Esempio n. 1
0
def laurent_top_cascade(nvr, dim, pols, tol, \
    nbtasks=0, prc='d', verbose=True):
    r"""
    Constructs an embedding of the Laurent polynomials in *pols*,
    with the number of variables in *pols* equal to *nvr*,
    where *dim* is the top dimension of the solution set.
    Applies the blackbox solver to the embedded system.
    The tolerance *tol* is used to split the solution list in the list
    of generic points and the nonsolutions for use in the cascade.
    Returns a tuple with three items:

    1. the embedded system,

    2. the solutions with zero last coordinate w.r.t. *tol*,

    3. the solutions with nonzero last coordinate w.r.t. *tol*.

    The three parameters are

    1. *nbtasks* is the number of tasks, 0 if no multitasking;

    2. the working precision *prc*, 'd' for double, 'dd' for double double,
       or 'qd' for quad double;

    3. if *verbose*, then some output is written to screen.
    """
    from phcpy.sets import laurent_embed
    from phcpy.solver import solve
    topemb = laurent_embed(nvr, dim, pols)
    if verbose:
        print 'solving the embedded system at the top ...'
    topsols = solve(topemb, verbose=verbose, tasks=nbtasks, precision=prc)
    if verbose:
        print 'number of solutions found :', len(topsols)
    (sols0, sols1) = split_filter(topsols, dim, tol, verbose=verbose)
    return (topemb, sols0, sols1)
Esempio n. 2
0
def laurent_top_cascade(nvr, dim, pols, tol, \
    nbtasks=0, prc='d', verbose=True):
    r"""
    Constructs an embedding of the Laurent polynomials in *pols*,
    with the number of variables in *pols* equal to *nvr*,
    where *dim* is the top dimension of the solution set.
    Applies the blackbox solver to the embedded system.
    The tolerance *tol* is used to split the solution list in the list
    of generic points and the nonsolutions for use in the cascade.
    Returns a tuple with three items:

    1. the embedded system,

    2. the solutions with zero last coordinate w.r.t. *tol*,

    3. the solutions with nonzero last coordinate w.r.t. *tol*.

    The three parameters are

    1. *nbtasks* is the number of tasks, 0 if no multitasking;

    2. the working precision *prc*, 'd' for double, 'dd' for double double,
       or 'qd' for quad double;

    3. if *verbose*, then some output is written to screen.
    """
    from phcpy.sets import laurent_embed
    from phcpy.solver import solve
    topemb = laurent_embed(nvr, dim, pols)
    if verbose:
        print 'solving the embedded system at the top ...'
    topsols = solve(topemb, verbose=verbose, tasks=nbtasks, precision=prc)
    if verbose:
         print 'number of solutions found :', len(topsols)
    (sols0, sols1) = split_filter(topsols, dim, tol, verbose=verbose)
    return (topemb, sols0, sols1)