def __init__(self, data, T, alpha_beta): assert isinstance(data, scipy.sparse.csr.csr_matrix) self.D, self.V = data.shape self.T = T self.alpha_beta = alpha_beta self.data = data self.pyrngs = initialize_pyrngs() self.initialize_beta() self.initialize_theta() self.z = np.zeros((data.data.shape[0], T), dtype="uint32") self.resample_z() # precompute self._training_gammalns = gammaln(data.sum(1) + 1).sum() - gammaln(data.data + 1).sum()
def __init__(self, data, T, alpha_beta): assert isinstance(data, scipy.sparse.csr.csr_matrix) self.D, self.V = data.shape self.T = T self.alpha_beta = alpha_beta self.data = data self.pyrngs = initialize_pyrngs() self.initialize_beta() self.initialize_theta() self.z = np.zeros((data.data.shape[0], T), dtype='uint32') self.resample_z() # precompute self._training_gammalns = \ gammaln(data.sum(1)+1).sum() - gammaln(data.data+1).sum()
def __init__(self, data, timestamps, K, alpha_theta): assert isinstance(data, scipy.sparse.csr.csr_matrix) self.alpha_theta = alpha_theta self.D, self.V = data.shape self.K = K self.data = data self.timestamps = timestamps self.timeidx = self._get_timeidx(timestamps, data) self.T = self.timeidx.max() - self.timeidx.min() + 1 self.ppgs = initialize_polya_gamma_samplers() self.pyrngs = initialize_pyrngs() self.initialize_parameters() self._training_gammalns = gammaln(data.sum(1) + 1).sum() - gammaln(data.data + 1).sum()
def __init__(self, data, timestamps, K, alpha_theta): assert isinstance(data, scipy.sparse.csr.csr_matrix) self.alpha_theta = alpha_theta self.D, self.V = data.shape self.K = K self.data = data self.timestamps = timestamps self.timeidx = self._get_timeidx(timestamps, data) self.T = self.timeidx.max() - self.timeidx.min() + 1 self.ppgs = initialize_polya_gamma_samplers() self.pyrngs = initialize_pyrngs() self.initialize_parameters() self._training_gammalns = \ gammaln(data.sum(1)+1).sum() - gammaln(data.data+1).sum()