_name))
        real_tac -= real_tac[0]
        times = self.rois.get_time_list()
        print 'times', times
        new_times = np.arange(times[0], times[-1] + 1, 1)

        print map(int, times)
        smoothed_tac, in_tac = express.spline_interpolation(
            input_tac, times, new_times)
        s_tissue_tac, s_tissue_tac_pars = express.spline_interpolation(
            real_tac, times, new_times, ss=0.1)

        modeled_tac, modeled_pars = express.calc_tissue_tac_mrx_conv(
            smoothed_tac,
            time_steps=new_times,
            time_subset=times,
            rc_type='lognorm',
            mtts=np.arange(1, 70, 4),
            bvs=np.arange(0, 1, 0.2),
            rc_sigma=np.arange(0.01, 1, 0.2))

        # modeled_tac, modeled_pars = express.calc_tissue_tac_mrx(in_tac, times=times, mtts=np.arange(5,80,1), bvs=np.arange(0.1,0.9,0.1))

        modeled_pars = np.array(modeled_pars)
        print modeled_pars.shape
        ssd = np.sum((modeled_tac - real_tac)**2, axis=-1)
        best_choice = modeled_tac[ssd.argmin()]
        subset_array = ssd.argsort()[:10]
        print modeled_pars[ssd.argmin()]
        plt.subplot(3, 1, 1)
        plt.plot(times, real_tac, 'o-')
        plt.plot(times, best_choice, '--')
        gr = np.array([modeled_tac[i] for i in subset_array])
        # print gr.shape
        plt.plot(times, gr.T, '-', alpha=0.3)

        plt.subplot(3, 1, 2)
        bv_subset = modeled_pars[:, 1][subset_array]
        cmap = plt.cm.coolwarm(bv_subset / np.max(bv_subset))
        print modeled_pars[subset_array]
        plt.scatter(modeled_pars[:, 0][subset_array],
                    modeled_pars[:, 1][subset_array],
                    marker='o',
                    edgecolors=cmap)
        plt.subplot(3, 1, 3)
        plt.plot(modeled_pars[:, 0][subset_array], ssd[subset_array], 'o')
        plt.show()
Esempio n. 2
0
    def make_4dvol_frommaps(self):
        #load maps bv,mtt,bf,sigma
        perfmap_art = nib.load(
            self.dir_manager.get_path('perf_map')).get_data()
        perfmap_port = nib.load(
            os.path.join(
                self.dir_manager.get_path('perf_map')[:-7] +
                '2.nii.gz')).get_data()

        perfmap = np.concatenate(
            (perfmap_art[..., (1, 0, 3)], perfmap_port[..., (1, 0, 3)]),
            axis=3)
        perfmap[..., (0, 3)] /= 100.

        perfmap2d = perfmap.reshape(
            (np.prod(perfmap.shape[:-1]), perfmap.shape[-1]))
        pars_subset = perfmap2d[np.where(perfmap2d[..., 0] != 0)]

        #load input tacs
        times = self.rois.get_time_list()
        new_time_steps = np.arange(times[0], times[-1] + 1, 2)

        input_tac = np.array(self.rois.get_concentrations('aorta'))
        input_tac -= input_tac[0]
        input_tac_smoothed, input_tac_splines = express.spline_interpolation(
            input_tac, times, new_time_steps)
        try:
            input_tac2 = np.array(self.rois.get_concentrations('porta'))
            input_tac2 -= input_tac2[0]
            input_tac_smoothed2, input_tac_splines2 = express.spline_interpolation(
                input_tac2, times, new_time_steps)
        except:
            input_tac2 = None
            pass

        vol4d = express.calc_tissue_tac_from_pars(input_tac_smoothed,
                                                  input_tac_smoothed2,
                                                  time_steps=new_time_steps,
                                                  time_subset=[60, 70, 80],
                                                  params=pars_subset)

        vol4d = vol4d.reshape(
            (np.prod(perfmap.shape[:-1]), vol4d_2d.shape[-1]))

        hdr = nib.load(self.dir_manager.get_path('4d')).get_header()
        mrx = hdr.get_sform()
        nii_im = nib.Nifti1Image(out_vol, mrx, hdr)
        nib.save(
            nii_im,
            os.path.join(self.dir_manager.get_path('4D')[:-4] + '2.nii.gz'))
Esempio n. 3
0
    def make_4dvol_frommaps(self):
        #load maps bv,mtt,bf,sigma
        perfmap_art = nib.load(self.dir_manager.get_path('perf_map')).get_data() 
        perfmap_port = nib.load(os.path.join(self.dir_manager.get_path('perf_map')[:-7]+'2.nii.gz')).get_data() 

        perfmap = np.concatenate((perfmap_art[...,(1,0,3)],perfmap_port[...,(1,0,3)]),axis=3)
        perfmap[...,(0,3)] /= 100.

        

        perfmap2d = perfmap.reshape( (np.prod(perfmap.shape[:-1]),perfmap.shape[-1]) )
        pars_subset = perfmap2d[ np.where(perfmap2d[...,0] != 0)]
        

        #load input tacs
        times = self.rois.get_time_list()
        new_time_steps = np.arange(times[0], times[-1] + 1, 2)

        input_tac = np.array(self.rois.get_concentrations('aorta'))
        input_tac -= input_tac[0]
        input_tac_smoothed, input_tac_splines = express.spline_interpolation(input_tac, times, new_time_steps)
        try:
            input_tac2 = np.array(self.rois.get_concentrations('porta'))
            input_tac2 -= input_tac2[0]
            input_tac_smoothed2, input_tac_splines2 = express.spline_interpolation(input_tac2, times, new_time_steps)
        except:
            input_tac2 = None
            pass

        



        vol4d = express.calc_tissue_tac_from_pars(input_tac_smoothed,
                                                  input_tac_smoothed2,
                                                  time_steps=new_time_steps,
                                                  time_subset=[60,70,80],
                                                  params=pars_subset)
        

        vol4d = vol4d.reshape( (np.prod(perfmap.shape[:-1]),vol4d_2d.shape[-1]) )

        hdr = nib.load(self.dir_manager.get_path('4d')).get_header()
        mrx = hdr.get_sform()
        nii_im = nib.Nifti1Image(out_vol, mrx, hdr)
        nib.save(nii_im, os.path.join(self.dir_manager.get_path('4D')[:-4]+'2.nii.gz'))
Esempio n. 4
0
    def calculate_roi_perf(self):
        input_tac = np.array(self.rois.get_concentrations('aorta'))
        input_tac -= input_tac[0]
        real_tac = np.array(self.rois.get_concentrations('roi1'))
        print real_tac
        real_tac -= real_tac[0]
        times = self.rois.get_time_list()
        print 'times', times
        new_times = np.arange(times[0], times[-1] + 1, 1)

        print map(int, times)
        smoothed_tac, in_tac = express.spline_interpolation(input_tac, times, new_times)
        s_tissue_tac, s_tissue_tac_pars = express.spline_interpolation(real_tac, times, new_times, ss=0.1)

        modeled_tac, modeled_pars = express.calc_tissue_tac_mrx_conv(smoothed_tac,
                                                                     time_steps=new_times,
                                                                     time_subset=times,
                                                                     rc_type='lognorm',
                                                                     mtts=np.arange(1, 70, 4),
                                                                     bvs=np.arange(0, 1, 0.1),
                                                                     rc_sigma=np.arange(0.01, 1, 0.2))

        # modeled_tac, modeled_pars = express.calc_tissue_tac_mrx(in_tac, times=times, mtts=np.arange(5,80,1), bvs=np.arange(0.1,0.9,0.1))

        modeled_pars = np.array(modeled_pars)
        print modeled_pars.shape
        ssd = np.sum((modeled_tac - real_tac) ** 2, axis=-1)
        best_choice = modeled_tac[ssd.argmin()]
        subset_array = ssd.argsort()[:10]
        print modeled_pars[ssd.argmin()]
        plt.subplot(3, 1, 1)
        plt.plot(times, real_tac, 'o-')
        plt.plot(times, best_choice, '--')
        gr = np.array([modeled_tac[i] for i in subset_array])
        #print gr.shape
        plt.plot(times, gr.T, '-', alpha=0.3)

        plt.subplot(3, 1, 2)
        bv_subset = modeled_pars[:, 1][subset_array]
        cmap = plt.cm.coolwarm(bv_subset / np.max(bv_subset))
        print modeled_pars[subset_array]
        plt.scatter(modeled_pars[:, 0][subset_array], modeled_pars[:, 1][subset_array], marker='o', edgecolors=cmap)
        plt.subplot(3, 1, 3)
        plt.plot(modeled_pars[:, 0][subset_array], ssd[subset_array], 'o')
        plt.show()
Esempio n. 5
0
def create_tacs(input_tac, times):
    new_time_steps = np.arange(times[0], times[-1] + 1, 1)
    input_tac_smoothed, input_tac_splines = express.spline_interpolation(input_tac, times, new_time_steps)
    pars_subset = express.combine_pars(bv=np.arange(0.1,0.60,0.1),
                                       a=np.arange(1,15,0.5),
                                       loc=np.arange(0.1,13,0.3),
                                       scale=np.arange(0.1,6,0.3))
    tacs = express.calc_tissue_tacs_mrx_3gamma(input_tac_smoothed, params = pars_subset, time_steps = new_time_steps, time_subset = times)
    return tacs,pars_subset
Esempio n. 6
0
    def get_limit(self):
        #load input tacs
        times = self.rois.get_time_list()
        new_time_steps = np.arange(times[0], times[-1] + 1, 1)

        input_tac = np.array(self.rois.get_concentrations('aorta'))
        input_tac -= input_tac[0]
        input_tac_smoothed, input_tac_splines = express.spline_interpolation(
            input_tac, times, new_time_steps)
        try:
            input_tac2 = np.array(self.rois.get_concentrations('porta'))
            input_tac2 -= input_tac2[0]
            input_tac_smoothed2, input_tac_splines2 = express.spline_interpolation(
                input_tac2, times, new_time_steps)
        except:
            input_tac2 = None
            pass

        pars_subset = express.perf_pars_gen(bvs=np.arange(0.01, 0.1, 0.05),
                                            mtts=np.arange(10, 100, 10),
                                            sigmas=np.arange(0.1, 2, 0.5),
                                            lags=(0, ))

        vol4d = express.calc_tissue_tac_from_pars(input_tac_smoothed,
                                                  input_tac_smoothed2,
                                                  time_steps=new_time_steps,
                                                  time_subset=times,
                                                  params=pars_subset)

        max_hu = np.max(vol4d, axis=0)
        print np.array(np.where(pars_subset[:, 5] < 0.1)).shape
        sp = np.array(
            np.where(pars_subset[:, 1] < 0.1) +
            np.where(pars_subset[:, 5] < 0.1))[0]
        print sp.shape
        plt.plot(times, vol4d[:, sp], 'o-', alpha=0.05, color='red')
        plt.show()
Esempio n. 7
0
    def get_limit(self):
        #load input tacs
        times = self.rois.get_time_list()
        new_time_steps = np.arange(times[0], times[-1] + 1, 1)

        input_tac = np.array(self.rois.get_concentrations('aorta'))
        input_tac -= input_tac[0]
        input_tac_smoothed, input_tac_splines = express.spline_interpolation(input_tac, times, new_time_steps)
        try:
            input_tac2 = np.array(self.rois.get_concentrations('porta'))
            input_tac2 -= input_tac2[0]
            input_tac_smoothed2, input_tac_splines2 = express.spline_interpolation(input_tac2, times, new_time_steps)
        except:
            input_tac2 = None
            pass

        
        pars_subset = express.perf_pars_gen(bvs=np.arange(0.01,0.1,0.05),
                                            mtts=np.arange(10,100,10),
                                            sigmas=np.arange(0.1,2,0.5),
                                            lags=(0,))



        vol4d = express.calc_tissue_tac_from_pars(input_tac_smoothed,
                                                  input_tac_smoothed2,
                                                  time_steps=new_time_steps,
                                                  time_subset=times,
                                                  params=pars_subset)
        
        max_hu = np.max(vol4d ,axis=0)
        print np.array(np.where(pars_subset[:,5]<0.1)).shape
        sp = np.array(np.where(pars_subset[:,1]<0.1)+np.where(pars_subset[:,5]<0.1))[0]
        print sp.shape
        plt.plot(times,vol4d[:,sp],'o-',alpha=0.05,color='red')
        plt.show()
                tacs_real[l[0]]['value'].append(l[3])
            else:
                tacs_real[l[0]] = {'times': [], 'value': []}
print tacs_real

sample_size = len(tacs_real.keys())
pancreatic_pars = {
    'a': np.random.normal(2, 0.5, size=sample_size),
    'loc': np.random.normal(1, 0.5, size=sample_size),
    'scale': np.random.normal(14, 5, size=sample_size),
    'bv': np.random.normal(40, 15, size=sample_size)
}

#make input tac
new_time_steps = np.arange(times[0], times[-1] + 1, 1)
input_tac_smoothed, input_tac_splines = express.spline_interpolation(
    AORTA, times, new_time_steps)
time_steps = np.arange(10, 60, 2)
#lag and scale input
input_tac_smoothed = lag_input(input_tac_smoothed)
input_tac_smoothed -= input_tac_smoothed[0]

pars_subset = express.perf_pars_gen(bvs=np.arange(0.01, 0.7, 0.1),
                                    mtts=np.arange(2, 40, 5),
                                    sigmas=np.arange(0.1, 20, 10),
                                    lags=(0, ),
                                    bvs2=(0, ),
                                    mtts2=(0, ),
                                    sigmas2=(0, ),
                                    lags2=(0, ))
pancreatic_pars = np.array([[1, 0.46, 0, 20, 0, 0, 0, 0],
                            [9, 0.28, 0, 16, 0, 0, 0, 0],
                  26,
                  29,
                  31,
                  33,
                  42,
                  47,
                  52,
                  57,
                  62,
                  91,
                  101,
                  111])
"""
#make input tac
new_time_steps = np.arange(times[0], times[-1] + 1, 1)
input_tac_smoothed, input_tac_splines = express.spline_interpolation(AORTA, times, new_time_steps)
time_steps = np.arange(10,60,2)
#lag and scale input
input_tac_smoothed = lag_input(input_tac_smoothed)
input_tac_smoothed-=input_tac_smoothed[0]

pars_subset = express.perf_pars_gen(bvs=np.arange(0.01,0.7,0.1),
                                    mtts=np.arange(2,40,5),
                                    sigmas=np.arange(0.1,20,10),
                                    lags=(0,),
                                    bvs2=(0,),
                                    mtts2=(0,),
                                    sigmas2=(0,),
                                    lags2=(0,))
pancreatic_pars = np.array([[1.2,0.7,0,81,0,0,0,0],
                            [9,0.28,0,16,0,0,0,0],
Esempio n. 10
0
input_tac2 = np.array(input_tac2)-input_tac2[0]
#

BV_range_a = np.arange(0.01,0.99,0.4)
BV_range_p = (0.01,1,0.1)

MTT_range_a = np.arange(0.1,100,30)
MTT_range_p = (0,100,1)

S_range_a = np.arange(0.01,2,0.5)
S_range_p = (0.01,2,0.1)

#Simulation
new_time_steps = np.arange(times[0], times[-1] + 1, 1)

input_tac_smoothed, input_tac_splines = expr.spline_interpolation(input_tac, times, new_time_steps)
input_tac_smoothed2, input_tac_splines2 = expr.spline_interpolation(input_tac2, times, new_time_steps)

input_tac_smoothed2[new_time_steps < times[0]] = input_tac2[0]
input_tac_smoothed[new_time_steps < times[0]] = input_tac[0]


reference_tacs, reference_pars = expr.calc_tissue_tac_mrx_conv2(input_tac_smoothed,
                                                                    input_tac_smoothed2,
                                                                    time_steps=new_time_steps,
                                                                    time_subset=times,
                                                                    rc_type='lognorm',
                                                                    mtts=MTT_range_a,
                                                                    bvs=BV_range_a,
                                                                    rc_sigma=S_range_a,
                                                                    lags=[0])
Esempio n. 11
0
input_tac2 = np.array(input_tac2) - input_tac2[0]
#

BV_range_a = np.arange(0.01, 0.99, 0.4)
BV_range_p = (0.01, 1, 0.1)

MTT_range_a = np.arange(0.1, 100, 30)
MTT_range_p = (0, 100, 1)

S_range_a = np.arange(0.01, 2, 0.5)
S_range_p = (0.01, 2, 0.1)

#Simulation
new_time_steps = np.arange(times[0], times[-1] + 1, 1)

input_tac_smoothed, input_tac_splines = expr.spline_interpolation(
    input_tac, times, new_time_steps)
input_tac_smoothed2, input_tac_splines2 = expr.spline_interpolation(
    input_tac2, times, new_time_steps)

input_tac_smoothed2[new_time_steps < times[0]] = input_tac2[0]
input_tac_smoothed[new_time_steps < times[0]] = input_tac[0]

reference_tacs, reference_pars = expr.calc_tissue_tac_mrx_conv2(
    input_tac_smoothed,
    input_tac_smoothed2,
    time_steps=new_time_steps,
    time_subset=times,
    rc_type='lognorm',
    mtts=MTT_range_a,
    bvs=BV_range_a,
    rc_sigma=S_range_a,