Esempio n. 1
0
def quaddobl_real_sweep(pols, sols, par='s', start=0.0, target=1.0):
    r"""
    A real sweep homotopy is a family of n equations in n+1 variables,
    where one of the variables is the artificial parameter s which moves
    from 0.0 to 1.0.  The last equation can then be of the form

    (1 - s)*(lambda - L[0]) + s*(lambda - L[1]) = 0 so that,

    at s = 0, the natural parameter lambda has the value L[0], and

    at s = 1, the natural parameter lambda has the value L[1].

    Thus: as s moves from 0 to 1, lambda goes from L[0] to L[1].

    All solutions in the list *sols* must have then the value L[0]
    for the variable lambda.
    The sweep stops when the target value for s is reached
    or when a singular solution is encountered.
    Computations happen in quad double precision.
    """
    from phcpy.interface import store_quaddobl_solutions as storesols
    from phcpy.interface import store_quaddobl_system as storesys
    nvar = len(pols) + 1
    storesys(pols, nbvar=nvar)
    storesols(nvar, sols)
    # print 'done storing system and solutions ...'
    from phcpy.interface import load_quaddobl_solutions as loadsols
    from phcpy.phcpy2c2 \
    import py2c_sweep_define_parameters_symbolically as define
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_start as set_start
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_target as set_target
    (nbq, nbp) = (len(pols), 1)
    pars = [par]
    parnames = ' '.join(pars)
    nbc = len(parnames)
    # print 'defining the parameters ...'
    define(nbq, nvar, nbp, nbc, parnames)
    set_start(nbp, str([start, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
    set_target(nbp, str([target, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
    from phcpy.phcpy2c2 import py2c_sweep_quaddobl_real_run as run
    run()
    result = loadsols()
    return result
Esempio n. 2
0
def quaddobl_real_sweep(pols, sols, par='s', start=0.0, target=1.0):
    r"""
    A real sweep homotopy is a family of n equations in n+1 variables,
    where one of the variables is the artificial parameter s which moves
    from 0.0 to 1.0.  The last equation can then be of the form

    (1 - s)*(lambda - L[0]) + s*(lambda - L[1]) = 0 so that,

    at s = 0, the natural parameter lambda has the value L[0], and

    at s = 1, the natural parameter lambda has the value L[1].

    Thus: as s moves from 0 to 1, lambda goes from L[0] to L[1].

    All solutions in the list *sols* must have then the value L[0]
    for the variable lambda.
    The sweep stops when the target value for s is reached
    or when a singular solution is encountered.
    Computations happen in quad double precision.
    """
    from phcpy.interface import store_quaddobl_solutions as storesols
    from phcpy.interface import store_quaddobl_system as storesys
    nvar = len(pols) + 1
    storesys(pols, nbvar=nvar)
    storesols(nvar, sols)
    print 'done storing system and solutions ...'
    from phcpy.interface import load_quaddobl_solutions as loadsols
    from phcpy.phcpy2c2 \
    import py2c_sweep_define_parameters_symbolically as define
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_start as set_start
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_target as set_target
    (nbq, nbp) = (len(pols), 1)
    pars = [par]
    parnames = ' '.join(pars)
    nbc = len(parnames)
    print 'defining the parameters ...'
    define(nbq, nvar, nbp, nbc, parnames)
    set_start(nbp, str([start, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
    set_target(nbp, str([target, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
    from phcpy.phcpy2c2 import py2c_sweep_quaddobl_real_run as run
    run()
    result = loadsols()
    return result
Esempio n. 3
0
def quaddobl_complex_sweep(pols, sols, nvar, pars, start, target):
    r"""
    For the polynomials in the list of strings *pols*
    and the solutions in *sols* for the values in the list *start*,
    a sweep through the parameter space will be performed
    in quad double precision to the target values of
    the parameters in the list *target*.
    The number of variables in the polynomials and the solutions
    must be the same and be equal to the value of *nvar*.
    The list of symbols in *pars* contains the names of the variables
    in the polynomials *pols* that serve as parameters.
    The size of the lists *pars*, *start*, and *target* must be same.
    """
    from phcpy.interface import store_quaddobl_solutions as storesols
    from phcpy.interface import store_quaddobl_system as storesys
    storesys(pols, nbvar=nvar)
    storesols(nvar, sols)
    from phcpy.interface import load_quaddobl_solutions as loadsols
    from phcpy.phcpy2c2 \
    import py2c_sweep_define_parameters_symbolically as define
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_start as set_start
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_target as set_target
    from phcpy.phcpy2c2 import py2c_sweep_quaddobl_complex_run as run
    (nbq, nbp) = (len(pols), len(pars))
    parnames = ' '.join(pars)
    nbc = len(parnames)
    define(nbq, nvar, nbp, nbc, parnames)
    print 'setting the start and the target ...'
    set_start(nbp, str(start))
    set_target(nbp, str(target))
    print 'calling run in quad double precision ...'
    run(0, 0.0, 0.0)
    result = loadsols()
    return result
Esempio n. 4
0
def quaddobl_complex_sweep(pols, sols, nvar, pars, start, target):
    r"""
    For the polynomials in the list of strings *pols*
    and the solutions in *sols* for the values in the list *start*,
    a sweep through the parameter space will be performed
    in quad double precision to the target values of
    the parameters in the list *target*.
    The number of variables in the polynomials and the solutions
    must be the same and be equal to the value of *nvar*.
    The list of symbols in *pars* contains the names of the variables
    in the polynomials *pols* that serve as parameters.
    The size of the lists *pars*, *start*, and *target* must be same.
    """
    from phcpy.interface import store_quaddobl_solutions as storesols
    from phcpy.interface import store_quaddobl_system as storesys
    storesys(pols, nbvar=nvar)
    storesols(nvar, sols)
    from phcpy.interface import load_quaddobl_solutions as loadsols
    from phcpy.phcpy2c2 \
    import py2c_sweep_define_parameters_symbolically as define
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_start as set_start
    from phcpy.phcpy2c2 \
    import py2c_sweep_set_quaddobl_target as set_target
    from phcpy.phcpy2c2 import py2c_sweep_quaddobl_complex_run as run
    (nbq, nbp) = (len(pols), len(pars))
    parnames = ' '.join(pars)
    nbc = len(parnames)
    define(nbq, nvar, nbp, nbc, parnames)
    print 'setting the start and the target ...'
    set_start(nbp, str(start))
    set_target(nbp, str(target))
    print 'calling run in quad double precision ...'
    run(0, 0.0, 0.0)
    result = loadsols()
    return result