Esempio n. 1
0
def cifferDetection(image_height, image_width, image_queue):

    start_time = time()

    with PiCamera() as camera:

        camera.resolution = (image_height, image_width)
        camera.framerate = 5
        camera.exposure_mode = 'sports'

        with array.PiRGBArray(camera) as stream:

            # Warum Up for Camera'
            sleep(0.5)

            while True:
                capture_time = time()
                camera.capture(stream, 'rgb', use_video_port=True)

                # Process array for CNN prediction
                x = stream.array
                x = x.reshape((1, ) + x.shape)
                x = x * (1. / 255)

                image_queue.append(x)

                stream.truncate(0)

                if time() - start_time > 38:
                    break
Esempio n. 2
0
def init_camera():
    camera = PiCamera()
    output = array.PiRGBArray(camera)
    camera.rotation = 0
    # Max res for camera (2592, 1944)
    camera.resolution = res
    sleep(5)
    return camera, output
Esempio n. 3
0
        def getImgArray(self, asNDArray):

            output = pca.PiRGBArray(self.Acamera)
            self.Acamera.capture(output, 'rgb')

            if asNDArray:
                return output.array
            else:
                return output
Esempio n. 4
0
def getImgArray(asNDArray):

    output = pca.PiRGBArray(camera1)
    camera1.capture(output,'rgb')

    if asNDArray:
        return output.array
    else:
        return output
Esempio n. 5
0
def cumshot_rgb():
    camera = PiCamera()
    stream = array.PiRGBArray(camera)
    camera.resolution = (32, 32)
    camera.start_preview()
    time.sleep(2)
    camera.capture(stream, 'rgb')
    print("RGB RGB")
    print(stream.array.shape)
    print(ddd_to_int(stream.array))
    return ddd_to_int(stream.array)
Esempio n. 6
0
    def getImgArray(self, asNDArray):
        print("befor output")
        output = pca.PiRGBArray(self.C_camera)
        print("after output")
        print("\n")
        print("befor Capture")

        self.C_camera.capture(output, 'rgb')

        print("after capture")

        if asNDArray:
            return output.array
        else:
            return output
Esempio n. 7
0
    def get_image_fast_max(self):
        """ 
		Acquire a quick image using the RGBarray method
		 - good for auto-exposure, but not proper image analysis! 
		"""

        #print 'Getting image...',
        st = time.time()
        self.resolution = (int(self.Hpixels / 2), int(self.Vpixels / 2))
        with camarray.PiRGBArray(self) as stream:
            self.capture(stream, 'rgb')
            image = stream.array
        print('Elapsed time (get_image_fast):', time.time() - st)
        print('\tImage maximum value:', image[:, :, 0].max() * 4)
        return image[:, :, 0].max() * 4
Esempio n. 8
0
 def _stream_to_ros(self, camera, size):
     with piCamArray.PiRGBArray(camera, size=size) as stream:
         while self.power_on and not rospy.is_shutdown():
             yield stream
             snap_time = rospy.Time.now(
             )  # - rospy.Duration(0.025) # delay to handle sync error
             image = self.undistort(
                 stream.array) if UNDISTORT else stream.array
             self.camera_info.header.stamp = snap_time
             self.publish_standard_camera(image, snap_time)
             # image with camera world transform for localization
             if self.skip_count < 1:
                 self.publish_image_with_stable_transform(image, snap_time)
                 self.skip_count = 5
             self.skip_count -= 1
             stream.truncate(0)
Esempio n. 9
0
    def run(self):

        with array.PiRGBArray(self._camera) as output:
            while (self._running):
                self._camera.capture(output, 'rgb', use_video_port=True)

                if self._dedectGreenLight:

                    self.isGreen = self._greenLightDedection.greenLightDedected(
                        output)
                    if self.isGreen:
                        self.stopGreenlightDedection()

                if self._dedectRomanNumber:
                    self.imageQueue.put(output)

                output.truncate(0)
                sleep(0.01)
Esempio n. 10
0
    def _stream_raw_to_file(self, camera, size):
        with piCamArray.PiRGBArray(camera, size=size) as stream:
            frame_num = 0
            while frame_num < 100:
                yield stream
                print("Frame", frame_num)
                snap_time = rospy.Time.now(
                )  # - rospy.Duration(0.025) # delay to handle sync error
                image = stream.array
                self.camera_info.header.stamp = snap_time
                self.publish_standard_camera(image, snap_time)

                frame_num += 1
                self.output = io.open(
                    'calibration/calibrate%02d.jpg' % frame_num, 'wb')
                self.output.write(cv2.imencode(".jpg", image)[1])
                self.output.close()
                stream.truncate(0)
            self.turn_off()
Esempio n. 11
0
def crosslightDetection(image_height, image_width, model):
    with PiCamera() as camera:
        camera.resolution = (image_height, image_width)
        camera.framerate = 3
        sleep(1)

        start_time = 0
        red_counter = 0

        with array.PiRGBArray(camera) as output:
            while True:
                camera.capture(output, 'rgb', use_video_port=True)

                x = output.array
                x = x.reshape((1, ) + x.shape)
                x = x * (1. / 255)

                prediction = np.around(model.predict(x), 3)[0][0]
                #print(prediction)

                if prediction > 0.80:
                    red_counter += 1

                if red_counter == 5:
                    display.zero()
                    start_time = time()

                if time() - start_time > 15 and red_counter > 5:
                    print("0")
                    sys.stdout.flush()
                    break

                if (prediction < 0.20 and red_counter > 5):
                    print("0")
                    sys.stdout.flush()
                    break

                output.truncate(0)
Esempio n. 12
0
def take_and_process_picture():
    """
    1. a local stream for picture saving is initialised
    2. camera resolution is set and picture captured into stream
    3. the captured image is read from the stream and split into the two sides
    4. the (now) two pictures are resized to the size of the field
    5. the mask for the hands is created
    6. the pictures are reduced to the hand positions
    7. the background/ foreground noise is reduced
    8. the pictures are converted in gray tones
    9. the contours of the hands are searched and saved
    10. the middle of the contours is determined
    11. the new player positions are set
    :return: True when both players hands were found - important for standby() when registering players
    """
    player1_reg = False
    player2_reg = False
    # code oriented at:
    # https://raspberrypi.stackexchange.com/questions/24232/picamera-taking-pictures-fast-and-processing-them

    # capture picture into stream
    stream = array.PiRGBArray(camera)
    camera.resolution = (640, 320)  # (x,y)
    # camera.start_preview()
    # sleep(0.5)
    camera.capture(stream, format="rgb", use_video_port=True)
    # camera.stop_preview()

    # turn data into cv2 image
    # print(stream.array[0].size / 3, stream.array.size / stream.array[0].size)
    img = np.frombuffer(stream.getvalue(), dtype=np.uint8).reshape(320, 640, 3)
    # np.fliplr(img)

    # split in picture into two sides
    x = img[0].size / 3
    x = x if x % 2 == 0 else x - 1
    x = int(0.5 * x)
    max_y = img.size / img[0].size
    left = img[0:max_y, 0:x]
    right = img[0:max_y, x + 1:img[0].size / 3]

    # Resizing the images and convert them to HSV values for better recognition
    left = cv2.resize(left, (32, 32))
    right = cv2.resize(right, (32, 32))

    # Defining the skin color range and calculating if these values lie in that
    red_lower = np.array([160, 150, 140], np.uint8)
    red_upper = np.array([200, 190, 190], np.uint8)
    # because of light reasons it's easier to detect a light
    # red_lower = np.array([200, 200, 200], np.uint8)
    # red_upper = np.array([255, 255, 255], np.uint8)
    # get the mask
    left_mask = cv2.inRange(left, red_lower, red_upper)
    right_mask = cv2.inRange(right, red_lower, red_upper)
    # apply mask
    left_hand = cv2.bitwise_and(left, left, mask=left_mask)
    right_hand = cv2.bitwise_and(right, right, mask=right_mask)

    # cleans the skin colour space, extracting noise making it smaller
    # https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
    kernel = np.ones((3, 3), "uint8")
    # outside noise cancelling
    left_hand = cv2.morphologyEx(left_hand, cv2.MORPH_OPEN, kernel)
    right_hand = cv2.morphologyEx(right_hand, cv2.MORPH_OPEN, kernel)
    # inside noise cancelling
    left_hand = cv2.morphologyEx(left_hand, cv2.MORPH_CLOSE, kernel)
    right_hand = cv2.morphologyEx(right_hand, cv2.MORPH_CLOSE, kernel)
    # making it smaller
    left_hand = cv2.erode(left_hand, kernel)
    right_hand = cv2.erode(right_hand, kernel)

    left_hand = cv2.cvtColor(left_hand, cv2.COLOR_RGB2GRAY)
    right_hand = cv2.cvtColor(right_hand, cv2.COLOR_RGB2GRAY)

    _, left_hand = cv2.threshold(left_hand, 150, 255, cv2.THRESH_BINARY)
    _, right_hand = cv2.threshold(right_hand, 150, 255, cv2.THRESH_BINARY)

    _, left_contours, _ = cv2.findContours(
        left_hand, 1, 2)  # cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    _, right_contours, _ = cv2.findContours(
        right_hand, 1, 2)  # cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

    # change center of player1 and player2
    # https://www.pyimagesearch.com/2016/02/01/opencv-center-of-contour/
    if not left_contours == []:
        print("player 1 detected!")
        middle = cv2.moments(left_contours[0])
        if middle["m00"] != 0:
            xt = player1.x[0]
            yt = player1.y[0]
            x = int(middle["m10"] / middle["m00"])
            y = int(middle["m01"] / middle["m00"])
            player1.set_position(x if not x == 0 else xt,
                                 y if not y == 0 else yt)
            player1_reg = True
    else:
        print("player 1 not detected.")

    if not right_contours == []:
        print("player 2 detected!")
        middle = cv2.moments(right_contours[0])
        if middle["m00"] != 0:
            xt = player2.x[0]
            yt = player2.y[0]
            x = int(middle["m10"] / middle["m00"])
            y = int(middle["m01"] / middle["m00"])
            player2.set_position(x + 32 if not x == 0 else xt,
                                 y if not y == 0 else yt)
            player2_reg = True
    else:
        print("player 2 not detected.")

    cv2.destroyAllWindows()

    return player1_reg & player2_reg
Esempio n. 13
0
## takes a single image and converts it to a cv2 image (ready for image processing)

from picamera import PiCamera, array
from time import sleep
import socket, pickle
import numpy as np
import cv2
import copy

with PiCamera() as camera:

    with array.PiRGBArray(camera) as output:
        camera.resolution = (320, 240)
        camera.framerate = 24
        sleep(.25)
        current_img = np.empty((240 * 320 * 3), dtype=np.uint8)
        camera.capture(current_img, 'bgr')
        current_img = current_img.reshape((240, 320, 3))
        cv2.imwrite('image_simple.jpg', current_img)

        # CONSTANTS -- right now a blueish image #
        #TODO: determine good bounds for our nav. object (& figure out nav. object)
        RED_LOW = 0
        RED_HIGH = 25
        GREEN_LOW = 25
        GREEN_HIGH = 100
        BLUE_LOW = 0
        BLUE_HIGH = 255

        target_pixel_count = 0
        total_count = 240 * 320
Esempio n. 14
0
def run_camera(config_file_name):
    config = configparser.ConfigParser()
    config.read(config_file_name)

    cam_mode = int(config['Recording']['sensor_mode'])
    print(cam_mode)
    MAX_WIDTH = float(config['Recording']['sensor_width'])
    MAX_HEIGHT = float(config['Recording']['sensor_height'])
    cam_width = float(config['Recording']['zoom_w']) * MAX_WIDTH
    cam_height = float(config['Recording']['zoom_h']) * MAX_HEIGHT
    bg_scale_factor = float(config['Background']['scale_factor'])
    bg_width = round((cam_width * bg_scale_factor) / 32) * 32
    bg_height = round((cam_height * bg_scale_factor) / 16) * 16

    bg = Background(float(config['Background']['alpha']),
                    int(config['Background']['diff_threshold']),
                    float(config['Background']['area_threshold']),
                    int(config['Background']['delay']), bg_width, bg_height)

    led_green = LED(16)
    led_yellow = LED(20)

    with PiCamera(sensor_mode=cam_mode,
                  resolution=(int(MAX_WIDTH), int(MAX_HEIGHT))) as cam:
        cam.framerate = int(config['Recording']['framerate'])
        cam.iso = int(config['Recording']['iso'])
        cam.zoom = (float(config['Recording']['zoom_x']),
                    float(config['Recording']['zoom_y']),
                    float(config['Recording']['zoom_w']),
                    float(config['Recording']['zoom_h']))
        cam.exposure_compensation = int(
            config['Recording']['exposure_compensation'])

        cam.color_effects = (128, 128)

        # window parameter doesnt work as API says. window remains small and position is changed with different widths and heights
        #cam.start_preview(fullscreen=False, window=(0, 0, int(cam_width/2), int(cam_height/2)))
        preview = cam.start_preview(fullscreen=False,
                                    window=(0, 10, int(cam_width),
                                            int(cam_height)))

        print('auto', config['Recording']['exposure_mode'])
        cam.exposure_mode = str(config['Recording']['exposure_mode'])
        #str(config['Recording']['exposure_mode'])
        cam.awb_mode = config['Recording']['awb_mode']
        cam.shutter_speed = int(config['Recording']['shutter_speed'])

        #time.sleep(20)
        print("Exposure : {}".format(cam.exposure_speed))
        recording = False
        #cam.wait_recording(5)
        last_split = time.time()
        still = None
        filename = ""
        with array.PiRGBArray(cam,
                              size=(int(bg_width), int(bg_height))) as output:
            cam.capture(output,
                        'rgb',
                        use_video_port=True,
                        resize=(int(bg_width), int(bg_height)))
            still = output.array[:, :, 0]
            time.sleep(5)
            output.truncate(0)
            while True:
                cam.capture(output,
                            'rgb',
                            use_video_port=True,
                            resize=(int(bg_width), int(bg_height)))

                # tell world we're still alive
                led_green.toggle()

                still = output.array[:, :, 0]
                bg.update_bg(still)
                output.truncate(0)
                if (not bg.is_active()) and recording:
                    led_yellow.off()
                    print('move file')
                    os.rename(
                        filename,
                        config['Recording']['video_dir'] + "/" + filename)
                    cam.stop_recording()
                    recording = False
                elif bg.is_active() and not recording:
                    led_yellow.on()
                    print('start recording')
                    filename = config['General'][
                        'feeder_id'] + '_' + datetime.datetime.utcnow(
                        ).strftime("%Y-%m-%d-%H-%M-%S") + '.h264'
                    cam.start_recording(filename,
                                        resize=(int(cam_width),
                                                int(cam_height)),
                                        quality=20)
                    recording = True
                    last_split = time.time()
                elif time.time() - last_split > int(
                        config['Recording']['video_length']) and recording:
                    print('split recording')
                    filename_new = config['General'][
                        'feeder_id'] + '_' + datetime.datetime.utcnow(
                        ).strftime("%Y-%m-%d-%H-%M-%S") + '.h264'
                    cam.split_recording(filename_new)
                    last_split = time.time()
                    os.rename(
                        filename,
                        config['Recording']['video_dir'] + "/" + filename)
                    filename = filename_new
                if recording:
                    cam.wait_recording(float(config['Background']['bg_time']))
                else:
                    time.sleep(float(config['Background']['bg_time']))
            cam.stop_recording()
        cam.stop_preview()
Esempio n. 15
0
    #cam.start_preview(fullscreen=False, window=(0, 0, int(cam_width/2), int(cam_height/2)))
    cam.start_preview(fullscreen=False, window=(0, 0, 640, 480))

    print('auto', len(config['Recording']['exposure_mode']))
    cam.exposure_mode = str(config['Recording']['exposure_mode'])
    #str(config['Recording']['exposure_mode'])
    cam.awb_mode = config['Recording']['awb_mode']
    cam.shutter_speed = int(config['Recording']['shutter_speed'])

    #time.sleep(20)
    recording = False
    #cam.wait_recording(5)
    last_split = time.time()
    still = None
    filename = ""
    with array.PiRGBArray(cam, size=(int(bg_width), int(bg_height))) as output:
        cam.capture(output,
                    'rgb',
                    use_video_port=True,
                    resize=(int(bg_width), int(bg_height)))
        still = output.array[:, :, 0]
        time.sleep(5)
        output.truncate(0)
        while True:
            cam.capture(output,
                        'rgb',
                        use_video_port=True,
                        resize=(int(bg_width), int(bg_height)))

            # tell world we're still alive
            led_green.toggle()
Esempio n. 16
0
import threading
import time

# define the camera and its settings
camera_resolution = (400, 300)
camera = picamera.PiCamera()
camera.rotation = 180
camera.resolution = camera_resolution

# define the parameters
inaccuracy = 0.10
stop_percentage = 0.8
resolution_middle = camera_resolution[0] / 2

# define the buffer to use for picture processing
picture_buffer = pa.PiRGBArray(camera)


def get_signal(image):
    result = imageRecognizer.bottle_detection(image)
    if result is not None:
        print result
        (lowest_x, highest_x) = result
        middle_point = lowest_x + (highest_x - lowest_x / 2)
        if (highest_x - lowest_x) / camera_resolution[1] >= stop_percentage:
            print "[Thread processor]\t: send stopping signal to the queue"
            return 0
        elif middle_point <= resolution_middle - camera_resolution[
                0] * inaccuracy:
            print "[Thread processor]\t: send go left signal to the queue"
            return -1