Esempio n. 1
0
 def setUp(self):
     dbn_1 = DynamicBayesianNetwork()
     dbn_1.add_edges_from(
         [(('Z', 0), ('X', 0)), (('Z', 0), ('Y', 0)), (('Z', 0), ('Z', 1))])
     cpd_start_z_1 = TabularCPD(('Z', 0), 2, [[0.8, 0.2]])
     cpd_x_1 = TabularCPD(
         ('X', 0), 2, [[0.9, 0.6], [0.1, 0.4]], [('Z', 0)], [2])
     cpd_y_1 = TabularCPD(
         ('Y', 0), 2, [[0.7, 0.2], [0.3, 0.8]], [('Z', 0)], [2])
     cpd_trans_z_1 = TabularCPD(
         ('Z', 1), 2, [[0.9, 0.1], [0.1, 0.9]], [('Z', 0)], [2])
     dbn_1.add_cpds(cpd_start_z_1, cpd_trans_z_1, cpd_x_1, cpd_y_1)
     dbn_1.initialize_initial_state()
     self.dbn_inference_1 = DBNInference(dbn_1)
     dbn_2 = DynamicBayesianNetwork()
     dbn_2.add_edges_from([(('Z', 0), ('X', 0)), (('X', 0), ('Y', 0)),
                           (('Z', 0), ('Z', 1))])
     cpd_start_z_2 = TabularCPD(('Z', 0), 2, [[0.5, 0.5]])
     cpd_x_2 = TabularCPD(
         ('X', 0), 2, [[0.6, 0.9], [0.4, 0.1]], [('Z', 0)], [2])
     cpd_y_2 = TabularCPD(
         ('Y', 0), 2, [[0.2, 0.3], [0.8, 0.7]], [('X', 0)], [2])
     cpd_z_2 = TabularCPD(
         ('Z', 1), 2, [[0.4, 0.7], [0.6, 0.3]], [('Z', 0)], [2])
     dbn_2.add_cpds(cpd_x_2, cpd_y_2, cpd_z_2, cpd_start_z_2)
     dbn_2.initialize_initial_state()
     self.dbn_inference_2 = DBNInference(dbn_2)
Esempio n. 2
0
def buildDBN():

    # Construct a DBN object
    dbn = DBN()

    #!!!!!!!!!!!!!!!  VERY IMPORTANT  !!!!!!!!!!!!!!!
    # MAKE SURE to NAME THE RANDOM VARIABLE "LOCATION AS "L" AND "SENSOR" OBSERVATION AS "O"
    ########-----YOUR CODE STARTS HERE-----########
    dbn.add_edges_from([(('L', 0), ('O', 0)), (('L', 0), ('L', 1))])

    l_cpd = TabularCPD(('L', 0), 4, [[0], [0], [1], [0]])

    o_cpd = TabularCPD(('O', 0),
                       4, [
                           [0.7, 0.1, 0.1, 0.1],
                           [0.1, 0.7, 0.1, 0.1],
                           [0.1, 0.1, 0.7, 0.1],
                           [0.1, 0.1, 0.1, 0.7],
                       ],
                       evidence=[('L', 0)],
                       evidence_card=[4])

    # l_i_cpd = TabularCPD(('L', 1), 4, [[.5, .5, 0, 0],
    #                                    [0, .5, 0, .5],
    #                                    [.5, 0, .5, 0],
    #                                    [0, 0, .5, .5],],
    #                      evidence=[('L',0)],
    #                      evidence_card=[4])
    l_i_cpd = TabularCPD(('L', 1),
                         4, [
                             [.5, 0, .5, 0],
                             [.5, .5, 0, 0],
                             [0, 0, .5, .5],
                             [0, .5, 0, .5],
                         ],
                         evidence=[('L', 0)],
                         evidence_card=[4])

    # print(o_i_cpd)
    # print(l_cpd)
    # print(o_cpd)
    # print(l_i_cpd)
    dbn.add_cpds(l_cpd, o_cpd, l_i_cpd)
    ########-----YOUR CODE ENDS HERE-----########

    # Do NOT forget to initialize before doing any inference! Otherwise, errors will be introduced.
    dbn.initialize_initial_state()

    # Create an inference object
    dbn_inf = DBNInference(dbn)

    ########-----YOUR MAY TEST YOUR CODE BELOW -----########
    ########-----ADDITIONAL CODE STARTS HERE-----########
    #print(dbn_inf.query([('L',3)])[('L',3)].values)
    # print(dbn_inf.query([('L',1)])[('L',1)].values)
    #print(dbn_inf.query([('L',1)], {('O', 1):2})[('L',1)].values)
    ########-----YOUR CODE ENDS HERE-----########

    return dbn_inf
Esempio n. 3
0
def buildDBN():
    # Construct a DBN object
    dbn = DBN()
    dbn.add_edges_from([(('L', 0), ('O', 0)),
                        (('L', 0), ('L', 1)),
                        (('L', 1), ('O', 1))])


    # setup conditional probability tables for nodes in network

    O0_cpd = TabularCPD(('O', 0), 4, [[0.7, 0.1, 0.1, 0.1],  # A
                                      [0.1, 0.7, 0.1, 0.1],  # B
                                      [0.1, 0.1, 0.7, 0.1],  # C
                                      [0.1, 0.1, 0.1, 0.7]],  # D
                        evidence=[('L', 0)], evidence_card=[4])

    l0_cpd = TabularCPD(('L', 0), 4, [[0],  # A
                                      [0],  # B
                                      [1],  # C
                                      [0]]) # D

    l1_cpd = TabularCPD(('L', 1), 4, [[0.5, 0.0, 0.5, 0.0],  # A
                                      [0.5, 0.5, 0.0, 0.0],  # B
                                      [0.0, 0.0, 0.5, 0.5],  # C
                                      [0.0, 0.5, 0.0, 0.5]], # D
                        evidence=[('L', 0)], evidence_card=[4])

    #add these conditional probability tables to our BayesianModel
    dbn.add_cpds(l0_cpd, l1_cpd, O0_cpd)

    #initialize our model for time series analysis
    dbn.initialize_initial_state()

    # Create an inference object to perform queries
    dbn_inf = DBNInference(dbn)


    #print(dbn_inf.query(variables=[('L',1)], evidence={('O',1): 2})[('L',1)])


    return dbn_inf
Esempio n. 4
0
class DbnCnnInterface(object):
    def __init__(self, model_file='../DBN/network.nx'):
        nx_model = nx.read_gpickle(model_file)
        self.dbn = DynamicBayesianNetwork(nx_model.edges())
        self.dbn.add_cpds(*nx_model.cpds)
        self.dbn.initialize_initial_state()
        self.dbn_infer = DBNInference(self.dbn)

    def filter_q_values(self, q_values, evidence=0, method='binary'):
        inferred = np.ndarray(shape=(len(q_values), ), dtype=float)
        inferred.fill(0)
        variables = self.dbn.get_slice_nodes(1)
        ev = {node: 0 for node in self.dbn.get_slice_nodes(0)}
        if evidence != 0:
            self.set_evidence(ev, evidence)
        q = self.dbn_infer.query(variables=variables, evidence=ev)
        for variable in q.values():
            action = self.get_action_id(variable.variables[0])
            if method == 'binary':
                inferred[action] = 1 if variable.values[1] > 0 else 0
            else:
                inferred[action] = variable.values[1]
        return q_values * inferred

    def get_action_id(self, action):
        if action[0] == 'Prompt':
            return 0
        elif action[0] == 'Reward':
            return 1
        elif action[0] == 'Abort':
            return 2
        return 3

    def set_evidence(self, evidence, id):
        if id == 1:
            evidence[("Prompt", 0)] = 1
Esempio n. 5
0
class TestDynamicBayesianNetworkMethods(unittest.TestCase):
    def setUp(self):
        self.network = DynamicBayesianNetwork()
        self.grade_cpd = TabularCPD(
            ('G', 0), 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3],
                          [0.3, 0.7, 0.2, 0.2]], [('D', 0), ('I', 0)], [2, 2])
        self.d_i_cpd = TabularCPD(('D', 1), 2, [[0.6, 0.3], [0.4, 0.7]],
                                  [('D', 0)], 2)
        self.diff_cpd = TabularCPD(('D', 0), 2, [[0.6, 0.4]])
        self.intel_cpd = TabularCPD(('I', 0), 2, [[0.7, 0.3]])
        self.i_i_cpd = TabularCPD(('I', 1), 2, [[0.5, 0.4], [0.5, 0.6]],
                                  [('I', 0)], 2)
        self.grade_1_cpd = TabularCPD(
            ('G', 1), 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3],
                          [0.3, 0.7, 0.2, 0.2]], [('D', 1), ('I', 1)], [2, 2])

    def test_get_intra_and_inter_edges(self):
        self.network.add_edges_from([(('a', 0), ('b', 0)),
                                     (('a', 0), ('a', 1)),
                                     (('b', 0), ('b', 1))])
        self.assertListEqual(sorted(self.network.get_intra_edges()),
                             [(('a', 0), ('b', 0))])
        self.assertListEqual(sorted(self.network.get_intra_edges(1)),
                             [(('a', 1), ('b', 1))])
        self.assertRaises(ValueError, self.network.get_intra_edges, -1)
        self.assertRaises(ValueError, self.network.get_intra_edges, '-')
        self.assertListEqual(sorted(self.network.get_inter_edges()),
                             [(('a', 0), ('a', 1)), (('b', 0), ('b', 1))])

    def test_get_interface_nodes(self):
        self.network.add_edges_from([
            (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)),
            (('I', 0), ('I', 1))
        ])
        self.assertListEqual(sorted(self.network.get_interface_nodes()),
                             [('D', 0), ('I', 0)])
        self.assertRaises(ValueError, self.network.get_interface_nodes, -1)
        self.assertRaises(ValueError, self.network.get_interface_nodes, '-')

    def test_get_slice_nodes(self):
        self.network.add_edges_from([
            (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)),
            (('I', 0), ('I', 1))
        ])
        self.assertListEqual(sorted(self.network.get_slice_nodes()),
                             [('D', 0), ('G', 0), ('I', 0)])
        self.assertListEqual(sorted(self.network.get_slice_nodes(1)),
                             [('D', 1), ('G', 1), ('I', 1)])
        self.assertRaises(ValueError, self.network.get_slice_nodes, -1)
        self.assertRaises(ValueError, self.network.get_slice_nodes, '-')

    def test_add_single_cpds(self):
        self.network.add_edges_from([(('D', 0), ('G', 0)),
                                     (('I', 0), ('G', 0))])
        self.network.add_cpds(self.grade_cpd)
        self.assertListEqual(self.network.get_cpds(), [self.grade_cpd])

    def test_get_cpds(self):
        self.network.add_edges_from([
            (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)),
            (('I', 0), ('I', 1))
        ])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd,
                              self.intel_cpd, self.i_i_cpd)
        self.network.initialize_initial_state()
        self.assertEqual(set(self.network.get_cpds()),
                         set([self.diff_cpd, self.intel_cpd, self.grade_cpd]))
        self.assertEqual(
            self.network.get_cpds(time_slice=1)[0].variable, ('G', 1))

    def test_add_multiple_cpds(self):
        self.network.add_edges_from([
            (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)),
            (('I', 0), ('I', 1))
        ])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd,
                              self.intel_cpd, self.i_i_cpd)
        self.assertEqual(self.network.get_cpds(('G', 0)).variable, ('G', 0))
        self.assertEqual(self.network.get_cpds(('D', 1)).variable, ('D', 1))
        self.assertEqual(self.network.get_cpds(('D', 0)).variable, ('D', 0))
        self.assertEqual(self.network.get_cpds(('I', 0)).variable, ('I', 0))
        self.assertEqual(self.network.get_cpds(('I', 1)).variable, ('I', 1))

    def test_initialize_initial_state(self):

        self.network.add_nodes_from(['D', 'G', 'I', 'S', 'L'])
        self.network.add_edges_from([
            (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)),
            (('I', 0), ('I', 1))
        ])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd,
                              self.intel_cpd, self.i_i_cpd)
        self.network.initialize_initial_state()
        self.assertEqual(len(self.network.cpds), 6)
        self.assertEqual(self.network.get_cpds(('G', 1)).variable, ('G', 1))

    def test_moralize(self):
        self.network.add_edges_from(([(('D', 0), ('G', 0)),
                                      (('I', 0), ('G', 0))]))
        moral_graph = self.network.moralize()
        self.assertListEqual(hf.recursive_sorted(moral_graph.edges()),
                             [[('D', 0),
                               ('G', 0)], [('D', 0),
                                           ('I', 0)], [('D', 1), ('G', 1)],
                              [('D', 1),
                               ('I', 1)], [('G', 0),
                                           ('I', 0)], [('G', 1), ('I', 1)]])

    def tearDown(self):
        del self.network
Esempio n. 6
0
    ('I', 1), 3, [[
        0.7, 0.1, 0.9, 0.6, 0.0, 0.8, 0.1, 0.0, 0.3, 0.5, 0.1, 0.7, 0.3, 0.0,
        0.6, 0.1, 0.0, 0.1
    ],
                  [
                      0.2, 0.1, 0.1, 0.3, 0.2, 0.2, 0.3, 0.1, 0.5, 0.4, 0.1,
                      0.3, 0.4, 0.4, 0.4, 0.2, 0.1, 0.1
                  ],
                  [
                      0.1, 0.8, 0.0, 0.1, 0.8, 0.0, 0.6, 0.9, 0.2, 0.1, 0.8,
                      0.0, 0.3, 0.6, 0.0, 0.7, 0.9, 0.8
                  ]], [('A', 0), ('I', 0), ('R', 0)], [2, 3, 3])

dbn.add_cpds(cpd_I, cpd_A, cpd_I1, cpd_O, cpd_R)

dbn.initialize_initial_state()

print "Model created successfully: ", dbn.check_model()

# CREATES SIMULATED DATA FROM DBN MODEL

samples = list()

for i in range(1, 10000):
    top_order = list(nx.topological_sort(dbn))
    sample = dict()
    for node in top_order:
        curr_cpd = dbn.get_cpds(node)
        evidence = curr_cpd.get_evidence()
        ev_index = 0
        if len(evidence) != 0:
class TestDynamicBayesianNetworkMethods(unittest.TestCase):
    def setUp(self):
        self.network = DynamicBayesianNetwork()
        self.grade_cpd = TabularCPD(('G', 0), 3, [[0.3, 0.05, 0.8, 0.5],
                                             [0.4, 0.25, 0.1, 0.3],
                                             [0.3, 0.7, 0.1, 0.2]], [('D', 0), ('I', 0)], [2, 2])
        self.d_i_cpd = TabularCPD(('D', 1), 2, [[0.6, 0.3], [0.4, 0.7]], [('D', 0)], 2)
        self.diff_cpd = TabularCPD(('D', 0), 2, [[0.6, 0.4]])
        self.intel_cpd = TabularCPD(('I', 0), 2, [[0.7, 0.3]])
        self.i_i_cpd = TabularCPD(('I', 1), 2, [[0.5, 0.4], [0.5, 0.6]], [('I', 0)], 2)
        self.grade_1_cpd = TabularCPD(('G', 1), 3, [[0.3, 0.05, 0.8, 0.5],
                                             [0.4, 0.25, 0.1, 0.3],
                                             [0.3, 0.7, 0.1, 0.2]], [('D', 1), ('I', 1)], [2, 2])

    def test_get_intra_and_inter_edges(self):
        self.network.add_edges_from([(('a', 0), ('b', 0)), (('a', 0), ('a', 1)), (('b', 0), ('b', 1))])
        self.assertListEqual(sorted(self.network.get_intra_edges()), [(('a', 0), ('b', 0))])
        self.assertListEqual(sorted(self.network.get_intra_edges(1)), [(('a', 1), ('b', 1))])
        self.assertRaises(ValueError, self.network.get_intra_edges, -1)
        self.assertRaises(ValueError, self.network.get_intra_edges, '-')
        self.assertListEqual(sorted(self.network.get_inter_edges()), [(('a', 0), ('a', 1)), (('b', 0), ('b', 1))])

    def test_get_interface_nodes(self):
        self.network.add_edges_from(
            [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))])
        self.assertListEqual(sorted(self.network.get_interface_nodes()), [('D', 0), ('I',0)])
        self.assertRaises(ValueError, self.network.get_interface_nodes, -1)
        self.assertRaises(ValueError, self.network.get_interface_nodes, '-')

    def test_get_slice_nodes(self):
        self.network.add_edges_from(
            [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))])
        self.assertListEqual(sorted(self.network.get_slice_nodes()), [('D', 0), ('G', 0), ('I', 0)])
        self.assertListEqual(sorted(self.network.get_slice_nodes(1)), [('D', 1), ('G', 1), ('I', 1)])
        self.assertRaises(ValueError, self.network.get_slice_nodes, -1)
        self.assertRaises(ValueError, self.network.get_slice_nodes, '-')

    def test_add_single_cpds(self):
        self.network.add_edges_from([(('D', 0), ('G', 0)), (('I', 0), ('G', 0))])
        self.network.add_cpds(self.grade_cpd)
        self.assertListEqual(self.network.get_cpds(), [self.grade_cpd])

    def test_get_cpds(self):
        self.network.add_edges_from(
            [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd)
        self.network.initialize_initial_state()
        self.assertEqual(set(self.network.get_cpds()), set([self.diff_cpd, self.intel_cpd, self.grade_cpd]))
        self.assertEqual(self.network.get_cpds(time_slice=1)[0].variable, ('G', 1))

    def test_add_multiple_cpds(self):
        self.network.add_edges_from(
            [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd)
        self.assertEqual(self.network.get_cpds(('G', 0)).variable, ('G', 0))
        self.assertEqual(self.network.get_cpds(('D', 1)).variable, ('D', 1))
        self.assertEqual(self.network.get_cpds(('D', 0)).variable, ('D', 0))
        self.assertEqual(self.network.get_cpds(('I', 0)).variable, ('I', 0))
        self.assertEqual(self.network.get_cpds(('I', 1)).variable, ('I', 1))

    def test_initialize_initial_state(self):

        self.network.add_nodes_from(['D', 'G', 'I', 'S', 'L'])
        self.network.add_edges_from(
            [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd)
        self.network.initialize_initial_state()
        self.assertEqual(len(self.network.cpds), 6)
        self.assertEqual(self.network.get_cpds(('G', 1)).variable, ('G', 1))

    def test_moralize(self):
        self.network.add_edges_from(([(('D',0), ('G',0)), (('I',0), ('G',0))]))
        moral_graph = self.network.moralize()
        self.assertListEqual(hf.recursive_sorted(moral_graph.edges()),
                             [[('D', 0), ('G', 0)], [('D', 0), ('I', 0)],
                              [('D', 1), ('G', 1)], [('D', 1), ('I', 1)],
                              [('G', 0), ('I', 0)], [('G', 1), ('I', 1)]])

    def tearDown(self):
        del self.network
Esempio n. 8
0
class TestDynamicBayesianNetworkMethods(unittest.TestCase):
    def setUp(self):
        self.network = DynamicBayesianNetwork()
        self.grade_cpd = TabularCPD(
            ("G", 0),
            3,
            values=[[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3],
                    [0.3, 0.7, 0.1, 0.2]],
            evidence=[("D", 0), ("I", 0)],
            evidence_card=[2, 2],
        )
        self.d_i_cpd = TabularCPD(
            ("D", 1),
            2,
            values=[[0.6, 0.3], [0.4, 0.7]],
            evidence=[("D", 0)],
            evidence_card=[2],
        )
        self.diff_cpd = TabularCPD(("D", 0), 2, values=[[0.6, 0.4]])
        self.intel_cpd = TabularCPD(("I", 0), 2, values=[[0.7, 0.3]])
        self.i_i_cpd = TabularCPD(
            ("I", 1),
            2,
            values=[[0.5, 0.4], [0.5, 0.6]],
            evidence=[("I", 0)],
            evidence_card=[2],
        )
        self.grade_1_cpd = TabularCPD(
            ("G", 1),
            3,
            values=[[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3],
                    [0.3, 0.7, 0.1, 0.2]],
            evidence=[("D", 1), ("I", 1)],
            evidence_card=[2, 2],
        )

    def test_get_intra_and_inter_edges(self):
        self.network.add_edges_from([(("a", 0), ("b", 0)),
                                     (("a", 0), ("a", 1)),
                                     (("b", 0), ("b", 1))])
        self.assertListEqual(sorted(self.network.get_intra_edges()),
                             [(("a", 0), ("b", 0))])
        self.assertListEqual(sorted(self.network.get_intra_edges(1)),
                             [(("a", 1), ("b", 1))])
        self.assertRaises(ValueError, self.network.get_intra_edges, -1)
        self.assertRaises(ValueError, self.network.get_intra_edges, "-")
        self.assertListEqual(
            sorted(self.network.get_inter_edges()),
            [(("a", 0), ("a", 1)), (("b", 0), ("b", 1))],
        )

    def test_get_interface_nodes(self):
        self.network.add_edges_from([
            (("D", 0), ("G", 0)),
            (("I", 0), ("G", 0)),
            (("D", 0), ("D", 1)),
            (("I", 0), ("I", 1)),
        ])
        self.assertListEqual(sorted(self.network.get_interface_nodes()),
                             [("D", 0), ("I", 0)])
        self.assertRaises(ValueError, self.network.get_interface_nodes, -1)
        self.assertRaises(ValueError, self.network.get_interface_nodes, "-")

    def test_get_slice_nodes(self):
        self.network.add_edges_from([
            (("D", 0), ("G", 0)),
            (("I", 0), ("G", 0)),
            (("D", 0), ("D", 1)),
            (("I", 0), ("I", 1)),
        ])
        self.assertListEqual(sorted(self.network.get_slice_nodes()),
                             [("D", 0), ("G", 0), ("I", 0)])
        self.assertListEqual(sorted(self.network.get_slice_nodes(1)),
                             [("D", 1), ("G", 1), ("I", 1)])
        self.assertRaises(ValueError, self.network.get_slice_nodes, -1)
        self.assertRaises(ValueError, self.network.get_slice_nodes, "-")

    def test_add_single_cpds(self):
        self.network.add_edges_from([(("D", 0), ("G", 0)),
                                     (("I", 0), ("G", 0))])
        self.network.add_cpds(self.grade_cpd)
        self.assertListEqual(self.network.get_cpds(), [self.grade_cpd])

    def test_get_cpds(self):
        self.network.add_edges_from([
            (("D", 0), ("G", 0)),
            (("I", 0), ("G", 0)),
            (("D", 0), ("D", 1)),
            (("I", 0), ("I", 1)),
        ])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd,
                              self.intel_cpd, self.i_i_cpd)
        self.network.initialize_initial_state()
        self.assertEqual(
            set(self.network.get_cpds()),
            set([self.diff_cpd, self.intel_cpd, self.grade_cpd]),
        )
        self.assertEqual(
            {cpd.variable
             for cpd in self.network.get_cpds(time_slice=1)},
            {("D", 1), ("I", 1), ("G", 1)},
        )

    def test_add_multiple_cpds(self):
        self.network.add_edges_from([
            (("D", 0), ("G", 0)),
            (("I", 0), ("G", 0)),
            (("D", 0), ("D", 1)),
            (("I", 0), ("I", 1)),
        ])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd,
                              self.intel_cpd, self.i_i_cpd)
        self.assertEqual(self.network.get_cpds(("G", 0)).variable, ("G", 0))
        self.assertEqual(self.network.get_cpds(("D", 1)).variable, ("D", 1))
        self.assertEqual(self.network.get_cpds(("D", 0)).variable, ("D", 0))
        self.assertEqual(self.network.get_cpds(("I", 0)).variable, ("I", 0))
        self.assertEqual(self.network.get_cpds(("I", 1)).variable, ("I", 1))

    def test_initialize_initial_state(self):

        self.network.add_nodes_from(["D", "G", "I", "S", "L"])
        self.network.add_edges_from([
            (("D", 0), ("G", 0)),
            (("I", 0), ("G", 0)),
            (("D", 0), ("D", 1)),
            (("I", 0), ("I", 1)),
        ])
        self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd,
                              self.intel_cpd, self.i_i_cpd)
        self.network.initialize_initial_state()
        self.assertEqual(len(self.network.cpds), 6)
        self.assertEqual(self.network.get_cpds(("G", 1)).variable, ("G", 1))

    def test_moralize(self):
        self.network.add_edges_from(([(("D", 0), ("G", 0)),
                                      (("I", 0), ("G", 0))]))
        moral_graph = self.network.moralize()
        self.assertListEqual(
            hf.recursive_sorted(moral_graph.edges()),
            [
                [("D", 0), ("G", 0)],
                [("D", 0), ("I", 0)],
                [("D", 1), ("G", 1)],
                [("D", 1), ("I", 1)],
                [("G", 0), ("I", 0)],
                [("G", 1), ("I", 1)],
            ],
        )

    def test_copy(self):
        self.network.add_edges_from([
            (("D", 0), ("G", 0)),
            (("I", 0), ("G", 0)),
            (("D", 0), ("D", 1)),
            (("I", 0), ("I", 1)),
        ])
        cpd = TabularCPD(
            ("G", 0),
            3,
            values=[[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3],
                    [0.3, 0.7, 0.1, 0.2]],
            evidence=[("D", 0), ("I", 0)],
            evidence_card=[2, 2],
        )
        self.network.add_cpds(cpd)
        copy = self.network.copy()
        self.assertIsInstance(copy, DynamicBayesianNetwork)
        self.assertListEqual(sorted(self.network._nodes()),
                             sorted(copy._nodes()))
        self.assertListEqual(sorted(self.network.edges()),
                             sorted(copy.edges()))
        self.assertListEqual(self.network.get_cpds(), copy.get_cpds())
        self.assertListEqual(sorted(self.network.get_intra_edges()),
                             sorted(copy.get_intra_edges()))
        self.assertListEqual(sorted(self.network.get_inter_edges()),
                             sorted(copy.get_inter_edges()))
        self.assertListEqual(sorted(self.network.get_slice_nodes()),
                             sorted(copy.get_slice_nodes()))

        copy.cpds[0].values = np.array([[0.4, 0.05, 0.3, 0.5],
                                        [0.3, 0.25, 0.5, 0.3],
                                        [0.3, 0.7, 0.2, 0.2]])
        self.assertNotEqual(self.network.get_cpds(), copy.get_cpds())
        self.network.add_cpds(self.i_i_cpd, self.d_i_cpd)

        copy.add_cpds(self.diff_cpd, self.intel_cpd)
        self.network.add_node("A")
        copy.add_node("Z")
        self.network.add_edge(("A", 0), ("D", 0))
        copy.add_edge(("Z", 0), ("D", 0))
        self.assertNotEqual(sorted(self.network._nodes()),
                            sorted(copy._nodes()))
        self.assertNotEqual(sorted(self.network.edges()), sorted(copy.edges()))
        self.assertNotEqual(self.network.get_cpds(), copy.get_cpds())
        self.assertNotEqual(sorted(self.network.get_intra_edges()),
                            sorted(copy.get_intra_edges()))
        self.assertListEqual(sorted(self.network.get_inter_edges()),
                             sorted(copy.get_inter_edges()))
        self.assertNotEqual(sorted(self.network.get_slice_nodes()),
                            sorted(copy.get_slice_nodes()))

        self.network.add_edge(("A", 0), ("D", 1))
        copy.add_edge(("Z", 0), ("D", 1))
        self.assertNotEqual(sorted(self.network.get_inter_edges()),
                            sorted(copy.get_inter_edges()))

    def tearDown(self):
        del self.network