Esempio n. 1
0
def main():
    args = handle_program_options()

    map_header, imap = util.parse_map_file(args.map_fp)

    df = pd.read_csv(args.biom_tsv, sep='\t', index_col=0).T
    # exclude Sample IDs not in the mapping file
    df = df.loc[imap.keys()]

    cat_gather = util.gather_categories(imap, map_header, args.group_by)
    if len(cat_gather) < 2:
        sys.stderr.write("ERROR: Only one category value found. Linear \
        Discriminant Analysis requires at least two categories to compare.")
        return

    color_gather = util.gather_categories(imap, map_header, [args.color_by])

    class_map = merge_dicts(*[{sid: cat for sid in cat_gather[cat].sids}
                              for cat in cat_gather])
    class_colors = merge_dicts(*[{class_map[sid]: color
                                  for sid in color_gather[color].sids}
                                 for color in color_gather])

    df.insert(0, "Condition", [class_map[entry] for entry in df.index])

    if args.save_lda_input:
        df.to_csv(args.save_lda_input)

    X_lda, y_lda = run_LDA(df)

    plot_LDA(X_lda, y_lda, class_colors, out_fp=args.out_fp, dpi=args.dpi,
             title=args.plot_title)
Esempio n. 2
0
def main():
    args = prog_options()

    try:
        biomf = biom.load_table(args.in_biomf)
    except IOError as ioe:
        sys.exit("Error with input BIOM format file: {}".format(ioe))
    else:
        biomf_pa = biomf.pa(
            inplace=False)  # convert to presence/absence BIOM table
        obs_ids = biomf_pa.ids("observation")

    try:
        mheader, mdata = parse_map_file(args.map_fnh)
    except IOError as ioe:
        sys.exit("Error with input mapping file: {}".format(ioe))
    else:
        if args.group_by:
            sid_cat = gather_categories(mdata, mheader, [args.group_by])
        else:
            sid_cat = gather_categories(mdata, mheader)

    # calculate core
    core_calc = {k: set() for k in sid_cat.keys()}
    for idx in obs_ids:
        for cat, val in sid_cat.iteritems():
            obs_count = 0
            num_of_samples = len(val.sids)
            for sid in val.sids:
                try:
                    assert biomf_pa.get_value_by_ids(idx, sid) == 1
                except AssertionError:
                    continue
                else:
                    obs_count += 1
            try:
                assert obs_count > round(args.core_pct * num_of_samples)
            except AssertionError:
                continue
            else:
                core_calc[cat].add(idx)

    # Check if output directory exists, if not, create it
    try:
        assert os.path.exists(os.path.abspath(args.out_fnh)) is True
    except AssertionError:
        os.makedirs(os.path.abspath(args.out_fnh))
    finally:
        for k, v in core_calc.iteritems():
            print("{0} core IDs in {1}".format(len(v), k))
            idx_filename = os.path.join(os.path.abspath(args.out_fnh),
                                        k + "_80_pct_core_ids.txt")
            with open(idx_filename, "w") as of:
                of.write("{0}".format("\n".join(sorted(v))))
            filtered_biomf = biomf.filter(v, axis="observation", inplace=False)
            if args.biom_out:
                biom_filename = os.path.join(os.path.abspath(args.out_fnh),
                                             k + "_80_pct_core.biom")
                with biom_open(biom_filename, "w") as f:
                    filtered_biomf.to_hdf5(f, "CORE BIOM")
Esempio n. 3
0
def color_mapping(sample_map, header, group_column, color_column=None):
    """
    Determine color-category mapping. If color_column was specified, then
    map the category names to color values. Otherwise, use the brewer colors
    to automatically generate a set of colors for the group values.
    """
    group_colors = {}
    group_gather = putil.gather_categories(sample_map, header, [group_column])
    
    if color_column is not None:
        color_gather = putil.gather_categories(sample_map, header, [color_column])
        # match sample IDs between color_gather and group_gather
        for group in group_gather:
            for color in color_gather:
                # allow incomplete assignment of colors, if group sids overlap at
                # all with the color sids, consider it a match
                if group_gather[group].sids.intersection(color_gather[color].sids):
                    group_colors[group] = color
    else:
        bmap = qualitative.Paired[12]
        bcolors = itertools.cycle(bmap.hex_colors)
        for group in group_gather:
            group_colors[group] = bcolors.next()

    return group_colors
Esempio n. 4
0
def main():
    args = handle_program_options()

    # Read in biom file
    try:
        shared_biom = biom.load_table(args.input_biom_fp)
    except IOError as ie:
        sys.exit("\nError reading BIOM file: {}\n".format(ie))
    norm_shared_biom = shared_biom.norm(axis="sample", inplace=False)

    # Read in mapping file
    try:
        header, imap = parse_map_file(args.map_fp)
    except IOError as ioe:
        sys.exit("\nError in metadata mapping filepath: {}\n".format(ioe))

    # Samples for each group and  get DO values per category
    try:
        assert args.group_by is None
    except AssertionError:
        data_gather = gather_categories(imap, header, args.group_by.split(","))
        sample_list = [
            sid for cat in data_gather.keys() for sid in data_gather[cat].sids
        ]
    else:
        sample_list = norm_shared_biom.ids()
    doc = calc_doc(norm_shared_biom, sample_list)
    try:
        assert doc is not None
    except AssertionError:
        sys.exit("Error in DOC calculations. Please check the modules.")

    # Get confidence interval
    sl_lowess_regr = get_doc_ci(doc,
                                args.frac,
                                args.plot_ci,
                                sample_list,
                                num_of_seqs=args.num_iterations)

    # Plot the residual figure
    plot_residplot(sl_lowess_regr, args.residplot, save=args.save_image)

    # Plot DOC
    plot_doc(sl_lowess_regr,
             args.residplot,
             ci=args.plot_ci,
             title=args.title,
             save=args.save_image)
Esempio n. 5
0
def main():
    args = handle_program_options()

    try:
        # Load biom format file
        biomf = biom.load_table(args.input_biom_fp)
    except TypeError as te:
        sys.exit(
            "The data in the path does not appear to be a BIOM format table. "
            "Error: {}.".format(te))

    # Determine OTUIDs present in each sample
    sample_otus = oc.assign_otu_membership(biomf)

    try:
        # Parse mapping file
        header, imap = util.parse_map_file(args.mapping_file)
    except ValueError as ve:
        sys.exit("Error: {}.".format(ve))

    # Get relevant category information
    group_data = util.gather_categories(imap, header, [args.category_column])

    # Initialize results dict in group_data with {"otuids": set()} for each category
    for group in group_data:
        group_data[group].results["otuids"] = set()

    # Collect all OTUIDs present in each category
    for sid in sample_otus:
        group = sample_group(sid, group_data)
        group_data[group].results["otuids"].update(sample_otus[sid])

    if args.reverse:
        # Get shared OTUIDs
        shared = shared_otuids(group_data)
        # Write out shared OTUIDs results
        shared_df = pd.DataFrame.from_dict(shared, orient="index").T
        shared_df.to_csv(args.reverse, sep="\t", index=False)
    # Create input for unique_otus
    group_otuids = {
        group: group_data[group].results["otuids"]
        for group in group_data
    }
    # Write out unique OTUIDs to file
    write_uniques(args.output_dir, args.prefix, unique_otuids(group_otuids))
def main():
    args = handle_program_options()

    try:
        # Load biom format file
        biomf = biom.load_table(args.input_biom_fp)
    except TypeError as te:
        sys.exit("The data in the path does not appear to be a BIOM format table. "
                 "Error: {}.".format(te))

    # Determine OTUIDs present in each sample
    sample_otus = assign_otu_membership(biomf)

    try:
        # Parse mapping file
        header, imap = util.parse_map_file(args.mapping_file)
    except ValueError as ve:
        sys.exit("Error: {}.".format(ve))

    # Get relevant category information
    group_data = util.gather_categories(imap, header, [args.category_column])

    # Initialize results dict in group_data with {"otuids": set()} for each category
    for group in group_data:
        group_data[group].results["otuids"] = set()

    # Collect all OTUIDs present in each category
    for sid in sample_otus:
        group = sample_group(sid, group_data)
        group_data[group].results["otuids"].update(sample_otus[sid])

    if args.reverse:
        # Get shared OTUIDs
        shared = shared_otuids(group_data)
        # Write out shared OTUIDs results
        shared_df = pd.DataFrame.from_dict(shared, orient="index").T
        shared_df.to_csv(args.reverse, sep="\t", index=False)
    else:
        # Create input for unique_otus
        group_otuids = {group: group_data[group].results["otuids"]
                        for group in group_data}
        # Write out unique OTUIDs to file
        write_uniques(args.output_dir, args.prefix, unique_otuids(group_otuids))
Esempio n. 7
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit("\nError with BIOM format file:{}\n".format(ioe))

    try:
        with open(args.pcoa_fp):
            pass
    except IOError as ioe:
        sys.exit("\nError with principal coordinates file:{}\n".format(ioe))

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit("\nError with mapping file:{}\n".format(ioe))

    if not os.path.exists(args.output_dir):
        try:
            os.mkdir(args.output_dir)
        except OSError as oe:
            if os.errno == 2:
                msg = ("One or more directories in the path provided for " +
                       "--output-dir ({}) do not exist. If you are specifying " +
                       "a new directory for output, please ensure all other " +
                       "directories in the path currently exist.")
                sys.exit(msg.format(args.output_dir))
            else:
                msg = ("An error occurred trying to create the output " +
                       "directory ({}) with message: {}")
                sys.exit(msg.format(args.output_dir, oe.strerror))

    # load the BIOM table
    biomtbl = biom.load_table(args.otu_table)

    # Read unifrac principal coordinates file
    unifrac = util.parse_unifrac(args.pcoa_fp)

    # Read otu data file
    otus = set()
    with open(args.otu_ids_fp, "rU") as nciF:
        for line in nciF.readlines():
            line = line.strip()
            otus.add(line)

    # Gather categories from mapping file
    header, imap = util.parse_map_file(args.mapping)
    try:
        category_idx = header.index(args.group_by)
    except ValueError:
        msg = "Error: Specified mapping category '{}' not found."
        sys.exit(msg.format(args.group_by))
    category_ids = util.gather_categories(imap, header, [args.group_by])
    color_map = util.color_mapping(imap, header, args.group_by, args.colors)
    rel_abd = get_relative_abundance(biomtbl)

    # plot samples based on relative abundance of some OTU ID
    for otuid in otus:
        otuname = oc.otu_name(biomtbl.metadata(otuid, axis="observation")["taxonomy"])
        cat_data = {cat: {"pc1": [], "pc2": [], "size": []}
                    for cat in category_ids}

        for sid in unifrac["pcd"]:
            category = cat_data[imap[sid][category_idx]]
            try:
                size = rel_abd[sid][otuid] * args.scale_by
            except KeyError as ke:
                print "{} not found in {} sample.".format(ke, sid)
                continue
            category["pc1"].append(float(unifrac["pcd"][sid][0]))
            category["pc2"].append(float(unifrac["pcd"][sid][1]))
            category["size"].append(size)

        if args.verbose:
            print "Saving chart for {}".format(" ".join(otuname.split("_")))
        xr, yr = calculate_xy_range(cat_data)
        plot_PCoA(cat_data, otuname, unifrac, color_map.keys(),
                  color_map, xr, yr, args.output_dir,
                  args.save_as, args.ggplot2_style)
Esempio n. 8
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit("\nError with BIOM format file:{}\n".format(ioe))

    try:
        with open(args.pcoa_fp):
            pass
    except IOError as ioe:
        sys.exit("\nError with principal coordinates file:{}\n".format(ioe))

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit("\nError with mapping file:{}\n".format(ioe))

    # check that the output dir exists, create it if not
    util.ensure_dir(args.output_dir)

    # load the BIOM table
    biomtbl = biom.load_table(args.otu_table)

    # Read unifrac principal coordinates file
    unifrac = util.parse_unifrac(args.pcoa_fp)

    # Read otu data file
    otus = set()
    with open(args.otu_ids_fp, "rU") as nciF:
        for line in nciF.readlines():
            line = line.strip()
            otus.add(line)

    # Gather categories from mapping file
    header, imap = util.parse_map_file(args.mapping)
    try:
        category_idx = header.index(args.group_by)
    except ValueError:
        msg = "Error: Specified mapping category '{}' not found."
        sys.exit(msg.format(args.group_by))
    category_ids = util.gather_categories(imap, header, [args.group_by])
    color_map = util.color_mapping(imap, header, args.group_by, args.colors)
    rel_abd = bc.relative_abundance(biomtbl)
    rel_abd = bc.arcsine_sqrt_transform(rel_abd)

    # plot samples based on relative abundance of some OTU ID
    for otuid in otus:
        otuname = oc.otu_name(biomtbl.metadata(otuid, axis="observation")["taxonomy"])
        cat_data = {cat: {"pc1": [], "pc2": [], "size": []}
                    for cat in category_ids}

        for sid in unifrac["pcd"]:
            category = cat_data[imap[sid][category_idx]]
            try:
                size = rel_abd[sid][otuid] * args.scale_by
            except KeyError as ke:
                print("{} not found in {} sample.".format(ke, sid))
                continue
            category["pc1"].append(float(unifrac["pcd"][sid][0]))
            category["pc2"].append(float(unifrac["pcd"][sid][1]))
            category["size"].append(size)

        if args.verbose:
            print("Saving chart for {}".format(" ".join(otuname.split("_"))))
        xr, yr = calculate_xy_range(cat_data)
        plot_PCoA(cat_data, otuname, unifrac, color_map.keys(),
                  color_map, xr, yr, args.output_dir,
                  args.save_as, args.ggplot2_style)
Esempio n. 9
0
def main():
    args = handle_program_options()

    try:
        with open(args.coord_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input principal coordinates filepath (-i): {}\n"
        sys.exit(err_msg.format(ioe))

    try:
        with open(args.map_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    with open(args.coord_fp) as F:
        pcd = F.readlines()
    pcd = [line.split("\t") for line in pcd]

    map_header, imap = util.parse_map_file(args.map_fp)

    data_gather = util.gather_categories(imap, map_header,
                                         args.group_by.split(","))
    categories = OrderedDict([(condition, {"pc1": [], "pc2": [], "pc3": []})
                              for condition in data_gather.keys()])

    bcolors = itertools.cycle(Set3_12.hex_colors)
    if not args.colors:
        colors = [bcolors.next() for _ in categories]
    else:
        colors = util.color_mapping(imap, map_header,
                                    args.group_by, args.colors)
        colors = colors.values()

    parsed_unifrac = util.parse_unifrac(args.coord_fp)

    pco = args.pc_order
    if args.dimensions == 3:
        pco.append(3)

    pc1v = parsed_unifrac["varexp"][pco[0] - 1]
    pc2v = parsed_unifrac["varexp"][pco[1] - 1]
    if args.dimensions == 3:
        pc3v = parsed_unifrac["varexp"][pco[2] - 1]

    for sid, points in parsed_unifrac["pcd"].items():
        for condition, dc in data_gather.items():
            if sid in dc.sids:
                cat = condition
                break
        categories[cat]["pc1"].append((sid, points[pco[0] - 1]))
        categories[cat]["pc2"].append((sid, points[pco[1] - 1]))

        if args.dimensions == 3:
            categories[cat]["pc3"].append((sid, points[pco[2] - 1]))

    axis_str = "PC{} (Percent Explained Variance {:.3f}%)"
    # initialize plot
    fig = plt.figure(figsize=args.figsize)
    if args.dimensions == 3:
        ax = fig.add_subplot(111, projection="3d")
        ax.view_init(elev=args.z_angles[1], azim=args.z_angles[0])
        ax.set_zlabel(axis_str.format(3, pc3v), labelpad=args.label_padding)
        if args.z_limits:
            ax.set_zlim(args.z_limits)
    else:
        ax = fig.add_subplot(111)

    # plot data
    for i, cat in enumerate(categories):
        if args.dimensions == 3:
            ax.scatter(xs=[e[1] for e in categories[cat]["pc1"]],
                       ys=[e[1] for e in categories[cat]["pc2"]],
                       zs=[e[1] for e in categories[cat]["pc3"]],
                       zdir="z", c=colors[i], s=args.point_size, label=cat,
                       edgecolors="k")
        else:
            ax.scatter([e[1] for e in categories[cat]["pc1"]],
                       [e[1] for e in categories[cat]["pc2"]],
                       c=colors[i], s=args.point_size, label=cat, edgecolors="k")

        # Script to annotate PCoA sample points.
        if args.annotate_points:
            for x, y in zip(categories[cat]["pc1"], categories[cat]["pc2"]):
                ax.annotate(
                    x[0], xy=(x[1], y[1]), xytext=(-10, -15),
                    textcoords="offset points", ha="center", va="center",
                    )

    # customize plot options
    if args.x_limits:
        ax.set_xlim(args.x_limits)
    if args.y_limits:
        ax.set_ylim(args.y_limits)

    ax.set_xlabel(axis_str.format(pco[0], float(pc1v)), labelpad=args.label_padding)
    ax.set_ylabel(axis_str.format(pco[1], float(pc2v)), labelpad=args.label_padding)

    leg = plt.legend(loc="best", scatterpoints=3, frameon=True, framealpha=1)
    leg.get_frame().set_edgecolor('k')

    # Set the font characteristics
    font = {"family": "normal", "weight": "bold", "size": args.font_size}
    mpl.rc("font", **font)

    if args.title:
        ax.set_title(args.title)

    if args.ggplot2_style and not args.dimensions == 3:
        gu.ggplot2_style(ax)

    # save or display result
    if args.out_fp:
        fig.savefig(args.out_fp, facecolor="white", edgecolor="none", bbox_inches="tight",
                    pad_inches=0.2)
    else:
        plt.show()
Esempio n. 10
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit(
            "\nError with OTU_Sample abundance data file:{}\n"
            .format(ioe)
        )

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit(
            "\nError with mapping file:{}\n"
            .format(ioe)
        )

    # input data
    biomf = biom.load_table(args.otu_table)
    map_header, imap = util.parse_map_file(args.mapping)

    # rewrite tree file with otu names
    if args.input_tree:
        with open(args.input_tree) as treF, open(args.output_tre, "w") as outF:
            tree = treF.readline()
            if "'" in tree:
                tree = tree.replace("'", '')
            outF.write(newick_replace_otuids(tree, biomf))

    oid_rows = {id_: md["taxonomy"]
                for val, id_, md in biomf.iter(axis="observation")}

    # calculate analysis results
    categories = None
    if args.map_categories is not None:
        categories = args.map_categories.split(",")

    # set transform if --stabilize_variance is specfied
    tform = bc.arcsine_sqrt_transform if args.stabilize_variance else None

    groups = util.gather_categories(imap, map_header, categories)
    for group in groups.values():
        if args.analysis_metric in ["MRA", "NMRA"]:
            results = bc.MRA(biomf, group.sids, transform=tform)
        elif args.analysis_metric == "raw":
            results = bc.transform_raw_abundance(biomf, sampleIDs=group.sids,
                                                 sample_abd=False)
        group.results.update({oc.otu_name(oid_rows[oid]): results[oid]
                             for oid in results})

    # write iTol data set file
    with open(args.output_itol_table, "w") as itolF:
        if args.analysis_metric == "raw":
            itolF.write("DATASET_GRADIENT\nSEPARATOR TAB\n")
            itolF.write("DATASET_LABEL\tLog Total Abundance\n")
            itolF.write("COLOR\t#000000\n")
            itolF.write("LEGEND_TITLE\tLog Total Abundance\n")
            itolF.write("LEGEND_SHAPES\t1\n")
            itolF.write("LEGEND_COLORS\t#000000\n")
            itolF.write("LEGEND_LABELS\tLog Total Abundance\n")
            itolF.write("COLOR_MIN\t#FFFFFF\n")
            itolF.write("COLOR_MAX\t#000000\n")
        else:
            itolF.write("DATASET_MULTIBAR\nSEPARATOR TAB\n")
            itolF.write("DATASET_LABEL\tNMRA\n")
            itolF.write("FIELD_COLORS\t{}\n".format("\t".join(["#ff0000"
                        for _ in range(len(groups))])))
            itolF.write("FIELD_LABELS\t" + "\t".join(groups.keys())+"\n")
            itolF.write("LEGEND_TITLE\tNMRA\n")
            itolF.write("LEGEND_SHAPES\t{}\n".format("\t".join(["1"
                        for _ in range(len(groups))])))
            itolF.write("LEGEND_COLORS\t{}\n".format("\t".join(["#ff0000"
                        for _ in range(len(groups))])))
            itolF.write("LEGEND_LABELS\t" + "\t".join(groups.keys())+"\n")
            itolF.write("WIDTH\t300\n")
        itolF.write("DATA\n")
        all_otus = frozenset({oc.otu_name(md["taxonomy"])
                              for val, id_, md in
                              biomf.iter(axis="observation")})

        for oname in all_otus:
            row = ["{name}"]        # \t{s:.2f}\t{ns:.2f}\n"
            row_data = {"name": oname}
            msum = 0
            for name, group in groups.iteritems():
                row.append("{{{}:.5f}}".format(name))
                if oname in group.results:
                    row_data[name] = group.results[oname]
                else:
                    row_data[name] = 0.0
                msum += row_data[name]
            # normalize avg relative abundance data
            if args.analysis_metric == "NMRA" and msum > 0:
                row_data.update({key: data/msum
                                for key, data in row_data.items()
                                if key != "name"})
            itolF.write("\t".join(row).format(**row_data) + "\n")
Esempio n. 11
0
    def test_gather_categories(self):
        """
        Testing gather_category function from iTol.py. If successful, the
        function will be moved to util.py.

        :return: Returns OK if test goals were achieved, otherwise raises
                error.
        """
        DataCategory = namedtuple("DataCategory", "sids results")
        result = ut.gather_categories(self.map_data, self.map_header)
        result1 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Treatment"])  # one category given
        result2 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Smoking=Control"])  # incorrect condition given
        result3 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Treatment=Fast"])  # correct condition given
        result4 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Treatment", "Smoking"])  # 2 categories given
        result5 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Treatment", "Smoking=Never_Smoker"])  # 1 category 1 condition
        result6 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Treatment=Control", "Smoking=Current_Smoker"])  # 1 category 1 condition
        result7 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Smoking=Current_Smoker", "Smoking=Never_Smoker"])  # 2 conditions given
        result8 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Smoking=Never_Smoker", "Treatment",
                                        "Gender=Female"])  # more than 2 categories - mix
        result9 = ut.gather_categories(self.map_data, self.map_header,
                                       categories="Nationality:Peru")

        # Testing if the function calculates without any categories.
        manual = {"default": DataCategory({"PC.354", "PC.355", "PC.356", "PC.481",
                                           "PC.593", "PC.607", "PC.634", "PC.635",
                                           "PC.636"}, {})}
        self.assertDictEqual(
            result, manual,
            msg="With no category or condition given, gather_categories() did not return "
                "all SampleIDs as expected."
        )

        # Testing if the function accurately calculates for one category
        manual1 = {"Control": DataCategory({"PC.355", "PC.356", "PC.354",
                                            "PC.481", "PC.593"}, {}),
                   "Fast": DataCategory({"PC.634", "PC.635", "PC.636", "PC.607"}, {})}
        self.assertDictEqual(
            result1, manual1,
            msg="With one category given, gather_categories() did not return per "
                "category SampleIDs as expected."
        )

        # Testing if the function accurately calculates for incorrect condition given
        self.assertDictEqual(
            result2, manual,
            msg="With incorrect condition given, gather_categories() did not return "
                "all SampleIDs by default as expected."
        )

        # Testing if the function accurately calculates for correct one condition given
        manual3 = {"Fast": DataCategory({"PC.634", "PC.635", "PC.636", "PC.607"}, {})}
        self.assertDictEqual(
            result3, manual3,
            msg="With one correct condition given, gather_categories() did not return "
                "SampleIDs for the condition given, as expected."
        )

        # Testing if the function accurately calculates for correct one condition given
        manual4 = {"Control_Current_Smoker": DataCategory({"PC.355", "PC.356"}, {}),
                   "Control_Never_Smoker": DataCategory({"PC.354", "PC.481", "PC.593"}, {}),
                   "Fast_Current_Smoker": DataCategory({"PC.634", "PC.635", "PC.636"}, {}),
                   "Fast_Never_Smoker": DataCategory({"PC.607"}, {})}
        self.assertDictEqual(
            result4, manual4,
            msg="With multiple categories given, gather_categories() did not return "
                "SampleIDs for all category combinations, as expected."
        )

        # Testing if the function accurately calculates for one category and condition
        manual5 = {"Control_Never_Smoker": DataCategory({"PC.354", "PC.481", "PC.593"}, {}),
                   "Fast_Never_Smoker": DataCategory({"PC.607"}, {})}
        self.assertDictEqual(
            result5, manual5,
            msg="With one category and one condition given, gather_categories() did not "
                "return SampleIDs for all category-condition combinations, as expected."
        )

        # Testing if the function accurately calculates for one category and condition
        manual6 = {"Control_Current_Smoker": DataCategory({"PC.355", "PC.356"}, {})}
        self.assertDictEqual(
            result6, manual6,
            msg="With two specific conditions given, gather_categories() did not "
                "return SampleIDs for all condition combinations, as expected."
        )

        # Testing if the function accurately calculates for one category and condition
        manual7 = {"Current_Smoker": DataCategory({"PC.355", "PC.356", "PC.634",
                                                   "PC.635", "PC.636"}, {}),
                   "Never_Smoker": DataCategory({"PC.354", "PC.481", "PC.593", "PC.607"}, {})}
        self.assertDictEqual(
            result7, manual7,
            msg="With two conditions from same category given, gather_categories() did "
                "not return SampleIDs for all condition combinations, as expected."
        )

        # Testing if function accurately categorizes SampleIDs for multiple categories
        manual8 = {"Control_Never_Smoker_Female": DataCategory({"PC.354", "PC.593"}, {})}
        self.assertDictEqual(
            result8, manual8,
            msg="With two or more conditions/categories given, gather_categories() did "
                "not return SampleIDs for all condition combinations, as expected."
        )

        # Testing invalid categories or conditions identified
        manual9 = {"default": DataCategory({"PC.354", "PC.355", "PC.356", "PC.481",
                                            "PC.593", "PC.607", "PC.634", "PC.635",
                                            "PC.636"}, {})}
        self.assertDictEqual(
            result9, manual9,
            msg="With invalid category or condition given, gather_categories() did not "
                "return all SampleIDs as expected."
        )
Esempio n. 12
0
def main():
    args = handle_program_options()

    try:
        with open(args.coord_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input principal coordinates filepath (-i): {}\n"
        sys.exit(err_msg.format(ioe))

    try:
        with open(args.map_fp):
            pass
    except IOError as ioe:
        err_msg = "\nError in input metadata mapping filepath (-m): {}\n"
        sys.exit(err_msg.format(ioe))

    with open(args.coord_fp) as F:
        pcd = F.readlines()
    pcd = [line.split("\t") for line in pcd]

    map_header, imap = util.parse_map_file(args.map_fp)

    data_gather = util.gather_categories(imap, map_header,
                                         args.group_by.split(","))
    categories = OrderedDict([(condition, {
        "pc1": [],
        "pc2": [],
        "pc3": []
    }) for condition in data_gather.keys()])

    bcolors = itertools.cycle(Set3_12.hex_colors)
    if not args.colors:
        colors = [bcolors.next() for _ in categories]
    else:
        colors = util.color_mapping(imap, map_header, args.group_by,
                                    args.colors)
        colors = colors.values()

    parsed_unifrac = util.parse_unifrac(args.coord_fp)

    pco = args.pc_order
    if args.dimensions == 3:
        pco.append(3)

    pc1v = parsed_unifrac["varexp"][pco[0] - 1]
    pc2v = parsed_unifrac["varexp"][pco[1] - 1]
    if args.dimensions == 3:
        pc3v = parsed_unifrac["varexp"][pco[2] - 1]

    for sid, points in parsed_unifrac["pcd"].items():
        for condition, dc in data_gather.items():
            if sid in dc.sids:
                cat = condition
                break
        categories[cat]["pc1"].append((sid, points[pco[0] - 1]))
        categories[cat]["pc2"].append((sid, points[pco[1] - 1]))

        if args.dimensions == 3:
            categories[cat]["pc3"].append((sid, points[pco[2] - 1]))

    axis_str = "PC{} (Percent Explained Variance {:.3f}%)"
    # initialize plot
    fig = plt.figure(figsize=args.figsize)
    if args.dimensions == 3:
        ax = fig.add_subplot(111, projection="3d")
        ax.view_init(elev=args.z_angles[1], azim=args.z_angles[0])
        ax.set_zlabel(axis_str.format(3, pc3v), labelpad=args.label_padding)
        if args.z_limits:
            ax.set_zlim(args.z_limits)
    else:
        ax = fig.add_subplot(111)

    # plot data
    for i, cat in enumerate(categories):
        if args.dimensions == 3:
            ax.scatter(xs=[e[1] for e in categories[cat]["pc1"]],
                       ys=[e[1] for e in categories[cat]["pc2"]],
                       zs=[e[1] for e in categories[cat]["pc3"]],
                       zdir="z",
                       c=colors[i],
                       s=args.point_size,
                       label=cat,
                       edgecolors="k")
        else:
            ax.scatter([e[1] for e in categories[cat]["pc1"]],
                       [e[1] for e in categories[cat]["pc2"]],
                       c=colors[i],
                       s=args.point_size,
                       label=cat,
                       edgecolors="k")

        # Script to annotate PCoA sample points.
        if args.annotate_points:
            for x, y in zip(categories[cat]["pc1"], categories[cat]["pc2"]):
                ax.annotate(
                    x[0],
                    xy=(x[1], y[1]),
                    xytext=(-10, -15),
                    textcoords="offset points",
                    ha="center",
                    va="center",
                )

    # customize plot options
    if args.x_limits:
        ax.set_xlim(args.x_limits)
    if args.y_limits:
        ax.set_ylim(args.y_limits)

    ax.set_xlabel(axis_str.format(pco[0], float(pc1v)),
                  labelpad=args.label_padding)
    ax.set_ylabel(axis_str.format(pco[1], float(pc2v)),
                  labelpad=args.label_padding)

    leg = plt.legend(loc="best", scatterpoints=3, frameon=True, framealpha=1)
    leg.get_frame().set_edgecolor('k')

    # Set the font characteristics
    font = {"family": "normal", "weight": "bold", "size": args.font_size}
    mpl.rc("font", **font)

    if args.title:
        ax.set_title(args.title)

    if args.ggplot2_style and not args.dimensions == 3:
        gu.ggplot2_style(ax)

    # save or display result
    if args.out_fp:
        fig.savefig(args.out_fp,
                    facecolor="white",
                    edgecolor="none",
                    bbox_inches="tight",
                    pad_inches=0.2)
    else:
        plt.show()
Esempio n. 13
0
    def test_gather_categories(self):
        """
        Testing gather_category function from iTol.py. If successful, the
        function will be moved to util.py.

        :return: Returns OK if test goals were achieved, otherwise raises
                error.
        """
        DataCategory = namedtuple("DataCategory", "sids results")
        result = ut.gather_categories(self.map_data, self.map_header)
        result1 = ut.gather_categories(self.map_data, self.map_header,
                                       ["Treatment"])  # one category given
        result2 = ut.gather_categories(
            self.map_data, self.map_header,
            ["Smoking=Control"])  # incorrect condition given
        result3 = ut.gather_categories(
            self.map_data, self.map_header,
            ["Treatment=Fast"])  # correct condition given
        result4 = ut.gather_categories(
            self.map_data, self.map_header,
            ["Treatment", "Smoking"])  # 2 categories given
        result5 = ut.gather_categories(
            self.map_data, self.map_header,
            ["Treatment", "Smoking=Never_Smoker"])  # 1 category 1 condition
        result6 = ut.gather_categories(
            self.map_data, self.map_header,
            ["Treatment=Control", "Smoking=Current_Smoker"
             ])  # 1 category 1 condition
        result7 = ut.gather_categories(
            self.map_data, self.map_header,
            ["Smoking=Current_Smoker", "Smoking=Never_Smoker"
             ])  # 2 conditions given
        result8 = ut.gather_categories(
            self.map_data, self.map_header,
            ["Smoking=Never_Smoker", "Treatment", "Gender=Female"
             ])  # more than 2 categories - mix
        result9 = ut.gather_categories(self.map_data,
                                       self.map_header,
                                       categories="Nationality:Peru")

        # Testing if the function calculates without any categories.
        manual = {
            "default":
            DataCategory(
                {
                    "PC.354", "PC.355", "PC.356", "PC.481", "PC.593", "PC.607",
                    "PC.634", "PC.635", "PC.636"
                }, {})
        }
        self.assertDictEqual(
            result,
            manual,
            msg=
            "With no category or condition given, gather_categories() did not return "
            "all SampleIDs as expected.")

        # Testing if the function accurately calculates for one category
        manual1 = {
            "Control":
            DataCategory({"PC.355", "PC.356", "PC.354", "PC.481", "PC.593"},
                         {}),
            "Fast":
            DataCategory({"PC.634", "PC.635", "PC.636", "PC.607"}, {})
        }
        self.assertDictEqual(
            result1,
            manual1,
            msg=
            "With one category given, gather_categories() did not return per "
            "category SampleIDs as expected.")

        # Testing if the function accurately calculates for incorrect condition given
        self.assertDictEqual(
            result2,
            manual,
            msg=
            "With incorrect condition given, gather_categories() did not return "
            "all SampleIDs by default as expected.")

        # Testing if the function accurately calculates for correct one condition given
        manual3 = {
            "Fast": DataCategory({"PC.634", "PC.635", "PC.636", "PC.607"}, {})
        }
        self.assertDictEqual(
            result3,
            manual3,
            msg=
            "With one correct condition given, gather_categories() did not return "
            "SampleIDs for the condition given, as expected.")

        # Testing if the function accurately calculates for correct one condition given
        manual4 = {
            "Control_Current_Smoker":
            DataCategory({"PC.355", "PC.356"}, {}),
            "Control_Never_Smoker":
            DataCategory({"PC.354", "PC.481", "PC.593"}, {}),
            "Fast_Current_Smoker":
            DataCategory({"PC.634", "PC.635", "PC.636"}, {}),
            "Fast_Never_Smoker":
            DataCategory({"PC.607"}, {})
        }
        self.assertDictEqual(
            result4,
            manual4,
            msg=
            "With multiple categories given, gather_categories() did not return "
            "SampleIDs for all category combinations, as expected.")

        # Testing if the function accurately calculates for one category and condition
        manual5 = {
            "Control_Never_Smoker":
            DataCategory({"PC.354", "PC.481", "PC.593"}, {}),
            "Fast_Never_Smoker":
            DataCategory({"PC.607"}, {})
        }
        self.assertDictEqual(
            result5,
            manual5,
            msg=
            "With one category and one condition given, gather_categories() did not "
            "return SampleIDs for all category-condition combinations, as expected."
        )

        # Testing if the function accurately calculates for one category and condition
        manual6 = {
            "Control_Current_Smoker": DataCategory({"PC.355", "PC.356"}, {})
        }
        self.assertDictEqual(
            result6,
            manual6,
            msg=
            "With two specific conditions given, gather_categories() did not "
            "return SampleIDs for all condition combinations, as expected.")

        # Testing if the function accurately calculates for one category and condition
        manual7 = {
            "Current_Smoker":
            DataCategory({"PC.355", "PC.356", "PC.634", "PC.635", "PC.636"},
                         {}),
            "Never_Smoker":
            DataCategory({"PC.354", "PC.481", "PC.593", "PC.607"}, {})
        }
        self.assertDictEqual(
            result7,
            manual7,
            msg=
            "With two conditions from same category given, gather_categories() did "
            "not return SampleIDs for all condition combinations, as expected."
        )

        # Testing if function accurately categorizes SampleIDs for multiple categories
        manual8 = {
            "Control_Never_Smoker_Female": DataCategory({"PC.354", "PC.593"},
                                                        {})
        }
        self.assertDictEqual(
            result8,
            manual8,
            msg=
            "With two or more conditions/categories given, gather_categories() did "
            "not return SampleIDs for all condition combinations, as expected."
        )

        # Testing invalid categories or conditions identified
        manual9 = {
            "default":
            DataCategory(
                {
                    "PC.354", "PC.355", "PC.356", "PC.481", "PC.593", "PC.607",
                    "PC.634", "PC.635", "PC.636"
                }, {})
        }
        self.assertDictEqual(
            result9,
            manual9,
            msg=
            "With invalid category or condition given, gather_categories() did not "
            "return all SampleIDs as expected.")
Esempio n. 14
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit(
            "\nError with OTU_Sample abundance data file:{}\n".format(ioe))

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit("\nError with mapping file:{}\n".format(ioe))

    # input data
    biomf = biom.load_table(args.otu_table)
    map_header, imap = util.parse_map_file(args.mapping)

    # rewrite tree file with otu names, skip if keep_otuids specified
    if args.input_tree and not args.keep_otuids:
        with open(args.input_tree) as treF, open(args.output_tre, "w") as outF:
            tree = treF.readline()
            if "'" in tree:
                tree = tree.replace("'", '')
            outF.write(newick_replace_otuids(tree, biomf))

    if not args.keep_otuids:
        oid_rows = {
            id_: md["taxonomy"]
            for val, id_, md in biomf.iter(axis="observation")
        }

    # calculate analysis results
    categories = None
    if args.map_categories is not None and args.analysis_metric != "raw":
        categories = args.map_categories.split(",")

    # set transform if --stabilize_variance is specfied
    tform = bc.arcsine_sqrt_transform if args.stabilize_variance else None

    groups = util.gather_categories(imap, map_header, categories)
    for group in groups.values():
        if args.analysis_metric in ["MRA", "NMRA"]:
            results = bc.MRA(biomf, group.sids, transform=tform)
        elif args.analysis_metric == "raw":
            results = bc.transform_raw_abundance(biomf,
                                                 sampleIDs=group.sids,
                                                 sample_abd=False)
        if args.keep_otuids:
            group.results.update({oid: results[oid] for oid in results})
        else:
            group.results.update(
                {oc.otu_name(oid_rows[oid]): results[oid]
                 for oid in results})

    # write iTol data set file
    with open(args.output_itol_table, "w") as itolF:
        if args.analysis_metric == "raw":
            itolF.write("DATASET_GRADIENT\nSEPARATOR TAB\n")
            itolF.write("DATASET_LABEL\tLog Total Abundance\n")
            itolF.write("COLOR\t#000000\n")
            itolF.write("LEGEND_TITLE\tLog Total Abundance\n")
            itolF.write("LEGEND_SHAPES\t1\n")
            itolF.write("LEGEND_COLORS\t#000000\n")
            itolF.write("LEGEND_LABELS\tLog Total Abundance\n")
            itolF.write("COLOR_MIN\t#FFFFFF\n")
            itolF.write("COLOR_MAX\t#000000\n")
        else:
            itolF.write("DATASET_MULTIBAR\nSEPARATOR TAB\n")
            itolF.write("DATASET_LABEL\t{}\n".format(args.analysis_metric))
            itolF.write("FIELD_COLORS\t{}\n".format("\t".join(
                ["#ff0000" for _ in range(len(groups))])))
            itolF.write("FIELD_LABELS\t" + "\t".join(groups.keys()) + "\n")
            itolF.write("LEGEND_TITLE\t{}\n".format(args.analysis_metric))
            itolF.write("LEGEND_SHAPES\t{}\n".format("\t".join(
                ["1" for _ in range(len(groups))])))
            itolF.write("LEGEND_COLORS\t{}\n".format("\t".join(
                ["#ff0000" for _ in range(len(groups))])))
            itolF.write("LEGEND_LABELS\t" + "\t".join(groups.keys()) + "\n")
            itolF.write("WIDTH\t300\n")
        itolF.write("DATA\n")

        if args.keep_otuids:
            all_otus = frozenset(
                {id_
                 for id_ in biomf.ids(axis="observation")})
        else:
            all_otus = frozenset({
                oc.otu_name(md["taxonomy"])
                for val, id_, md in biomf.iter(axis="observation")
            })

        for oname in all_otus:
            row = ["{name}"]  # \t{s:.2f}\t{ns:.2f}\n"
            row_data = {"name": oname}
            msum = 0
            for name, group in groups.iteritems():
                row.append("{{{}:.5f}}".format(name))
                if oname in group.results:
                    row_data[name] = group.results[oname]
                else:
                    row_data[name] = 0.0
                msum += row_data[name]
            # normalize avg relative abundance data
            if args.analysis_metric == "NMRA" and msum > 0:
                row_data.update({
                    key: data / msum
                    for key, data in row_data.items() if key != "name"
                })
            itolF.write("\t".join(row).format(**row_data) + "\n")
Esempio n. 15
0
def main():
    args = handle_program_options()

    try:
        with open(args.coord_fp):
            pass
    except IOError as ioe:
        err_msg = '\nError in input principal coordinates filepath (-i): {}\n'
        sys.exit(err_msg.format(ioe))

    try:
        with open(args.map_fp):
            pass
    except IOError as ioe:
        err_msg = '\nError in input metadata mapping filepath (-m): {}\n'
        sys.exit(err_msg.format(ioe))

    with open(args.coord_fp) as F:
        pcd = F.readlines()
    pcd = [line.split('\t') for line in pcd]

    map_header, imap = util.parse_map_file(args.map_fp)

    data_gather = util.gather_categories(imap, map_header,
                                         args.colorby.split(','))
    categories = OrderedDict([(condition, {'pc1': [], 'pc2': [], 'pc3': []})
                  for condition in data_gather.keys()])

    bmap = qualitative.Paired[12]
    bcolors = itertools.cycle(bmap.hex_colors)
    if not args.colors:
        colors = [bcolors.next() for _ in categories]
    else:
        colors = parse_colors(args.colors, categories)

    parsed_unifrac = util.parse_unifrac(args.coord_fp)

    pco = args.pc_order if args.dimensions == 2 else [1, 2, 3]
    pc1v = parsed_unifrac['varexp'][pco[0]]
    pc2v = parsed_unifrac['varexp'][pco[1]]
    if args.dimensions == 3:
        pc3v = parsed_unifrac['varexp'][pco[2]]

    for sid, points in parsed_unifrac['pcd'].iteritems():
        for condition, dc in data_gather.iteritems():
            if sid in dc.sids:
                cat = condition
                break
        categories[cat]['pc1'].append((sid, float(points[pco[0] - 1])))
        categories[cat]['pc2'].append((sid, float(points[pco[1] - 1])))

        if args.dimensions == 3:
            categories[cat]['pc3'].append((sid, float(points[pco[2] - 1])))

    axis_str = "PC{} - Percent variation explained {:.2f}%"
    # initialize plot
    fig = plt.figure(figsize=(14,8))
    if args.dimensions == 3:
        ax = fig.add_subplot(111, projection='3d')
        ax.view_init(elev=23., azim=-134.5)
        ax.set_zlabel(axis_str.format(pco[2], float(pc3v)))
        if args.z_limits:
            ax.set_zlim(args.z_limits)
    else:
        ax = fig.add_subplot(111)

    # plot data
    for i, cat in enumerate(categories):
        if args.dimensions == 3:
            ax.scatter(xs=[e[1] for e in categories[cat]['pc1']],
                       ys=[e[1] for e in categories[cat]['pc2']],
                       zs=[e[1] for e in categories[cat]['pc3']], zdir='z',
                       c=colors[i],
                       s=args.point_size)
        else:
            ax.scatter([e[1] for e in categories[cat]['pc1']],
                       [e[1] for e in categories[cat]['pc2']],
                       c=colors[i], s=args.point_size)

# Script to annotate PCoA points.
#             for x, y in zip(categories[cat]['pc1'], categories[cat]['pc2']):
#                 ax.annotate(
#                     x[0], xy=(x[1], y[1]), xytext=(-10, -15),
#                     textcoords='offset points', ha='center', va='center',
#                     )

    # customize plot options
    if args.x_limits:
        ax.set_xlim(args.x_limits)
    if args.y_limits:
        ax.set_ylim(args.y_limits)

    ax.set_xlabel(axis_str.format(pco[0], float(pc1v)))
    ax.set_ylabel(axis_str.format(pco[1], float(pc2v)))

    ax.legend([Rectangle((0, 0), 1, 1, fc=colors[i])
              for i in range(len(categories))], categories.keys(), loc='best')

    if args.title:
        title(args.title)

    # save or display result
    if args.out_fp:
        fig.savefig(args.out_fp, facecolor='white',
                    edgecolor='none', dpi=args.dpi,
                    bbox_inches='tight', pad_inches=0.2)
    else:
        plt.show()
Esempio n. 16
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit(
            '\nError with OTU_Sample abundance data file:{}\n'
            .format(ioe)
        )

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit(
            '\nError with mapping file:{}\n'
            .format(ioe)
        )

    # input data
    with open(args.otu_table) as bF:
        biom = json.loads(bF.readline())
    map_header, imap = util.parse_map_file(args.mapping)

    # rewrite tree file with otu names
    if args.input_tree:
        with open(args.input_tree) as treF, open(args.output_tre, 'w') as outF:
            tree = treF.readline()
            if "'" in tree:
                tree = tree.replace("'", '')
            outF.write(newick_replace_otuids(tree, biom))

    oid_rows = {row['id']: row for row in biom['rows']}

    # calculate analysis results
    categories = None
    if args.map_categories is not None:
        categories = args.map_categories.split(',')

    # set transform if --stabilize_variance is specfied
    tform = bc.arcsine_sqrt_transform if args.stabilize_variance else None

    groups = util.gather_categories(imap, map_header, categories)
    for group in groups.values():
        if args.analysis_metric in ['MRA', 'NMRA']:
            results = bc.MRA(biom, group.sids, transform=tform)
        elif args.analysis_metric == 'raw':
            results = bc.transform_raw_abundance(biom, sampleIDs=group.sids,
                                                 sample_abd=False)

        group.results.update({oc.otu_name_biom(oid_rows[oid]): results[oid]
                             for oid in results})

    # write iTol data set file
    with open(args.output_itol_table, 'w') as itolF:
        itolF.write('LABELS\t' + '\t'.join(groups.keys())+'\n')
        itolF.write('COLORS\t{}\n'.format('\t'.join(['#ff0000'
                    for _ in range(len(groups))])))
        all_otus = frozenset({oc.otu_name_biom(row) for row in biom['rows']})

        for oname in all_otus:
            row = ['{name}']        # \t{s:.2f}\t{ns:.2f}\n'
            row_data = {'name': oname}
            msum = 0
            for name, group in groups.iteritems():
                row.append('{{{}:.5f}}'.format(name))
                if oname in group.results:
                    row_data[name] = group.results[oname]
                else:
                    row_data[name] = 0.0
                msum += row_data[name]
            # normalize avg relative abundance data
            if args.analysis_metric == 'NMRA' and msum > 0:
                row_data.update({key: data/msum
                                for key, data in row_data.items()
                                if key != 'name'})

            itolF.write('\t'.join(row).format(**row_data) + '\n')
Esempio n. 17
0
def main():
    args = handle_program_options()

    try:
        with open(args.otu_table):
            pass
    except IOError as ioe:
        sys.exit("\nError with BIOM format file:{}\n".format(ioe))

    try:
        with open(args.pcoa_fp):
            pass
    except IOError as ioe:
        sys.exit("\nError with principal coordinates file:{}\n".format(ioe))

    try:
        with open(args.mapping):
            pass
    except IOError as ioe:
        sys.exit("\nError with mapping file:{}\n".format(ioe))

    # check that the output dir exists, create it if not
    util.ensure_dir(args.output_dir)

    # load the BIOM table
    biomtbl = biom.load_table(args.otu_table)

    # Read unifrac principal coordinates file
    unifrac = util.parse_unifrac(args.pcoa_fp)

    # Read otu data file
    otus = set()
    with open(args.otu_ids_fp, "rU") as nciF:
        for line in nciF.readlines():
            line = line.strip()
            otus.add(line)

    # Gather categories from mapping file
    header, imap = util.parse_map_file(args.mapping)
    try:
        category_idx = header.index(args.group_by)
    except ValueError:
        msg = "Error: Specified mapping category '{}' not found."
        sys.exit(msg.format(args.group_by))
    category_ids = util.gather_categories(imap, header, [args.group_by])
    color_map = util.color_mapping(imap, header, args.group_by, args.colors)
    rel_abd = bc.relative_abundance(biomtbl)
    rel_abd = bc.arcsine_sqrt_transform(rel_abd)

    # plot samples based on relative abundance of some OTU ID
    for otuid in otus:
        otuname = oc.otu_name(
            biomtbl.metadata(otuid, axis="observation")["taxonomy"])
        cat_data = {
            cat: {
                "pc1": [],
                "pc2": [],
                "size": []
            }
            for cat in category_ids
        }

        for sid in unifrac["pcd"]:
            category = cat_data[imap[sid][category_idx]]
            try:
                size = rel_abd[sid][otuid] * args.scale_by
            except KeyError as ke:
                print("{} not found in {} sample.".format(ke, sid))
                continue
            category["pc1"].append(float(unifrac["pcd"][sid][0]))
            category["pc2"].append(float(unifrac["pcd"][sid][1]))
            category["size"].append(size)

        if args.verbose:
            print("Saving chart for {}".format(" ".join(otuname.split("_"))))
        xr, yr = calculate_xy_range(cat_data)
        plot_PCoA(cat_data, otuname, unifrac, color_map.keys(), color_map, xr,
                  yr, args.output_dir, args.save_as, args.ggplot2_style)
Esempio n. 18
0
def main():
    args = program_options()

    try:
        biomf = biom.load_table(args.in_biomf)
    except IOError as ioe:
        sys.exit("Error with input BIOM format file: {}".format(ioe))
    else:
        rel_abd = relative_abundance(biomf)
        ast_rel_abd = ast(rel_abd)
        # Get pairwise combinations of OTUs
        otu_combos = list(combinations(biomf.ids("observation"), 2))

    try:
        mheader, mdata = parse_map_file(args.map_fnh)
    except IOError as ioe:
        sys.exit("Error with input mapping file: {}".format(ioe))
    else:
        # Gather sampleID categories
        sid_cat = gather_categories(mdata, mheader, [args.category_column])

    # Create arguments for helper function to be supplied to multiprocessing pool.map()
    chunksize = 10000
    jobs = [(
        otu_combos[x:x + chunksize],
        sid_cat,
        ast_rel_abd,
    ) for x in xrange(0, len(otu_combos), chunksize)]
    print("{0} jobs created.".format(len(jobs)))

    # Start multiprocessing jobs
    try:
        print("Starting map_async()...")
        pool = Pool()
        res = pool.map_async(calc_corr_helper, jobs)
        pool.close()
        pool.join()
    except Exception:
        sys.exit("Error while calculating correlations\n{}".format(
            format_exc()))
    else:
        s_rho_calc = []
        k_tau_calc = []
        for r in res.get():
            for s in r:
                if s[0] == "Spearman":
                    s_rho_calc.append(s)
                else:
                    k_tau_calc.append(s)

    # Get FDR corrected correlation results
    print("Running FDR correction on {} Spearman's Rho.".format(
        len(s_rho_calc)))
    fdr_corr_s_rho = run_fdr(s_rho_calc)
    print("Running FDR correction on {} Kendall Tau.".format(len(k_tau_calc)))
    fdr_corr_k_tau = run_fdr(k_tau_calc)

    # Consolidate correlation results
    k_kos = {(
        e[2],
        e[3],
    )
             for e in fdr_corr_k_tau}
    s_kos = {(
        f[2],
        f[3],
    )
             for f in fdr_corr_s_rho}
    final_kos = s_kos & k_kos
    print(
        "{0} elements from KendallTau\n{1} elements from SpearmanRho\n{2} elements are "
        "common to both.".format(len(k_kos), len(s_kos), len(final_kos)))
    final_fdr_corr_results = [
        cdata[1:] for cdata in fdr_corr_s_rho if (
            cdata[2],
            cdata[3],
        ) in final_kos
    ]

    # Write our results to file
    with open(args.out_fnh, "w") as outf:
        outf.write("Category\tVariable\tby Variable\tCorrelation\tp value\n")
        for k in final_fdr_corr_results:
            outf.write("{0}\t{1}\t{2}\t{3}\t{4}\n".format(
                k[0], k[1], k[2], k[3], k[4]))